Chapter 2

Mathematical Formulation

2.1. Introduction

In this chapter, the formulation of the governing equations required for carrying out
static and dynamic analysis of plate structures resting on an elastic foundation is presented
in the framework of a plate theory. The problem of a multi-layered smart laminated
composite plate with a piezoelectric actuator and a sensor under the action of
electromechanical loads is considered for the analyses. A non-polynomial HSDT with ZZ
kinematics is chosen as the plate theory for describing the in-plane and transverse
displacements of any point inside the plate. The kinematic model employs a trigonometric
function namely the secant function as the shear-strain function for introducing the non-
linear transverse shear strains through the thickness of the smart composite plates. The
model consists of only five primary variables like the FSDT and does not need any shear
correction factor to be multiplied with the transverse shear stiffness coefficients. The inter-
laminar continuity conditions of the transverse shear stresses are also satisfied at all the
interfaces of the plate structure.
The governing equations of equilibrium are derived with Hamilton’s principle which
produces a system of five partial differential equations (PDEs) corresponding to the
primary variables in terms of integrated quantities like the stress-resultants and inertia
components. These quantities are defined over a unit length of the plate and are responsible
for reducing the 3 D nature of the problem to a 2 D plate with the integrated values of the 3
D stresses and density ‘p*’of each discrete layer. The five governing PDEs are associated

with fourteen stress-resultants which makes the problem indeterminate. The indeterminacy
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is removed with fourteen plate-constitutive equations which are expressed in terms of the
integrated material properties of the discrete layers known as the rigidity matrices and
spatial derivatives of the five unknown primary variables. Therefore nineteen unknowns are
finally associated with nineteen unknowns, which make the problem determinate. The
solutions of the final governing equations are obtained using an analytical and numerical
approach. For the analytical solutions, Navier’s solution technique is used in which the
separation of the variables concept is applied to express the primary variables in terms of
double trigonometric series in the spatial domain. The PDEs are then transformed to a
system of ODEs in time with the assumed solutions in space, and the solutions of the ODESs
in time are obtained with Newmark’s time integration scheme. For the numerical solutions,
the finite element method (FEM) in conjunction with Newmark’s time integration scheme
is employed to solve the governing equations. A C° continuous isoparametric formulation is
developed by considering an eight-noded serendipity element for the spatial discretization
of the physical domain. The overall framework of the solutions to the governing equations
is still the same, i.e, first assuming some solutions of the primary variables in the physical
domain. In the FEM, this is achieved with the help of shape functions defined for an
element. The primary variables are discretized in terms of the shape functions and the
unknown generalized coordinates. The discretized equations of the primary variables are
further used to discretize additional relations which are involved in the formulation. With
the help of Hamilton’s principle, a discretized system of ODEs is obtained as the dynamic
governing equations. Then a suitable time integration scheme, like in this case, the
Newmark’s time integration scheme is used to solve the ODE:s.

The present chapter deals with the analytical and FE modeling of smart composite plates

resting on an elastic foundation for static and dynamic analysis. The assumptions made in
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the present investigations, basic equations like the stress-strain relationships, strain

displacement relationships, foundation model and the kinematic model are first presented

followed by a detailed description of the formulation of the governing equations and the

method of solutions.

2.2. Basic Assumptions
A smart laminated composite plate is considered with a piezoelectric actuator and

sensor at the top and bottom of the plate, respectively, also shown in Figure 2.1. The

Cartesian coordinate system (X1, Xz, X3) is considered throughout the formulation. The

underlying assumptions made in the present mathematical formulations are as follows:

e The smart laminated composite plates considered in the formulation do not fall in the
micro and nano-scale such that the small-scale effects are discarded.

e The discrete layers including the piezoelectric layers that are stacked in the thickness
direction are homogeneous and orthotropic.

e The bonding in between the layers is sufficiently strong to prevent any slip and
separation in between the layers.

e The midplane (z = 0) is considered as the reference plane.

e The materials in the present formulations obey Hooke’s law.

e The lateral deflection is very small in comparison to the in-plane dimensions of the
plate structures.

e The transverse normal stress is very small in comparison to the other stresses and
therefore neglected.

e The transverse displacement is assumed to be constant across the thickness of the smart

composite plates. Therefore, the thickness-stretching effects are not considered.
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Figure 2.1. Laminated composite plate with a piezoelectric actuator and a
piezoelectric sensor

2.3. Stress-Strain Constitutive Relations

The stress-strain relationships of the homogeneous orthotropic lamina with the material
axes aligned with the global axes are written as
{3} = [Q]*{&} 2.1a
where, {5} and {&} are the stress and strain vectors at any point in the k™ lamina defined in
the material coordinate axes system.

The components of the stress and strain vectors are given below

(GYe={Gy Gpp Tiz T2s Tz} and{&}={& &y Tiz Va3 Viz)' 2.1b
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[Q]¥ is known as the reduced stiffness coefficient matrix and it is used to relate the stress
and strain vectors of the k™ layer. The components of the reduced stiffness matrix are given

below which are obtained from the plane stress condition.

Eq11 Ezp 921E11
where, = X = X : =G
Q11 101,051 Q22 191,051 Q12 10,50 Qs6 12
Q44 = Gpz and Q55 = Gy3 2.1c

The directions 1” and ‘2’ are the directions along the fibers and perpendicular to the fibers,
respectively, and also refers to the material axis system. When the material axis ‘1’ of the
fibers are aligned to the coordinate axis ‘x;’ at an angle ‘6°, then the modified stress-strain
relationship of the orthotropic lamina is written as
{o}* =[Q]"{e} 2.2
where, {0} = {011 0y Tiz T2z T3} and {e}={e11 & Viz Y23 Y13} arethe
transformed stress and strain vector defined in the global coordinate system (X1, Xz, X3).
[Q]% is now denoted as the transformed reduced stiffness matrix and its components are
given by

[q11 gu (216 8 g -l(k)
@9=|gn G 0 2 9 2.3

0 0 o O Qs
0 0 0 @i 0Oss
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where,
~ (K

(911\ _ C4 ZCZSZ 54 46252 0 0 _
Gz €282 Ct+4+S5*  (?s? —4(C*5? 0 0,0, ®
Q22 st 2c2s? c4 4282 0 0 me
Q16 C3S (CS3—C3s —cs3 —2CS(C*—=S*) o 0O Q“

1026 =|CS3® (35—CcS® —c3s 2CS(C?—S?) 0 0|/ sz .
O 0252 _(282 C252 (C2 — §2)2 0 0 Q66
0 0 0 0 0 2 g2 o)
<t 0 0 0 0 —cs €S| \Oss
Qas 0 0 0 0 sz (7]

\Qs5/

C =cosf and S =sind 2.3b

The stress-strain constitutive relationships of the piezoelectric lamina in the material axis
system is written as

{637 = [QIP{e} — [e]{E} 2.4a
where [e]P is the matrix containing the piezoelectric coefficients which couples the
mechanical stress vector ‘{g}P’ with the electric field vector ‘{E}P’. The superscript ‘*
denotes the piezoelectric layer. The piezoelectric layers are homogeneous and orthotropic,

therefore, the coefficients of {7}, {€} and [Q]? are same as defined in Egs. 2.1(a-c). The

components of the piezoelectric coefficient matrix and the electric field vector are given

below.
0 0 eynt
0 0 e3; Eiq P
[e]P=] 0 0 0] ;{E}={E, 2.4b
0 e, O Ezz
eis 0 0

Eq. 2.4a is also known as the converse law or the actuator law. Similarly, a direct law is
available for the piezoelectric lamina which can also be called as the sensor law.

{D}P = [e]P{e} — [e]P{E}P 2.5a
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where, {D}? and [e]P are known as the electric displacement vector and electric
permittivity matrix, respectively. The coefficients of the electric displacement vector and

the electric permittivity matrix are given below

. l?ll P 611 0 0
{D}P ={Dy ¢ ;[e]P =] 0 €, O 2.5b
D33 0 0 €33

The actuator law is used to determine the actuation in the responses when an electric
voltage is applied on the piezoelectric layer whereas the sensor law is used to calculate the
total charges accumulated on the electrodes of the piezoelectric layer when the layers
experience mechanical strains. The transformed converse and direct relationships in the

global coordinate system are expressed as follows:

{0} = [Q]P{e} — [e]P{E}P 2.6a
{D}? = [e]P{e} — [€]P{E}? 2.6b
The coefficients of {o}?, {¢} and [Q]? are same as shown in Egs. (2.2, 2.3a and 2.3b). The
coefficients of the piezoelectric coefficient matrix, electric permittivity matrix and the

electric displacement vector in the global coordinate system are given below

0 0 eyut
0 0 eé3 €1 €, 07° Dy,
[e]P=] 0 0 &3] ;[€]P = [6_12 €, 0 ] and {D}? = {Dzz}
€1s € 0 0 0 633 D33
eis €5 0
where,
e’ ¢z sz o oY
€32 S? C? 0 0 e p = p 2 2 p
9:36 cs —-cs O 0 ez; 2; gz gz 8 €11)P
<€_14> =10 0 —CS CS ey e = cS —CS 0 €22 2.6C
€24 0 0 c: Sz e 12 €33
&ys 0 0 §2 c2 15 €33 0 0 1
\&,s/ LO 0 —cs cs
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2.4. Strain displacement relationships

The strain displacement relations corresponding to the linear theory of elasticity as

given by
(%Y
6x1
(€11 Zﬂ
£22 ou, au
=) (%Y 90Uz
4)’12 ¥ =4 (axz + axl) - 2.7

Va3 | dU, . 0Us

thj (@ + a—xz)
Uy %)

\(ax3 + axl J

where, U;, U, and Us; are the displacements in X3, X, and Xs-direction, respectively.

2.5. Plates on elastic foundation

In the past, the Winkler model has been effectively used to model the elastic soil under
the beams, plates and shell structures. The Winkler model is a one parameter model based
on the “Winkler’s hypothesis,” which states that the deflection at any point on a surface of
the elastic soil is proportional to the load being applied onto the surface and is independent
of the load being applied on any other points on the surface (Tanahashi, 2007). It is due to
this hypothesis that leads to a mechanical model of the elastic soil by assuming mutually
independent vertical springs. The shortcoming in this model is the discontinuity of the
adjacent displacements in the mutually independent springs. In this research, an improved
two parameter model which takes into account the proportional interaction between the
pressure and deflection of any point on the surface of the elastic soil and also
accommodates the continuity of the adjacent displacements by considering shear
interactions among the points on the elastic soil. This model is also known as the
Pasternak’s foundation model (Zenkour, 2010). The reaction-deflection relationship of the

Pasternak’s model is written as
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_ 9%U; 0%Us
fer = kwUs — kg 97,2 ks, 9x,2 2.8a

where, fgr IS the reaction, k,, is the modulus of the subgrade reaction or the stiffness
coefficient of the springs and kg, ks, are the shear moduli of the subgrade or the shear
stiffness coefficients of the foundation (shear layer). If the soil is homogenous and
isotropic, then both the shear moduli is considered to be equal. In that case, ks, =ks,=ks. In
the present formulation, the soil/foundation is assumed to be homogenous and isotropic.

Thus the modified version of the reaction-deflection relationship in Eq. 2.8a is given by

2.8b

_ 0%U; 62U3)
fer = kyUs — kg (axlz + 9y

If the shear stiffness of the soil is neglected, then the Pasternak’s model reduces to the
Winkler model. A pictorial representation of a smart composite plate resting on an elastic
foundation modeled using Pasternak’s model is shown in Figure 2.2.
2.6. Kinematic field

In the present research, the Trigonometric ZZ theory is used to describe the
deformation of any point inside the plate. This model, as the name suggests, incorporates a
trigonometric function, namely the secant function for generating the nonlinear through-
thickness profile of the transverse shear stresses. The kinematics for the in-plane
displacement components are obtained by superposing a globally varying nonlinear field on
a piecewise linearly varying zigzag field with slope discontinuities at the layer interfaces.
Present model consists of deformation modes (u,,u,, us, B;, B,) defined at the mid-plane and
auxiliary variables (ai,,a/, al,, a), ) defined at the interfaces of the plate. The auxiliary
variables represent the changes in the slope of the in-plane displacement components

(uy, U,) across the thickness of the layered plate structure.
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Figure 2.2. Smart composite plate resting on an elastic foundation

A detailed illustration of the kinematics is shown in Figure 2.3. The present model can be

expressed as the sum of ESL field and ZZ field as shown below:

{Ux} = {U""} + (U™} 2.9
where, X can take values 1 and 2, denoting the 3 D in-plane displacements, U; (x;, x,, x5, t )
and U, (x,, x,, x5, t ), respectively.

{U™"} is used to denote the ESL field while {Uy**} denotes the ZZ field.
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The ESL field consists of a non-polynomial HSDT while the ZZ field consists of piecewise
linear mathematical functions of the thickness coordinate. The ESL and the ZZ fields are
given by

rX
{UlESL} ~ Uy (1, %2, ) = X3Uzy, (X1, X2, ) + {x3 sec( 3 )+ x3ﬂl},81(x1,x2,t)

ESL X
U, U (Xq, X2, £) — X3Ugy, (X, %, 1) + {x3 sec( A )+ x3ﬂz}ﬂ2(x1,x2,t)

7z

CPT Refinements using non-polynomial functions

Non-polynomial HSDT

{Ulzz} = {Znu—l(x3 — x3™)H (x5 — x3™) al, (x;, x5, 1) + an 1(x3 — x5/ )H(—x3 + x37Y) au(xl:xz: t)

U, |3 g — ™) H (a5 — x5 adyy (g, 25, £) + Z s — x5/ H (=5 + 2370 ad, (x1, %5, 1)
2.10
The Heaviside step function in Eqg. 2.10 is used to introduce the auxiliary variables at the
respective interfaces and is also useful to create discontinuous transverse shear strains at the

interfaces of the smart composite plate. The trigonometric function, ‘x, sec( - ) is the non-

polynomial function used to refine the bending profile of the system. The displacement

components, u; and u, represent the membrane deformation modes and us is the transverse
deformation mode. f,and f3, are the slopes of the transverse normal to the mid-plane about

the x, and xj-direction, respectively. The value of ‘r’ is considered to be 0.1 (Sahoo and
Singh, 2014). The in plane displacements at any point in the plate can now be written with

the help of Egs. 2.9 and 2.10 in the following manner:

ny—-1

Uy (%1, X2, X3, t ) = ug(xq, X, ) + x5 S€C(rx3/h) By (x1, X2, ) + X2 " (x5 — X3 MY H (x5 — x3™) alu(xl; Xz, t)

-1 . . i
+ Z;Lil (x3 — x3ﬂ)H(—x3 + x3ﬂ) “{z(xl' Xz, t)+ x3{—u3'xl (x1, %2, ) + Q451 (x1, X3, t)}

ny—1

Uy (X1, X2, X3, ) = U (Xg, X3, t) + x5 5€C(rx3 /R)Bo (x1, x5, 1) + ;2 (%3 — x3 "YH (x5 — x3™) oy, (1, x5, 1)
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-1 . . P
+ Z;lil (x3 = x37)H(=x3 + x371) aél(xl’ Xz, t)+ x3{_u3,x2 (1, %2, ) + Qp82(xq, x5, t)}

2.11a

The present model does not consider the thickness stretching of normal effects, therefore,
the 3 D transverse displacement ‘U, (x,, x,, x5,t )’ is assumed to be constant.

Us (x4, %5, %3, ) = uz(xq, x5, t) 2.11b
Egs. 2.11(a, b) represents the through-thickness variations of the 3 D displacements in the
smart composite plate. Creating a displacement field is the initial step of any analysis when
carried out in the framework of a plate theory. The present model is also a refinement over
the CPT as observed in Egs. 2.11(a, b).

The kinematic field in Eg. 2.11a is modified after enforcing the inter-laminar continuity

conditions of tractions (¢ =ri"3)x3=xk (i =1 and 2; * is the layer number)’ at the

interfaces of the smart composite plate. The modified kinematic field is expressed as
follows:

Uy (X1, X2, X3, t ) = Uy (X1, X5, 1) + x3{_u3,x1 (X1, x2, ) + Q1 B4 (X1, X2, t)} + p1B1(x1, x5, t)
Uy (X1, X2, X3, ) = up(xq, X, t) + x3{_u3,x2 (X1, X2, ) + Qo 8, (x4, X3, t)} + D22 (X1, X3, )

Us(x1, X2, X3, ) = uz(xy, %, t) 2.12a

where,

P1 = x3 sec(rxs/h) + 2?21_1(9% - x3iu) H(x3 - x3iu)ai1u + Z?:ll(?% - x3ﬂ) H(—x3 + x3iu)ofill
ny—1 n;—1

P2 = x3sec(rxs/h) + Zi=1 (x3 - xaiu) H(x3 - xaiu)aéu + Zj:l (x3 - x3ﬂ) H(—x3 + x3iu)oél

_dp,.  _dps
q1 = dxs ' q; = dxs 2.12b
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Figure 2.3. Kinematics of Trigonometric Zigzag Theory (TZZT)
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Eq. 2.12a is further expressed as follows after some simplifications:

Uy (1, X2, X3, ) = g (X9, %2, ) — X3 Uz 1 (X1, X, ) + f(x3) B (X1, X2, t)
Uy (1, X2, X3, ) = Uy (X, X2, T ) — X3 u3‘2(x1, Xz, t) + g(x3)Bo(x1, X2, t)

Us (x4, X5, X3,t ) = uz(x1, X5, t) 2.13
where f(x;) and g(x;) are expressed as ‘p; + x3Q;” and ‘p, + x;Q,” respectively. ‘p, and p,’
are mathematical functions of the thickness coordinate. In the above equation, ‘u;,’ and
‘uz,’ denotes ‘us,,’ and ‘us,,” which represents the differentiation with respect to
independent variable ‘x;’and ‘x,’ respectively. It can be shown that the function ‘x5 sec(rx;/
r)’ implicitly accommodates the higher-order modes of polynomial HSDTs and is also

responsible for refining the bending of the system. This can be mathematically shown in the

following manner.

X3 sec(rxs/h) = x5 (1 + (%)2%+ (%)4% + (%)676710 vt e 00> 2.14

It is clearly observed in Eqg. 2.14 that the above expansion consists of all the odd power
terms of x5 and shall therefore contribute in the refinement of the bending phenomenon.
2.7. Analytical Formulation

The strain displacement relations of the problem can be obtained with the help of Egs.

2.7,2.12aand b.

(e} = {€}O + x3{e}D + p, {e}D + p,{}®
¥} =@ + g (3P + ¢, (3@

€11 Ugq —uz 11+ Qfis P11
where, {e} = {622} ; {e3© :{ Uz,2 }; {ey® = —Uz22 + 03522 Hey®={ 0
Y12 Uz T Uz —2Uz 15 + Qi P12 + Q3621 Bz

0
(e}® = {gz,z}; r}= {))Zg} @ = {ﬁjﬁj} = {%}; @ = {1?1} 21
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The basic equations like the kinematic field, stain displacement relations and the stress-
strain constitutive relations required for the present investigation are presented above and
also in the previous sections.
2.7.1. Equations of motion

The governing equations of motion that describes the dynamic behavior of a smart
composite plate with piezoelectric actuator and sensor can be derived with Hamilton’s

principle, which states that

fttf((su + 68Uz — SW — 8K)dt =0 2.16
where ‘6U” and ‘6K’ represents small variation in the strain energy and the kinetic energy
of the plate due to some variation in the primary variables. § Uy is the variation in the strain
energy of the elastic foundation. SW is the variation in the work potential of the forces
applied on the plate structure.

The variation in the strain energy of the smart composite plate is written as

o6U=

Ny;6uy, + M11{_5u3,11 + Q15,31,1} + N{16B11 + Nppbuy, + Mzz{_5u3,22 + Q25ﬁ2,2}
fno M;28B,5 + Nip{Su, + 8up )+ Mip{—28uz15 + Q8B , + Qp6B21 ) + N8B 2 + Mi88,, | 9%
+0Q2,0,6B; + T26B, + Q1Q,6B, + T{ 6P,

2.17
Eqg. 2.17 is obtained by integrating the 3 D stresses across the thickness of the smart
composite plates and replacing the integrated quantities with stress-resultants defined over

unit length. The stress-resultants are defined as follows:

h
Lo
[Ni1 Npz Nip]l=[2%, : [011 022 012]%dxs;

2 P

h

it

My My, Mgp] = 3, : x3[011 022 O12]%dxs;
14

2
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. . Bet . . Bet
[Ni; Niz]= f_zg_: p[011 o12]%dxg; [M3; Mi,]= f_zg_: p2[022  012]*dxs;
2 P 2 tp
L Byt
[Q1 Qz]1=[% P [013 023)%dxs; [Ty Tol=[% " [42013 41023]%dxs 2.18

2 P 2 P

The stresses should be carefully integrated in the above equation depending on the type of
material present at a particular layer as the constitutive relations are different for the
orthotropic ply and the piezoelectric layer.
The variation in the work potential of the load is defined as
SW = fﬂo q dus dQ, 2.19
where, q is the time-dependent mechanical pressure acting on the top surface of the smart
composite plate.
The variation in the kinetic energy of the smart composite plate is written as
SK=
Ty 81y — [y 8tg g + Ly 8Py — Lt 16Ty + Dt 181y — [y 186y + L5180, — [, 6154
fﬂo + 5188, + Iyu,S1, - _iluzau&_z + 1_61126[?2_—.1_111.3,2611_2 + Lt 85 5 — 13,60, + dQ,
TsB,81, — I;8,813 5 + 3,88, + Totiz 81ty

2.20
where, Iy, I, I; I3, I, Is, I¢, I, Ig are the components of Inertia obtained by integrating the
density ‘p*’ of the material. The inertial components are further defined as follows:

1_0 1_3 1:6 L p* f(x3)p" 9(x3)p"
L L, L=/ ip x3p"  x3f(x3)p*  x39(x3)p" | dxs 2.21

L I I X320 f(x3)?p*  g(x3)*p"

The strain energy of the elastic foundation is written as

=41, foe 1 (32)" 4 (02) Y an 222

The variation of the strain energy of the elastic foundation is written with the help of the

Eg. 2.22 in the following manner.
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8Ur = [y, {kwsous + ks (Bt y %%)} dQ, 2.23

dx, 0xq = Oxy 9xy
Substituting the expressions of §U, §Ug, 6V and 6K from Eqgs. 2.17, 2.19, 2.20 and 2.23 in
Eq. 2.16, and the resulting equation is integrated by parts in space (X1, X2) and time (ty, t2).
The variation of the primary variables obtained in space and at initial (t;) and final time (t,)
are then set to zero to obtain the dynamic equilibrium equations corresponding to each
variation of the primary variables.

Sugi Nypq + Nigp = Ipily — I dizg + I3 JiA

8Vg: Nigg + Nopop = Ioiiy — I iz, + Ig f

SWo: Myg 11+ 2Myg 10+ Myp 0o+ O —fp= Iy (fiy 1 + ilp2) — I (iig 11 + itz 22) + lotis + Iy P11y
+I552

8By QiMyqq + Ny g+ QMig, + Nipp — Q1Qq — T = ity — Ltz + I B

8Byt QaMpp 5 + Mo+ QaMyp 1 + Mipq — Q0 — T, = Igily, — i, + I B 2.24a

The essential and natural boundary conditions of the problem are expressed as follows:

Boundaries parallel to x, axis, i.e,x; =0or|
1. Either N;; = 0 or uy is prescribed

2. Either N;, = 0 or u, is prescribed
3. Either My, =0 or % is prescribed
1

oMy, OM;, dus
6x1 + 2 aX2 + ks 6x1

4. Either ( Liy + I, % —Lp)=0or
us is prescribed

5. Either (;M;; + Ni;) =0 or f; is prescribed

6. Either (Q,M;, + M7,) =0 or B, is prescribed

Boundaries parallel to x, axis, i.e,x, =0orb

1. Either N;, = 0 or uy is prescribed

2. Either N,, =0 or u, is prescribed
3. Either M,, =0 or % is prescribed
2

4. Either (aMJ 4z g Ous

- .. = dil; - --)_
™ ™) Som L, + 1, o7, I;6,)=0o0r

u5 is prescribed
5. Either (0, M4, + Ni3) =0 or f3; is prescribed
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6. Either (Q,M,, + M;,) =0 or f3, is prescribed

At the corners

Either M;, = 0 or u; is prescribed.

Eq. 2.24a is indeterminate as there are fourteen stress-resultants in five equations. When
solving a problem using elasticity formulations, the formulation starts with the equilibrium
equations of elasticity in which 3 equations are associated with 6 unknown stresses. To
make the problem determinate, the strain-displacement relations and stress-strain
constitutive equations are utilized which results in 15 unknowns and 15 equations.
Similarly, in the present problem, additional equations are defined with the help of Eq. 2.18
which are known as the plate constitutive relationships and then substituted for the stress-

resultants in Eqg. 2.24a. The plate constitutive relations for the laminated composite plate

and the piezoelectric layer are defined as follows:

Laminated composite plate

{N}zx) B [[Al(x3)
J{M}(3x1)l _ l [Bax3)
{N*}(le) - | [C](2x3)
l{M*}(zm J LD] 23

(@)™ 442
{{T}(lxl) } = [[EE](uz)
{T*}(lxl) [FF](lxz)

Piezoelectric Layer

( {(N}axn) ) rz [A] 3x3)
{M}(3x1) } _ [[B](SxS)
Ny [ l[C](2x3)

k{M*}(le)) [D](2x3)
{Q}2xn) rz [AA] 2x2)

{ {T}(lxl) } = [[EE](uz)
{T*}(lxl) [FF](lxz)

[Blxsy [Claxz)
[Glaxsy [Hlaxe
[Hlxsy  [Llzx2)
[[] (2x3) [M] (2x2)

[EE] (2x1)
[55] (1x1)
[TT] (1x1)

[Blaxsy [Clax2)
[Glxsy  [Hlzxe
[H] (2x3) [L](ZxZ)
Ulexsy Mg

[EE]2x1)  [FFlaxn

[SS] (1x1)
[TT](1x1)

[TT] (1x1)

[FF](zm)rl {y}(o)(zm)
[UU] (1x1)

[UU] 121y

D]y 1™ (8 m)
[1](3x2)| {g}(l)(3xl) .
[M] (222 {S}Q)(le) |
[P](sz)J k{g}@(le))

1

)¢ )(1x1)
2

3 1y

[D](3x2) Pz {5}23(3951)
U ax2) e 3 +
[M](sz) {5}(2)(2x1)
[P](zxZ)J l{e}(3)(2x1)J l

\3® (1x1)J
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Superscripts ‘€band P are used to denote the laminated composite plate and the

piezoelectric layer, respectively.

where, {N}:{II\VIZ};{M}:{%Z};{N*} ik ory =0 ={Eh m=nry=n
N12 MlZ 1

The vectors containing the derivatives of the primary variables defined at the mid-plane in
Eq. 2.25a are already defined earlier in Eq. 2.15. The terms associated with the electric
voltage ‘V’ are defined later in the section 2.7.2. Rigidity sub-matrices relating the stress-

resultants with the mid-plane derivative variables are given below.

El,Pz

[A] [B] 1 x3

[Cc] [D] ! s P1 l

[G] [H] = YN f | x5 x3p1 | [QU] dx, (i,j =1, 2, 6); (NL denotes number of layers)
] [L] I k X3p2  Pi° ) |

(M) [P] \ PP P J )

[44] [EE] [FF])®** k([ 1 q
[[55] [TT] [UU]] ﬁil{fka <[q12 0192 ][Q”] dx3)} (i,7=4,5) 2.26

Now there are fourteen plate-constitutive relations associated with five primary variables in
Egs. 2.25(a, b). The problem is therefore determinate as nineteen unknowns are now
associated with nineteen equations. Substituting the plate constitutive relations in Eq. 2.24a

gives a system of PDEs in terms of the primary variables.

d3us 32B1) ( 93us 9°B, ) 9%By
+ - + - +
B11 ( x43 + 0x412 Bz +Q, 0x,0x, C11 0x,2

0x10x,2

2B, (a U 0%u, ) ( a3u 62;?1 0B, ) 9°p,
—r2 + + +
12 35, 0%, Ass 0 8x,0x Boe (=2 ax a 2 T Ql 2 T 9x,0x, Cos dx,2
9%, p OF(x1,%3) 5 .. =
+ [ —— =
66 3101, Vinn A3, F (£) ox, lotn L3 6x1 13 pr=0
8%u, 02u, ( 33us 32B, ) ( 33us 62[?2) 92B,
— 4 + - +
A1z dx,0x A5 0x,2 + By, 0x,20x, +0 0x4,0x, B2, dx,3 +Q 0x,2 C1z 0x10x,

9%B, ( 0%uy 62u2) (_ d3ug 9%By 9* Bz) 9%By

D>z x52 * Aes 0x,0x, + 0x42 * Bee 2 0x4120x, + 0x,0x, +Q, * Ces *
2

D66w+ anAng(t)M

N
9x,2 lytt, +Ila_xj_16 f.=0
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3 3 4 3 4 3 3
B, L yp 2w +Gll(—au3+ﬂaﬁl)+612( otus L g aﬁ2)+H °Bs

0x43 12 3x,20x, 0x,% 19x,3 0x120x,2 2 9x,20x, 11 9y, 3

3 3 4 3
sl g op (CT g Ot )y oG (<200 0,001, 0

120x, 0x10x,%2  0x120x, 0x 26x2 X10x52 2 9x,20x,
6 ﬁl 6 ﬂz 63u1 6 uZ ( 6 Us 63[?1 )
+ —_—
2He6 552z 8x,0x + 2les 8x,20x 12 g5, 0x,2 BZZ *+ Gz 8x120x,2 o Bx10x,2
0* 9"usz a3 Bz 83B, 83 ﬁz p 92 F(x1 xz) p 92 F(x1 X3)
+ G (- 25+ 0,2 + le o+ Iy T2+ ancglm) T 4 Vo CB F () i)
dilq 6u2) - (azu3 9? u3) - ajf';l =3B = . _
I (6x1 + 0x; t1 0x42 + 0x,2 Iy 0%, I7 0x, lotts + q(t) fEF =0
QB‘““ Q,B, 2% 4 0.6 (6”3+Qazﬁl)+ac (— Pus 40 6232)+
1711, 1712 9x,0x, M1\ o L ox,2 T2\ 9x,0x,2 ' 772 9x,0x,

2 3 2
QlHllaﬁl-l-QlIlZaa br o LUy, P +H11(_M+Q aﬁl)

0x, dx42 12 5, 0x, 0x,3 1 9x,2

2 2 2 2 2
+H12(——a =4+ 0 il )"‘Lnaﬁl"'Muaa be +QlB66(_a LT )+QlH66_a £y

Bx10x,2 2 9x,0x, dx,2 x10% 9x,2 | 9x,0x, dx,2
* 0Ga (<250 + QT+ QT )+ lss et + Cao (578 + 5752 ) Los 53
+ Heo (2500 + 3 azﬁl L0500 ) 4 Mageti = 0,2AAyfs — 204FFyofs -
UU2By =ity + Ty 522 = Ts B Vi 01 CHF (0 TS — W1 0, 18 F (6) 25222
— Vyn PR (6) 5222 anEg’lﬁ(t) =g
0,B,, aazgl 2Bry 224+ 0,6, (— % + 0 a"’jgl )+ 060 (- gxug +Q, gif;) "
0y 50+ Qalay ‘3—3 #Dragy g+ Do 35+ ha (= 5o+ Do) Miagy o
+ 1y (—% + Q, g:f;) P22 > Bz + QB (ailgiz le ) Q,Heg aa g; + Qzles%
(25 0, 2 0,28) 20
+ Dgg (% +28) g (-2 502 + 0, 5o+ 0 az,;y) —20, EEy1f — SS115;
- Igily + 17 - I Bot anZC'ssz(t)M Vi Qo LY F () —2=2= aF(xl’XZ)
— Vo F(t) S 4 Yy G, F(2) —aF("lz"‘z) 0 2.27

2.7.2. Electric Potential

The electric potential ‘@’ is related to the electric field by the following relationships.

a

El a.X'1
(2] | smno #28

2

Es 2

0x3
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The thickness of the PFRC layer is very small in comparison to that of the laminated
composite plate. Therefore, the electric potential (&) is approximated with linear
interpolation functions of the thickness co-ordinate. The edges of the laminated plate are

also grounded. The variation of the electric potential function is given by

D(xq, x5, X3, 1) = F(x3) V(xq, x5,1); Where F(x3) = (x3 — E) 1 2.29

2 tp
The electric voltage (V) is assumed to vary sinusoidally in the spatial domain (x,,x,) and in

the time domain, the variations are shown in Figure 2.4.

Therefore, V(xy, x5, ) = Vo F(rs,x2) F(t), where F(xy,xz) = sin(Z2) sin(=2) and F() is

known functions of time. The integrated quantities associated with the piezoelectric force
vector are expressed as follows:
F (x3)
Agl k+1 ®31 0x3
PZE = ) ,p } = fx3 aF(x3) p dxs |; {CYPZE = p
{A} A3, xsk €3, ax3 3 C3

OF (x3)
€31%3 5
{ apm)ldx?,
0 U oo ) o \

oF
E3) k| |€31P1 aix;) et 0 OF (xs)
{EY*F =10 1=/ 0 ; {GY*F = 53172 f e32P2— —cdxz |;
0 3

0
- {g%s} B (R
vy =Neaf = T (0] O axa)

0

Py :{P%;} ) f;c:kkﬂ ({9156120F(x3)} dx3) 2.30

2.7.3. Solution Scheme
The system of PDEs in Eq. 2.27 consists of the spatial derivatives and time derivatives of

the primary variables. To solve the equations, the boundary conditions and the initial
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conditions of the problem are required. The general boundary conditions of TZZT in terms
of the primary variables and the stress-resultants are derived and presented in Eq. 2.24b.
Based on the boundary conditions of the problem, the displacements and stress-resultants
are required to be specified at all the edges. At a particular edge, both the forces and
displacements cannot be specified. For analytical solutions of Eq. 2.27, the Navier-based
solution technique in terms of trigonometric closed-form solutions is employed. The plate
is assumed to be diaphragm-supported at all the edges. The boundary conditions at all the
edges are defined as follows:

uy (0x2) = up (Lxz) = uz (0.x2) = uz (Lxz) = B2(0.x2) = B2 (Ix2) = 0

N11(0,x3) = Ny (Lxz) = M141(0,262) = My (1x2) = (QM34(0,x2) +N71(0, x2)) = (Q My4(Lxz) +Ny3 (1, x2)) = 0
uq (xq, 0) =uq (x1, b) =uz(xq, 0) = uz (xq, b) = B1(x1, 0) =B (x1,0) =0

Nyy(xq, 0) = Ny (x1, b) = My, (x4, 0) = My, (x4, b) = (Qu M55 (x4, 0) +M;, (x4, 0))

= (QuMy, (%1, b) +M3, (x4, b)) =0 2.31
Eq. 2.27 also has the 2" order derivatives of the primary variables with time, and therefore
two initial conditions are required, i.e, conditions of displacements and velocities at all the
points in the space (X1, X2) at time, t = 0.

2.7.3.1. Static Analysis

In the static analysis, the inertia components are neglected from Eq. 2.27 and the smart
composite plate is subjected to electromechanical loads which are not time-dependent. The
primary variables are expressed in terms of double trigonometric series by satisfying the
boundary conditions in Eq. 2.31. The mathematical functions for the primary variables are

assumed as follows:

_ mmx, nmx,
U = Z?:z:m.. 2?10=1,3.. U1mnCOS( ] sin > )

_ - mrmxq nmx,
Uy = Xm=13. Ln=13. Uz, SIN T )COS\—, )
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mmnx - nmx
B = Z?rol=1,3..2$10=1,3..ﬁ1mn005( ] 1)Sln( - 2)

B2 = Xim=13. Xn=123. ﬁzmnSin(mel)COS(anz) 2.32

The external mechanical load and electric voltage are assumed to be sinusoidal and uniform

in the spatial domain. The expression of the loads in the spatial domain are given below

_ . (mmxy\ _._(nmx,
4= Tine1. Dt . Gmnsin(T) sin(*52)

V= Binesa B s Vnsin(FE2 ) sin(2) 2.33

16

mlmn

For sinusoidal variation, q,,, = q, and V,,,, =V, and for uniform variation, q,,, = 90

and 1, = %VO, where q, and V,, are the amplitude of the mechanical and electrical load

in the sinusoidal and uniform variation.

The assumed solutions in Eqg. 2.32 and 2.33 are substituted in the partial differential
equations presented in Eqg. 2.27 and after some simplifications, a system of algebraic
equations is obtained in terms of the field variables. The system of algebraic equations is
given by

[K](sx5) (A} sx1) = (Fmdsxny + (Fedsxny 2.34
where [K], {A}, {F),} and {F} are the stiffness matrix, vector containing the field variables,
the external mechanical and electrical force vector, respectively. The details of the stiffness
matrix are presented in Appendix A.

2.7.3.2. Free Vibration Analysis

In the free vibration analysis, the external loads, ‘q and V’ are neglected from the PDEs in
Eqg. 2.27. The field variables are expressed in terms of known mathematical functions of

time and space based on the concept of separation of variables. The mathematical functions
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in the spatial domain are assumed based on Navier’s solution scheme and a periodic
solution is assumed in time.

The mathematical functions for the primary variables are given by:

Uy = Xm=1,2. Zne1,2. Uy, (£) €OS (Tm:xl)sin(%)
Uy = Xm=1,2. 2m=1,2. Uz, () Sin(mtxl)cos(nzxz)
Uz = Ym=12. 2m=1.2. Uz, () Sin(mfxl)sin(%)
B1 = Xm=12. 2n=1,2. .Blmn(t) cos (mfxl)sin(%)

Bz = Lm=1,2. 2n=12. B2 (©) Sin(@)COS(nixz) 2.35

The periodic functions in time are assumed in the following manner:

B

[Umn(t) Vmn(€) Wi (£) 'men(t) 'Bymn(t)]z[umn Vmn Winn ﬁxmn ]eiwt

Ymn
2.36

where, i =v/—1 and w is the frequency of the natural vibration.

The assumed solutions in Eqg. 2.35 and Eq. 2.36 are substituted in the partial differential

equations in Eq. 2.27 and a system of homogeneous algebraic equations is obtained in the

following form:

{[K]sxs)y = @*[M](sxs) HA}s21)= {0} (sx1) 2.37

where [M] and {0} are the mass matrix and a vector containing zeros respectively. The

details of the mass matrix are presented in Appendix B.

2.7.3.3. Transient Analysis

In the transient analysis, the entire system of governing equations presented in Eq. 2.27 is

used. The field variables are first expressed in terms of known mathematical functions of

space following the Navier’s solution scheme. The solutions are then substituted in the

PDEs in Eg. 2.27 and reduced to a system of ordinary differential equations (ODES) in
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time. The mathematical functions for the primary variables and the external forces are

given by

Uy = Xm=1,2. Zne1,2. Uiy, (£) €OS (Tm:xl)sin(nzxz)
Uy = Xm=1,2. 2m=1,2. Uz, () Sin(mtxl)cos(nzxz)
Uz = Ym=12. 2m=1,2. Uz, () Sin(mfxl)sin(nixz)
B1 = Xm=1,2. Xn=1,2. B1,, (t) COS (Tm:xl)sm(nixz)
B2 = Xm=12.2%n=12. 82, () Sin(@)cos(nzxz)
4 =55 T, q (0 sin(7) sin("222)

V=S SV (sin(P) sin(*5) 238

The system of coupled ODEs in time is defined as follows:

(M ](5x5){A}(5x1)+ [K] (525 {0} sx1)= {F ()} 521y + {Fe(®)} (51 2.39
where, {A} is the vector containing the double derivatives of the field variables in time. The
functions of time assumed for the external forces are presented in Figure 2.4. Eq. 2.39 is
also subjected to the following initial conditions of displacements and velocities:

uq (%1, %2,0) = Uy (X1, x2); Uz (X1, X2, 0) =Up (X9, X2); Uz (xXq, X2, 0) = Uz (xq, Xx7)
P1(x1,%,0) = E1 (%1, %2); B2 (%1, %2,0) = ,Ez (x1,x2)
Uy (%9, %2,0) = Uy (x1,%3); Up(xq,%2,0) = Up(xq,X3); Uz (X, X2,0) = Uz (xq,X7)

By (x1,x7,0) = El(xl'xz); B2 (x1,%,,0) = .Ez(xl'xz) 2.40
The functions @, iy, @iz, By, Bz, T4, Ty, Hs, By and B, are further expressed in terms of the
double fourier series like the field variables in the static analysis. The initial displacements

and the initial velocities are obtained with the help of Eq. 2.40
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Initial displacements
(Ulmn] (Ut (O
U | Uz, (0)]
Uspn ¢ =4 Uz, (0) 2.41a
| B | | B1, (0
Bop) B, (0
Initial velocities
(Ulmn\ rUlmn(o)
Uzmn Uzmn(o)
AUzt =3 Uz, (0) 2.41b

Bl B (0)
LBzan kﬁzmn 0)J

Newmark’s constant average acceleration method is adopted in this article to solve Eq.

2.39.
4 4 A  Staircase Loading
Step Loading Sine Loading Ramp Loading 4 '----I
3y I"'J
L [ 1 e I I
! ——— —_ 24 l..--.l
! \\\ /‘I : l
‘I I ==L
; . i . o I g ! I
" " 001 pp2 003 004
A A
Triangular loading Exponential Loading Ramp- constant Loading
q |,
\\\ —— _’T -------
™ - A
AN T - - S

o
L 4

v

k J

Figure 2.4. Different types of time-dependent electrical and mechanical loads
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2.8. Finite Element (FE) Formulation

In the present FE formulation, an eight-noded isoparametric serendipity element shown in
Figure 2.5 is used to discretize the physical domain (x;,x,) of the plate. The primary
variables are written as a linear combination of the shape functions and the generalized
nodal coordinates for an element. The geometry of the element is also expressed in terms of
the same shape functions and generalized geometrical coordinates as the element is
isoparametric. The interpolation shape functions for an eight-noded element are given

below:

N =21+ EE)A+m) (& + nm; + 1) fori=1,3,5,7

Ny =21 —&)(m; + 1) fori=2,6

N; =§(1 —n2)(&&; + 1) fori=4,8 2.42

A

7 6! 5

® | ®
|
|

8 . e e s s = ..4._._> f
® ® ®
1 2 3

Figure 2.5. An eight-noded serendipity element

The discretized expressions of the primary variables in general and the element geometry
are given by

q = X Nig; 2.43
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where, q denotes the generalized primary variable and q; is the value of the primary
variable at the i node. NN is used to denote the number of nodes of the element.

Similarly, x;= YN N;x;; and x,= XM N;x,; 2.44
where, x; and x; are the coordinates used to define the geometry of the element. x;; and x,;
are the coordinates of the i™ node in the x; and x,-direction, respectively.

The above equations are used to discretize the basic equations like the kinematic field,
strain-displacement relations and the stress-strain constitutive relations in terms of the
generalized nodal coordinates.

2.8.1. Discretized Kinematic field

It can be observed in the equation of the kinematic field (Eg. 2.12a) and in the strain-
displacement equations (Eq. 2.15) that the kinematic model requires C* continuity of the
transverse displacement at the element boundaries due to the presence of first and second-
order derivatives of transverse displacement in the kinematic field and the strain-
displacement relations, respectively. Therefore a C*-continuous FE formulation is required
for the FE modeling of the smart composite plate using the present kinematic field.
However, C-continuous FE formulations require more computational efforts than the C°-
continuous formulations. To reduce the continuity conditions of the transverse
displacement in the present FE formulation, addition constraint equations are imposed
which are written as

Us = O, => (Ug e, — Ox,) =0and uz,, =0, => (uzy, — 0y,) =0 2.45
The constraint equations in Eq. 2.45 reduces the continuity requirements of transverse

displacement, however, increase the number of field variables from five (ref: Eq. 2.12a) to
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seven. The modified displacement field after enforcing the constraint equation in Eq. 2.12a
is now written as follows:

Uy (1, X2, X3, ) = Uy (g, x5, 1) + x3{—9xl (1, %2, 0) + Q1 By (31, %5, )} + 1By (21, %5, )
Uy (31, %2, 3,6 ) = up(xq, X, £) + x3{—9x2 (1, 22, 0) + QB (%1, %2, O} + D2B2 (21, X, 1)

Us (x4, x5, %3, ) = uz(xq, x5, t) 2.46
In the present formulation, the constraint conditions are enforced with the help of penalty
functions. The detailed calculations for enforcing the constraint equations are presented in
the section. 2.8.4. In this section, the discretized form of Eq. 2.46 is constructed and
presented below.

First, the 3 D displacements ‘U, U, and U;’ are written in a matrix-vector form containing

the mathematical functions of the thickness coordinate and the surface-dependent primary

variables.
{Uey= [Z] aary (U} 71y 2.47a
1 0 0 (p;+x309,) 0 —x3 0
where, {U}={U; U, Us};[Z]=[0 1 0 0 (py +x30,) 0 —x3
0 0 1 0 0 0 0
and {U}={w; u, us Py B2 61 05} 2.47b
Superscript < is used to denote the transpose of the vectors. Further, the vector (U}’

containing the primary variables are written in terms of the shape-functions defined in Eq.
2.42 and the generalized nodal coordinates with the help of Eq. 2.43.

{U} 721y = [N](7x56){d%} (56x1) 2.48a
where, the matrix ‘[N]’ contains the shape-functions of the eight-noded element and is
given by

[N]1=[[Mili7xy [Nolgxry [Nslgary [Nalgary [Nslgany [Nelgary  [N7)zxzy [Nalzan | 2.48b

where, the individual submatrices ‘[N,];,7)’ is defined as follows:
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PN
-

-

2.48c

Socoococoococo

-
L

-

ﬁ

=

e

I

coococoo=2
coococo=2o
cocooco=2oo
coo=Z2ococo
co=2ocococo
o=2ococoococo

{d®} is the vector containing the generalized nodal coordinates defined at all the nodes of

the element. The components of {d¢} are given below
— - — — - — e e t
@y={a), (@), @), @, @), @, @, @) 248

where, {d}, ={uy, u,, us;, Bi, Bz, Oy 62,)" 2.48e
Subscript ¢’ is used to denote the i node and superscript “® denotes the e™ element of the
physical domain.

Substituting for {U} from Eq. 2.48a in 2.47a, the final discretized equations for the 3 D

displacement components are written as follows:

{U}sx)= [Z] 3x7) [N](7x56){de}(56x1) 2.49
2.8.2. Discretized Strain displacement relationships

The discretized equations of the strain-displacement relationships are constructed with the
help of Egs. 2.7 and 2.49. The strain-displacement relations are first expressed in a matrix-
vector form in which the components of the matrix are the mathematical functions of the
thickness-coordinate and the components of the vector are the mid-plane derivatives of the

primary variables.

{5}(5x1): [H] (5x14) {5_}(14x1) 2.50a

where, {e}={e11 &2 Viz Y23 VYiz};

98



Chapter 2 Mathematical Formulation

1 0 0x 0 0p 0 0 o0 0 0 07
[0 1 00 x5 0 0 p, 0 g0 0 0 O]
[H]=]0 0 1 0 0 x3 0 0 po P20 0 0 Of and
0000 0 00 0 O 010 g O
0000 0 00 0 O O0O0T1 0 q

{&}={e; & & & & & & & & &0 &1 &2 f13 fuaf

_ Ouq, _ Ouy, - (6u1 6u2)_ - (691 6/3’1)_ - (392 6[32)_
é1= 0xq’ &= ox,’ €3 = + 0x,/’ 4= x4 + 0x,/’ €= 9x, +Q, 0x,)’

0x,
_ _ (96s 692) 9B, 0B2. . _0B1. _ _0B2. _ _ 0P, _0Ba.
€6 = (ax2+ax1 8 6x2+92 6x1’g7_6x1’88_ 0x,’ 9_6x2’€10_6x1’
=0, + 2% 0,8, e, =0, + 28+ OBy 15 = By €14 = 2.50b
€11 = — 2+a_x2+ 2B2: €12 = — 1+a_x1+ 1P1; €13 = P2; €14 = P1 .

The mid-plane derivative variables in {€} can be further expressed in terms of the
derivatives of the shape-functions and the generalized nodal coordinates by the following
discretized relation.

{€}(1ax1)= [Bl(14x56){d®} s6x1) 2.51a

where,

[B1=[[Bilaax [Bzlaaxry [Bslaaxry [Balaaxn [Bslaaxn [Belaaxn [Brlaaxn [Belaaxn)]
2.51b

The components of the various submatrices in Eq. 2.51 are given below

= 5 _5 _=5 = _ON;. 5 _ 5 _ 5 _ = _ 5 _ ON; .
Bl,li - BS,Zi_ B7'4i_ BlO,Si_ 312,31. - a_xl, Bz'zi - Bglli - BS,S,: - B9,4i - Bll,3i - a_xz ’
= _ 5 _ ON; . 5 _ 5 _ ON;. s _ oN; . 5 _ oN; . 5 _ aN; .
B4—,6i - B6,7i - _a_xl ] BS,7i - B6,6i - _a_xz ’ B4,4i - 'Q‘la_xl ] BS,Si - 'Q‘Za_xz ] B6,4i - 'Q‘la_xz ’

Bos, = 02550 Bioa, = Ny Buys, = 0Ny Buus, = Buaoe, = =N Buss, = Buas, = Ny

All the other entries in [B] are zero. The derivatives of the shape functions in the above
equation are with the x; and x,-coordinates, however, the shape functions are functions of &
and n. Therefore, the derivatives of the shape functions are required to evaluated using the
chain rule of differentiation. The complete form of the matrix ‘[B]” for the i node can be

written as follows:
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A L T (S ) 2.51c

The final discretized strain-displacement relationship is given below

{e}sx)= [H] (5x14)[Bl(12x56){d®} (56x1) 2.52
2.8.3. Discretized Stress-Strain Constitutive relationships

The discretized stress-strain relationships for the traditional laminated composite plates is
given by

(@)= [Q(sxs) [Hl 5210 [Blraxs) {dY g6 2.53
In the constitutive relationships of the piezoelectric material, there is coupling in between
the mechanical stresses and the electric fields. The relationships between the electric field
and the electric potential are presented earlier in Eq. 2.28. To obtain the discretized
constitutive relationships of the piezoelectric materials, the relations presented in Eq. 2.28
are required to be discretized first. The electric voltage ‘V”’ is expressed with the shape-
functions and the generalized voltage coordinates defined at the nodes of an element.
V=YVMWNV(t)° 2.54
where, V; (t) ¢ is the time-dependent generalized voltage coordinates at the nodes of the el

element. The electric potential ‘@’ is discretized as follows with the help of Eq. 2.54.
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®=(x;=3) = XM N Vi (D) © 2.55

tp
The discretized relations of the electric field are given by

{E}ax1) = [Z] 3x3) [N ] 38y (V ()3 8x1) 2.56a
where, {E}={E; E, E3},[Z]=

ON, ON, 0Nz ON, O0Ns ONg ON; ONg

[ % om om ax om % om]

[N]=10Ny 9N, 03N3 0Ny ONs 3Ne 0N; 3Ns| and
0x, 0x, O0xp, 0x, O0x, O0x, 0x, O0xy

IN, N, N, N, N; N, N, Ngl

VO3=n@® VRO V@) V@) V@) Ve V@ Va®)} 2.56b
The discretized stress-strain relationship for the piezoelectric layer is presented below

(0} 5= [Q)sas) [Hl 5210 [Blaxs) (4} g 0y = [€15x3) [ Z]325) [N 3y V(O orry 257
2.8.4. Discretized governing equations of motion

The discretized governing equations of motion are derived in this section with Hamilton’s
principle which is presented earlier in Eqg. 2.16. To derive the equations of motion with
Hamilton's principle, the variation in the strain energy, work potential and kinetic energy
are required to be discretized.

The discretized equation of the variation in the strain energy ‘6U’ of the smart composite

plate is derived as follows:
L

U = fno [2 : {6£}{c} dx3dQ, 2.58
e,

Substituting the discretized strain-displacement relations and the stress-strain constitutive

relations from Eq. 2.51 and Eq. 2.57 in Eq. 2.58, we get
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6U = fo, 2, ((5d°) BY1H] Q1 VIH][B]{a)) dx,00
+fo I ((8dY [BI[HI*[Q1® [H][BI{d°}) dx;d0,
+fo J2 T ((8d°Y [BI[HIT[Q) @ [H][BHd®}) dx;d0

h

= o i, (@Y BIT I O[Z] NIV () dxsda,

h
— Iy, 17 P (8d°Y [BI[HI [l Z][N]{V (£)°)) dxde, 259

2
Superscripts °, K, @ are used to denote the sensor, laminated composites and the actuator

layer, respectively. The thickness integration of the material properties in Eq. 2.59 are
carried out as follows:

[D]= f_gg([H]t[Q](") [H])dx;; [D©] = f_'f_tp([ﬂ]f[ow [H])dxs; [D] = ff””([mfmr@[m)dxg
[2®] =f_'§_tp(wlf[e1<s> [Z])dxs; [209] = ff”*’(w]f[em [Z])dxs 2.60
The modified equation of the variation in the strain energy is now written as

8U = [, ((8a°} [BI[D@][B]{d°}) do+ [, ({8d°} [BI[D][BI{d°}) d
+fo, ({6} [BI[D@][B1{d°}) do — [, ({6d°}[BI*[2] NIV (©)°}) d

= Jo ((8a°Y [BI[Z@] NIV (©)°3) 2.61
The discretized equation of the variation in the kinetic energy ‘6K’ of the plate is derived as

follows:
_h h
6K = fno f_i_t {6u} p {1} dxsdﬂo+fﬂo 2 {80}t pMO{u} dx3dQ
2 P 2

b
b o, i B p@ i) drydag 2.62
Substituting the discretized equations of the kinematic field from Eq. 2.49 in the above

equation, the following equation of the variation in the kinetic energy is obtained.
_h e . h e .
OK=lo, [ i, ({0dY NV 121 p @ Z1NI{de}) drsdty + [y, [ ({6d°Y IN12] PP IZ]INHdCY) dxsdg
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+ o ff”” ({8d°) N1 (2@ [2][N}{d}) dxzdg 2.63

The thickness integration of the densities of each layer in Eq. 2.63 is carried out as follows:
n n h

[1] = f_‘f_tp([Z]fW [2]) dx; + ffg([Z]tp“‘) [2]) dx; + ff“”([Z] ‘p@1[Z]) dxs 2.64
The modified equation of the variation in the kinetic energy is written as follows with the
help of Eq. 2.64.
sK = [, ({sd°) INIIIINKd}) do, 2.65
The discretized equation of the variation in the work potential ‘sW’ is derived as follows:
W = [, ({8UY{fY) dag 2.66
where, {f} is the external surface-force vector having components f;, f, and f; in the xi, X,

and xs-direction, respectively. In the present formulation, only f; is acting on the top

surface of the plate. Therefore, the surface-force vector is written as

0
{f}={ 0 } 2.67

f3(x1, %2, 1)

Eq. 2.66 is further modified by substituting the discretized equation of the kinematic field.
ow= [y, (S ITNI2Y ., () d, 2.68

The product of the matrices ‘[z]¢{f} is carried out separately and denoted by a new vector
Ush.

The final discretized equation of the work potential is written as follows:

SW = [, (8} [NI{£)) dQg 2.69
The variation in the strain energy of the elastic foundation is given earlier in Eqg. 2.23. Eq.

2.23 can be written in a matrix-vector form in the following manner

103



Chapter 2 Mathematical Formulation

( sy )
osuy ooun | 0 0] |ow
0 0 kgl |[%us
k 0x, J
= [, {(8dd}[Ker]{dd}} da, 2.70b

The primary variable ‘u;’ and its derivatives in the vector ‘{dd}’ in Eq. 2.70 can be
expressed in the following manner
{dd}= [Bgr]{d°} 2.71a

where, [Bgrl = [[Bgr1] [Bgr2l [Bgrsl [Beral [Bgrsl [Bgrsl [Bers]l [Bgrsl]

0 0 N
%
[Bgril = 0x

dN;
0 0 2, ]

(i=1,2...8) 2.71b

S O O
S O O
S O O
S O O

Eq. 2.70a is now modified with the help of Eq. 2.71, and written in the following manner

8Ur = o, ({8d°Y [Brr][Kpr][Berl{d*})d, 2.72
Finally, all the discretized equations required for deriving the governing equations of
motion using Hamilton’s principle are derived. We are now only left with the satisfaction
of the constraint equations in Eq. 2.45 using the penalty approach. In the penalty approach,
a penalty function is created with the constraint equations and added to the total potential

energy of an element. The penalty function is given as

ot {-0) (2-0)  (2-0) (-0} 273

0xq 0x4 0xy 2
where, y is denoted as the penalty number.

Eqg. 2.73 is written in terms of the nodal variables in the following manner
(% - 91) = {Pi}1xse) {4} (s6x1) (% - 92) = {P2} (1xs6) {d°}56x1) 2.74a

dxq 0x,

Where, {Pl}:{{Ph} {Plz} {P13} {P14} {Pls} {Ple} {P17} {Pls}}

104



Chapter 2 Mathematical Formulation

Py ={{P,} (P2} (P} (P} (Pos} (P2} (P2} {P2g}}

(py=fo 0 2% 0 0 -N 0} (i=1.2..8)

%
{p}={0 o Z% 000 =N} (=1.2..8) 2.74b

Substituting the above discretized equations in Eq. 2.73, we get the discretized equation of

the penalty function.

P, =7 [ ({a°Y P (P 3} + (d} (P} (P, Hd}} dQp 2.75

The corresponding variations of the penalty function can be written as follows:

6P, =y fﬂo{{Sde}f{Pl}f{Pl}{d"‘} + {8d°Y{P,}H{P,}{d°}} dQ, 2.76

The variation of the Lagrangian function is written as

8L =(8U + 8Ur — 8W) + 8P, — 6K

=> 4L =

Jo, ({82} [BI[DD][BI{d®}) dQo + [, ({6d°}[BI[DI[BI{d®}) Qo + [, ({6d°}[BI*[D@][BI{d°}) dQy
| = Jo, ((8a°¥ [BY[ZO] [N){V(6)°}) o — [, ({8d°¥ [BIF[Z@]INIV (©)°}) dd — [ ({8d Y [NT{£}) deo

\ + Vfﬂo{{6de}t{P1}f{P1}{de} + {Sde}f{Pz}t{Pz}{de}} dQ, + fﬂo({dde}t[BEF]t[l?EF][BEF]{dE})d.QO
~ J,, (8de) NI 1IN {de)) deg

2.77
In the above equation, the variation of the penalty function is added to the variation in the
potential energy (U — W) of the system. If the value of y in the penalty function is
considered to be zero, then the constraints are not satisfied. As the value increases, then the

value of the primary variables ‘{d¢}’ changes in such a way that the constraints are more

nearly satisfied, i.e, (6”3 — 91) =0 and (6”3 — 92) = 0. The value of y is considered to be 10°.

0x, ox,
The integrations in the spatial domain for evaluating the mass, stiffness and load vector of
an element are carried out using the Gauss quadrature method. A selective integration

scheme is employed for evaluating the stiffness matrix for a thin element in which the
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bending terms of the stiffness matrix are evaluated by taking (3x3) gauss points and the

shear terms are evaluated by considering (2x2) gauss points. Such an approach helps in

discarding the shear locking phenomenon for a thin plate. For a thick plate, a full

integration scheme is employed in which the bending and the shear terms are evaluated by

considering (3x3) gauss points.

The various integrals of the spatial domain in Eq. 2.77 are denoted as follows after carrying

out the numerical integration

[K©] = [, ((BIF[D®](B]) dQ; [K] = [, ([BI[D][B]) do; [K @] = [, ([BI*[D¥](B]) dQ;

[Kas] = o, ([BI[Z2®] [N1) dQo: [Kaa] = fy, ([BI*[2] [N]) d€o: (i} = [ (INT{£D) dQ;

[Kpe] =¥ Jo, ({PY{PL} + (P} {P,3} dQo; [M] = [, (INTUNIND) dQo; [K] =f, ([Ber] [Ker|[Bir])dQq
2.78

The discretized Lagrangian function is modified with the help of Eq. 2.78 and written as

—{6d°Y [Kas IV ()} — {8d°Y [Kaa [V ()} — {6d°} {Fy} 2.79

<{5d€}f[1<<5>] {de} + {6d°} [K1{a®} + {6d°} [K D] {d°} + {5d6}f[1(<a>]{de}>
SL=

+{8d°Y (K] (d®} — {5d°) [M]{d*)
Substituting for the variation in the Lagrangian function in Eg. 2.16 with the above

equation, the following integral equation in time is obtained.

—{6d°Y [KasI{V ()} — {8d°} [Kaa [V ()} — {8d°} {Fy} 2.80

{8d°Y[K©] {d®} + {6d°} [K1{d°} + {6d°}[K D] {d®} + {5d°} [K @]{ac}
fttlz dt=0
+{8d°}[K,]{d°} — {8d°) [M]{d°}
The last term of the equation is integrated by parts in time to get the following integral
equation.
{8d°Y[K©] {d°} + {5d°} [K1{d°} + {8d°}*[K D] {d°} + {6a°}[K @]{ac}
i

—{8d° Y [Kas{V (£)°} — {6d°} [Kaal{V (£)°} — {8d°} {F)} )dt
+ {5de}t[er]{de} + {5de}t[M]{d'e} =0 2.81

—|(sacymifde}],
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The variation of the primary variables ‘{6d¢}’ at the initial and the final time is assumed to
be zero by which the last term of the above equation gets vanished. The resulting equation
is written as

[K©] {ac} + [K1{d®} + [ D] {d°} + [ @]{d®}
) dt=0 2.82

% {w}f( ~[Kas V() = [Kaa IV (O} = (Fur}
+ [Kpe]{d®} + [M1{d®}
{6d°} is a variation which is applied to the primary variables ‘{d¢}’, and thus {§d¢} # O.
Therefore the terms inside the integral is equated to zero to get the discretized governing
equations of an element of the smart composite plate.
[MH{de} + ([KO] + K]+ [K O] + [KO] + [Kpe])d} = (Fu} + [Kaa V(O + [Kas V() 2.83
where, [M] is the mass matrix, [K®], [K], [K®], [K,.] and [K @] are the stiffness matrix of
the sensor, laminated composite plate, foundation, penalty terms and the actuator layer,
respectively. {F,} is the time-dependent mechanical force vector. [K,,1{V(t)¢} and
(K4 1{V(t)¢} are the electrical force vectors of the actuator and the sensor layer,
respectively. In general, the electric voltage ‘{V(t)¢}’ is applied on the outer electrode of
the actuator and the voltage from the sensor is obtained from the outer electrodes of the
sensor. In that case, the external voltage applied on the sensor is zero and Eq. 2.83 reduces
to
[M}{de} + ([KO] + [K] + [K O] + [KDO] + [Kpe] )} = {Fur} + [Kaal V()€ 2.84
The details of the voltage calculation are not presented here and can be found in the next
section where the FE formulation of the Active Vibration Control is presented.

It is important to note that the matrices and the vectors in Eq. 2.84 are all obtained for an

element ‘e’. To obtain the governing equations for the entire system, the FE assembling of
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the matrices and the vectors are necessary. The final governing equations of the smart
composite plate are written as follows:

[MI{4} + ([K®] + [K] + [R®] + [K@] + [RPO]){A} = {Fy} + [Kaa](V(®)} + [Kgs V(D)) 2.85
2.8.4.1. Static Analysis

In the static analysis, the inertia effects are neglected from Eq. 2.89 and the force vectors
are not time-dependent. The static governing equations describing the bending responses of
a smart composite plate with piezoelectric actuator and sensor is given below

([RK®] + K] + [RP] + [R] + [RP]){a} = {Fu} + [Raal{V} + [Rasl{V} 2.86
The sensor layer is not subjected to any external electric voltage, therefore, the last term of
Eq. 2.86 gets automatically removed. Eq. 2.86 cannot be solved now as the stiffness matrix
is invertible due to the non-availability of the constraint conditions. The constraint
conditions or the boundary conditions are required to be imposed on the system to remove
the rigid-body motion which makes the matrices invertible. The boundary conditions of the
problem are presented as follows:

Simply-Supported boundary condition
For boundaries parallel to x, axis, x; =0, |
U, =uz3=£,=6,=0 2.87a

For boundaries parallel to x; axis, x, =0, b
U, =u3=p,=6,=0 2.88b

Clamped-Clamped boundary condition
For boundaries parallel to x; and x,-axis
Uy =Uy=Uz3 =6, =p,=6;,=6,=0 2.89

After imposing the boundary conditions in Eqg. 2.86, it is solved for the unknown field
variables. The stresses and strains are then calculated with the results of the field variables

at any desired location in the plate. The stresses are first evaluated at the gauss points and
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then extrapolated to the nodes with extrapolation functions (Cook et al., 2007). The nodes
are shared by the adjacent elements in a FE mesh and the stresses at the common node from
the adjacent element are not the same. Therefore, a nodal averaging technique is applied to
get an average value of the stresses from the adjacent elements at the common nodes.
2.8.4.2. Free Vibration Analysis

In the free vibration analysis, the external force vector is not considered in Eq. 2.85 and the
governing equation reduces to

[MI{A} + ([K®] + [K] + [KP] + [K@] + [K®]){a} = {0} 2.90
The primary variables are assumed to be periodic in the case of free vibration.

{8} = {a%)e™" 2.91
where, {A°} is the amplitude vector independent of time and w is the natural frequency of
the plate. Substituting Eq. 2.91 in Eq. 2.90 yields a system of homogeneous algebraic
equations in the following manner.

(([R®] + Rl + [R®] + [R@] + [R@]) — w?[M]) = {0} 2.92
After imposing the boundary conditions, Eq. 2.92 is solved as an eigen-value problem in
which the eigen-values denote the natural frequencies and the eigen vectors denote the
mode shape of the vibration.

2.8.4.3. Transient Analysis

In the transient analysis, the responses of the smart composite plates are obtained for time-
dependent electromechanical loads. The governing equations of motion for the transient
analysis are presented below:

M]{4} + ([R®] + [K] + [RP] + [R@] + [RP9]){a} = {Fy} + [Kaal (V(D)} 2.93
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Eq. 2.93 is a system of second-order ODEs in time. The boundary conditions are imposed
on Eq. 2.93 and then solved for the time-dependent responses. It should be noted that the
primary variables in Eq. 2.93 are only discretized in space. To completely reduce Eq. 2.93
to a system of algebraic equations after time discretization, it is essential to approximate the
time derivatives of the primary variables. In this research, the Newmark’s time integration
scheme mainly, the Newmark’s constant average acceleration method is used. The vector of
the primary variables ‘{A}’ is subjected to the following initial conditions of displacement
and velocity.

{A}e=o = {(A)o and {A} _ ={A}, 2.94
2.8.4.4. Active Vibration Control (AVC) of smart composite plates

In the AVC of smart composite plate structures, the mechanical vibration of the plate
structures is suppressed by coupling the piezoelectric actuators and the sensors with a
feedback controller. It can be observed in Eq. 2.93 also that the mechanical vibration of a
smart composite plate under time-dependent mechanical excitation ‘{Fy}’ can be controlled
by the time-dependent electrical load ‘{V(t)}’. The electrical voltage is externally applied
and by virtue of the piezoelectric coefficients, counteracting electrical forces are generated
which helps in reducing the amplitude of vibration. Thus the magnitude of the voltage
required should be known a priori. In the AVC, the electrical voltage is calculated from the
charges accumulated at the electrodes of the sensors due to the mechanical deformation.
The electric flux can be calculated due to the mechanical strains by the direct piezoelectric
law and the total charges accumulated at the electrodes of the sensor can be determined by
spatial integration of the electric flux over the total area of the electrodes. In the present

research, a negative velocity feedback controller is used. Therefore, the voltage generated

110



Chapter 2 Mathematical Formulation

at the sensor can be determined with the strain rate of the sensors, i.e, rate of change of
charge with time. The sensor voltage is then fed back to the actuator and a control
algorithm is activated. In this way, the mechanical vibration of the structures is suppressed
with an active control strategy. A pictorial presentation of a smart composite plate coupled
with a feedback controller is shown in Figure 2.6. The entire process is also shown
mathematically in this section and it can be observed in the final governing equations that a
damping matrix is generated due to the negative feedback controller which is responsible

for the damping of the mechanical vibration.

I Feedback
! Voltage

A‘\ .......................................
tp v .......................................
/?\ Laad Rl il et e e AR LS S SR
1 **f****‘ Orthotropicply s 2T 2L R L L LT
. s e s i e e e e e e o
1
b !
I -
N N T R
\/'{\ AR
1y [ Piezoelectric sensor N
€ m i mmm o > -

| ' output from
| the sensor

Figure 2.6. A smart composite plate coupled with a feedback controller
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As mentioned earlier that the electric flux generated due to mechanical strains can be
derived with the direct piezoelectric law. Therefore, the formulation starts by stating the

direct piezoelectric law.

[11)
Dyq 0 0 0 0 e lez2| e O 07(En
{DZZ} = [ 0 0 0 €54 0 l {hz } + [ 0 €22 0 {EZZ} 2.95
D33 ez; ez 0 0 01 Va3 0 0 €331\ E3;

b’ls

In the present formulation, the electric field is only applied in the thickness-direction,
therefore, E,; = E,, =0. The electrodes in the sensor are also placed at the top and bottom of
the sensors, therefore, the charges can only get accumulated in the thickness-direction.
Thus the third equation in Eqg. 2.99 is only used in the present formulation for calculating
the electric flux. The total charge accumulated at the electrodes of the sensors can be
calculated as follows:

Q=%05 Q¢ 2.96
where, Q is the total charge accumulated at the electrodes of the sensor and Q¢ is the total
charge accumulated at the electrodes of an element. In the present formulation, the
electrode covers the entire surface area of the sensors. Q¢ can be calculated by integrating
the electric flux ‘D;;” over the surface area of the electrodes in the top and bottom surface

of the sensors.
= le rbe h le rbe h
QE :0.5f0 fO D33 (xl, xZ,_E) dAe + 05f0 fO D33 (xl,xz,_;_ tp) dAe 297

The discretized relation of D, is written as follows:

— h _ h
Das = s [H (=3)] ..., Blassse(@sor *+ @axs [H (=5 6)]  [BlassedVsen

(5x14)
2.98

The discretized expression of Eq. 2.97 is given by

Q° = {ks} {a%} 2.99a
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where,
{Es} =

le tbe ¢~ le rbe ¢ —
05 ,° f, (& axs) [H (_ g)](sm‘u [Bl(1axs6)dA° + 0.5 [° [ {€}(1x5) [H (—Z— tp)](5x14) [B](14x56)dA®

2.99b
Eqg. 2.99b is numerically integrated in the spatial domain using the gauss quadrature
method. The total charge accumulated over the top and bottom surface of the sensor is
calculated using Eq. 2.96. The discretized expression of the total charge is given below
Q = {K} {A} 2.100
The output voltage in the sensor ‘V;’ is proportional to the rate of change of charge with

time.

v, =6,% 2.101

€dt

where, G, is the constant gain of the amplifier. The sensor voltage is fed back to the
amplifier with a change in polarity.

V= -GG, 2.102
where, G is the gain of the amplifier. Substituting for Q@ from Eq. 2.100 in Eq. 2.102, we get
V, = -GG,{K,} {A} 2.103
As the top surface of the actuator is electroplated, therefore all the nodes on the actuator
surface will be equipotential. Therefore, all the elements in the voltage vector ‘{v(¢)}’ will
be the same and equal to V. Substituting Eq. 2.103 in Eq. 2.93, the following system of
governing ODE for the AVC of smart composite plate structures is obtained.

[MI{A} + [Cne]{A} + ([R®] + [K] + [K@] ){A} = {Fy} 2.104
where, [C...] = [K4.]GGAK,} is the damping matrix generated due to the control algorithm.

Every structure is inherently characterized by some damping known as the structural

damping. Therefore structural damping matrix is also included in the formulation in

113



Chapter 2 Mathematical Formulation

addition to the active control damping. For creating the structural damping matrix, the
Rayleigh damping is used which is given by

[Cr] = a[M] + g ([K®] + [K] + [K@]) 2.105
where, a and g are the Rayleigh damping coefficients.

Eq. 2.104 is further modified after including the Rayleigh damping matrix from the above
equation. The modified equation is presented below

[MI{A} + ([Cened + [CRD{A} + ([K®] + [K] + [K@] ){A} = {Fy} 2.106
The above equation is the final governing equation for the AVC of smart composite plates.
It is now clear from the above equation that the control algorithm has generated active
damping in addition to the structural damping which is responsible for the vibration
suppression. When the active control is not considered then the gain ‘GG.’ is equal to zero.
Thus all the components in the active damping matrix ‘[C.,]  becomes zero and the
vibration corresponds to an uncontrolled mechanical vibration. However, the amplitude of
the vibration will still decrease with time due to the presence of the structural damping
‘[Cr]’. When the active control algorithm is activated by providing some suitable gain to
the system then the amplitude of the vibration will lower down faster due to the extra

damping generated by the controller.
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2.9. Material Properties

The material properties used in the numerical examples are listed below:

Table 2.1. Material properties of the composite and core layers

MNT;ZTI Elastic properties
Eyy Ey, Es33 Gy, Gy3 Gys Vi2 P
MM1 25 1 - 0.5 0.5 0.2 0.25 1
MM2 0.04 0.04 - 0.016 0.06 0.06 0.25 1
MM3 172.369 6.895 - 3.448 3.448 1.379 0.25 -
MM4 172.9 6.916 - 3.458 3.458 1.383 0.25 1600
MM5 181 10.3 10.3 7.17 7.17 2.87 0.28 1578
MM6 Open E,, E,, 0.6E,, 0.6E,, 0.5E,, 0.25 1
MM7 276 6.9 6.9 6.9 6.9 6.9 0.25 681.8
MM8 0.5776 0.5776 0.5776 0.1079 0.1079 0.22215  0.0025 1000
MM9 131 10.34 6.9 6.9 6.2 6.9 0.22 1626
MM10  6.9x10° 6.9x107 6.9x107 3.45x10°® 3.45x10°  3.45x10° 0 97
MM11 172.369 6.895 - 3.448 3.448 1.379 0.25  1603.03
MM12 25E,, E,, - 0.5E,, 0.5E,, 0.5E,, 025  8x10°
MM13 25E,, E,, - 0.5E,, 0.5E,, 0.2E,, 0.25 8x10®
MM14 25E,, 210 - 0.5E,, 0.5E,, 0.2E,, 0.25 800
MM15 172.5 6.9 - 3.45 3.45 3.45 0.25 1600
MM16 40 1 - 0.6 0.6 0.5 0.25 1
Table 2.2. Material properties of the piezoelectric layer
MI\;;Z:TI Mechanical Properties
MP1 Eyy Ey, E3; Gi, Gi3 Ga3 V12 p
2 2 2 0.775 0.775 0.775 0.29 1800
MP2 Ci1 Ci2 (o Cee Cyq Css V12 P
32.6 4.3 7.2 1.29 1.05 1.29 - 3640
Electrical Properties
MP1 €31 €32 €24 €15 €11 €22 €33 -
0.046 0.046 - - 0.1062x10° 0.1062x10°  0.1062x10° -
MP2 -6.76 - - - 0.037x10°  0.037x10® 10.64x10°° -

2.10. Non-dimensional parameters

The various non-dimensional parameters used for presenting the results are given below:

Static Analysis and Transient Analysis

ND1: [T, O] =

Ezz

100E;,

AmnS3h

AmnS*h

U3]; [011 022 Ti2] = [

011 022 T12 ]

dmnS?  dmnS?  qmnS?
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[f 7 ]_[T13 723 ]
13 231 = AdmnS  dmnS]|’
— E;
ND7: U, = —222
Vimnes1
— = kwb* = = _ keb?
ND8: K,,=K,= &2 g.= K,= %
WL pp3t ST 27 pop3
= _ 0999781 l b 1 _1 l' b R\, —2_1 1 (L b 2h
NDO: T, = Us (3,2,0): Gh=20ty (5.5.-2) BE=20h (3.5, - %)
3 hq 3 272 ' 11 q 11 272 2! 11 q 11 272" 5
_3_1 2(1b h)__1_1 1(11; h)__2_1 1(lb Zh)_
o1==0f1 =0 — =) 0= =05 (=, =, — =) G5= =03, (=, -, —=
11 q 11 272" 2)! 22 q 22 272 2! 22 q 22 272" WA
3 _1 5 (1 b h)
Gr= =05, (=,=,— =
22 q 22 272" 2

Free Vibration Analysis

ND2: & = (l—) L . ND3: @ = 10wh |~ ND4: @ = 100wh |2~
h Ez2 E32 Ei1
2
ND5: @ = 100wl /E”Cf - ND6: @ = 100w (%) E”—ff
11 22

2.11. Summary

The goal of this chapter is to present the steps required for developing an analytical
model and a FE model for the static and dynamic responses of smart composite plates
resting on an elastic foundation in the framework of a plate theory. Trigonometric ZZ
theory (TZZT) is employed as the plate theory for modeling the smart composite plate
structure. The elastic soil is modeled using the Pasternak’s foundation model. In this model,
the 3 D displacements are expressed in terms of 2 D deformation modes defined at the
midplane and non-polynomial mathematical functions that are defined globally for the
overall thickness of the plates like the ESL models. In addition, some auxiliary variables
are defined at the interfaces of the smart composite plates which are useful to create slope
discontinuities of in-plane displacements and consequently, discontinuous transverse shear
strains at the interfaces. Thus an opportunity is created by which the inter-laminar

continuity of transverse stresses can be satisfied. Therefore, the present model consists of
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an ESL field and also a ZZ field containing piecewise linear mathematical functions for the
auxiliary variables. It is also fascinating to know that the total number of primary variables
does not increase and is equal to the total number of primary variables in the ESL field.
The assumptions made in the formulations along with the basic equations like the kinematic
field, strain-displacement relations, reaction-deflection relationship of the foundation model
and the stress-strain constitutive model of both traditional laminates and piezoelectric
materials which form the basis of the present formulation are presented. Hamilton’s
principle is employed to form the governing equations and the solutions of the equations
are carried out using Navier-based analytical method and FEM. Three classes of problems
are mainly discussed like the static, free vibration and transient analysis of both traditional
laminated composite plates and smart composite plates resting on an elastic foundation. A
detailed discussion on the development of the governing equations for the above-mentioned
problems and the solution strategies in the form of closed-form analytical and FE solutions

Is presented.
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