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Chapter 1 

Introduction 

1.1. Overview 

        In this chapter, we first present a brief introduction to the topics concerning the 

present investigations followed by detailed literature on the mechanics of laminated 

composites and smart composite plate structures. The chapter starts with the 

introduction of the laminated composites and sandwich structures in which the various 

types of composite materials, sandwich materials, and their significance concerning 

practical applications are discussed. Then an introduction to the topic of smart structures 

is presented in which the various classifications of smart structures, types of smart 

materials, and their applications in various industries are discussed. In this study, the 

piezoelectric materials are mainly considered as the smart material for the structural 

analysis of smart composite plates, therefore, discussions on the piezoelectric materials 

are also presented. Literature on the modeling of multi-layered laminated composites 

and smart composite structures is presented in detail followed by the various solution 

methods adopted in the literature to solve the governing equations of the problems. The 

motivation behind this research and the literature gap is then presented followed by the 

objective and scope of the present work.  A chapter-wise organization of the thesis is 

presented in the end that summarizes the contents of all the chapters in the thesis. 

1.2. Laminated composites and Sandwich structures 

       A composite is a structural material that consists of two or more constituents 

combined at a macroscopic level and not soluble in each other. The constituent 

materials in composites have dissimilar properties and are combined to create a new 

material with advanced properties, unlike the individual constituents. There are two 
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phases in composites mainly, the reinforcing phase and the matrix. The reinforcing 

phase is embedded in the matrix. The reinforcing phase is generally in the form of 

discrete fibers and the matrix phase is continuous. Typical fibers include graphite, 

boron, cellulose and, glass and some of the matrix materials are epoxies, polyimides, 

titanium, and aluminium, etc. The typical engineered composite materials are 

 Composite wood such as plywood 

 Reinforced Concrete 

 Reinforced Plastics such as fiber-reinforced polymers (FRPs) 

 Ceramic matrix composites 

 Metal matrix composites 

Composite materials are less expensive, stronger, and lighter in comparison to common 

materials. They are widely used in bridges, buildings, ship hulls, automobile bodies, 

storage tanks, aircraft wings, helicopter gliders, turbine disks, and many more. 

Composite materials are mainly formed in three different types: 

 Fibrous composites 

 Particulate composites 

 Laminated composites 

The fibrous composite consists of lightweight and high modulus fibers of a material 

embedded in the matrix of a different material. The properties of the composites can be 

varied by changing the direction of the fibers. Particulate composites are made of 

macro-sized particles of a material suspended in a matrix of a different material. 

Laminated composites are made up of several layers of different materials generally 

stacked in the thickness direction and can have the composites of the first two types 

(Reddy, 2004). Fibrous composites like the FRPs are very popular in the mechanical, 

aerospace, and naval industries, because of the high stiffness and strength. This is 
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attributed to the strong and stiff fibers embedded in a matrix material. Laminated 

composites consisting of fibrous composites stacked in the thickness direction are 

widely used in the above-mentioned industries because such type of composite 

construction can provide the required engineering properties like the in-plane and 

bending stiffness and coefficient of thermal expansion. The fibers in the lamina can be 

continuous or discontinuous, unidirectional, bi-directional, and woven. The difference 

between the continuous and discontinuous fibers is that continuous fibers have a long 

aspect ratio and generally have a preferred orientation while the discontinuous fibers 

have a short aspect ratio and have random orientations. Continuous fibers exhibit the 

highest strength when orientated unidirectionally, however, the composites exhibit very 

low strength in the direction perpendicular to the fiber direction. Boron, carbon, 

alumina, and silicon carbide are the most researched continuous fiber-reinforcements in 

composites (Kapranos et al., 2014). Halpin and Karoos (1978) determined the strength 

of short fiber composites having random orientations. Unidirectional fiber-reinforced 

laminae are generally stacked in the thickness direction with orientation in the same or 

different directions as shown in Figure 1.1. Dong and Davies (2015) determined the 

flexural strength of bi-directional composites. Experimental investigation for 

understanding the mechanical properties of bi-directional composites is presented by 

Pamar et al. (2015). Research on woven fiber composites is presented by Ratim et al. 

(2012), Ye and Daghyani (1997), Rath and Sahu (2012), and Panda et al. (2013). 

Laminates made of fiber-reinforced composites also have distinct disadvantages. The 

mismatch of the material properties in between the layers produces significant shear 

stresses which cause delamination. Similarly, the mismatch of material properties 

between fiber and matrix creates fiber debonding. This problem is circumvented by 
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using a new material known as the Functionally Graded Material (FGM). FGMs are 

novel materials in which the properties change gradually with dimensions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1. Laminae with different fiber orientations to form a laminate 

The concept of FGM was first introduced in Japan in the year 1984 during a spaceplane 

project. A combination of materials was used which would serve the objective of a 

thermal barrier that is capable of withstanding a surface temperature of 2000 K with a 

temperature gradient of 1000 K  across a section of 10 mm (Ruys and Sun, 2002).  The 

aerospace and computer circuit industry is keen to use materials that can withstand high 

thermal gradients. This is achieved with a ceramic layer in conjunction with a metallic 

layer. FGMs are also used in the power plant boiler shells. Significant research works 

(Swaminathan and Naveenkumar, 2014; Singh and Harsha, 2019 and Bouguenina et al. 
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2015) on FGMs have been carried out in the recent past in which FGMs are sandwiched 

between metal and ceramic layers in various engineering applications. 

A sandwich structure is also a composite material that is fabricated by combining two 

stiff and thin skins with a lightweight, and thick core. The core material is generally a 

low strength material yet its thickness provides higher bending stiffness with overall 

low density.  The materials used in the core are structured foams like polyvinylchloride, 

polystyrene, polyethylene, polyurethane, polyethersulfone, balsa woods and syntactic 

foams, etc. The laminates of carbon or glass fiber-reinforced composites are commonly 

used as skin material. Sandwich construction is extensively used in both commercial 

and aerospace industries as it is extremely lightweight and at the same time exhibits a 

high bending stiffness and high strength-to-weight ratio. The face sheets or the skins 

carry the bending loads and the core carries the shear loads. The honeycomb sandwich 

structures have minimal material cost and minimal weight as the construction of these 

structures is based on the minimization of the used materials to reach the criteria of low 

weight and cost. An example of a sandwich structure is shown in Figure 1.2. The 

common geometrical feature of these structures is an array of hollow cells in between 

thin vertical walls. The out-of-plane compression and shear properties are relatively 

high in honeycomb construction. A plate-like assembly is made by layering a 

honeycomb structure in between two thin and stiff layers. Applications of honeycomb 

sandwich structures are found in space applications, aircraft, and rockets as they are 

lightweight and can also be used as curved surfaces. It is mentioned in Campbell (2004) 

that when the thickness of the core is doubled, then the stiffness increases over 7× with 

only 3 % weight gain, while quadrupling the core thickness increases the stiffness over 

37× with a 6 % weight gain. Therefore, sandwich constructions are very efficient and 

widely used in various disciplines wherever possible. More information on the area of 



Chapter 1  Introduction 

6 
 

sandwich structures is available in the review articles by Mackerle (2002), and Birman 

and Kardomateas (2018). 

 

Figure. 1.2. Sandwich Structure 

1.3. Smart Structures 

       A smart structure is a structure that can sense external stimuli such as a change in 

velocity, temperature, density, or pressure and respond in a controlled manner in real-

time. Therefore, it is also known as an adaptive structure or an intelligent structure. A 

smart structure has distributed actuators, sensors, and microprocessors for analyzing the 

response from the sensors and with the help of some control theory gives a command to 

the actuators to counteract strains or displacements to alter the system response. It can 
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react to a changing external environment (change in shape) and internal environment 

(damage). It has actuators that can alter the system characteristics like stiffness and 

damping and also the system response like the stresses/strains in a controlled manner. In 

general, smart structures have five important components: actuators, sensors, power and 

signal conditioning electronics, control strategies, and a computer (Chopra, 2002). 

Typical examples of actuators and sensors are piezoelectric materials, electrostrictive 

materials, shape memory alloys, magnetostrictive materials, electro, and magneto-

rheological fluids.  These materials can be integrated or embedded in a load-carrying 

structure without affecting the structural stiffness and mass. The smart structures 

technology is applied to control the vibration and noise, damping of vibration, shape 

change, aeroelastic stability, and stress distribution. It is used in various applications 

like rotary-wing aircraft, space systems to fixed-wing aircraft, civil structures, 

automotive, machine tools, and medical systems.  

1.3.1. Classification of smart structures 

 Adaptive Structures 

Adaptive structures have distributed actuators to change the characteristics in a 

prescribed manner. Actuators are used to control the system response like 

stresses/strains, displacements. Sensors may not be present in an Adaptive 

structure.  

 Sensory Structures 

Sensory structures have distributed sensors to monitor the characteristics of a 

structure like structural health monitoring. Sensors are used to detect the strains, 

acceleration, displacement, temperature, and also the extent of the damage. 

 Controlled Structures 
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Controlled structures are adaptive as well as sensory structures. They constitute 

sensors, actuators, and a control system to actively control the characteristics of the 

structures. 

 Active Structures 

Active structures are a type of controlled structures. The actuators and sensors also 

have the load-carrying capacity in the active structures. 

 Intelligent Structures 

Intelligent structures are a type of active structures. They have a highly integrated 

control system and power electronics. 

1.3.2. Piezoelectric materials 

          The word piezoelectric means electricity generated from pressure. French 

physicists Jacques Currie and Pierre Curie discovered piezoelectricity in the year 1880  

(Manbachi and Cobbold, 2011). The piezoelectric effect is a result of the linear 

electromechanical interaction between electrical and mechanical states in crystalline 

materials with no inversion symmetry (Gautschi, 2002).  The effect is a reversible 

process, i.e, materials producing electricity when mechanical strains are applied 

(Piezoelectric effect) also exhibit the reverse effect of generating mechanical strains 

when an electric field is applied. The piezoelectric effect is also known as the direct 

effect while the reverse piezoelectric effect is known as the converse effect. It is given 

in Krautkrämer and Krautkrämer (2013) that lead zirconate crystal (PZT) which is a 

piezoelectric material generates electricity when the crystal is deformed by 0.1 % of the 

original dimension and the same crystal change about 0.1 % of the original dimension 

when an external electric field is applied. Therefore, the piezoelectric materials are used 

as actuators and sensors. 
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Piezoceramics such as lead zirconate titanate (PZT) is a widely used piezoelectric 

material that is available in thin sheets and can be readily embedded or attached to 

laminated composite beams, plates, and shell structures. The maximum strain that can 

be actuated with PZT is one thousand microstrains. Polyvinylidene fluoride (PVDF) is a 

piezoelectric polymer, which is also mentioned in the literature, is used as a distributed 

actuator and sensor integrated or embedded with laminated composites. The maximum 

actuation strain noted in PVDF is seven hundred microstrains. Significant research 

(Bailey and Hubbard, 1985; Baz and Poh, 1988; and Hanagud et al., 1992) has been 

carried out in the past to achieve active control of smart structures using piezoelectric 

materials acting as distributed actuators and sensors. Additionally, piezoelectric fiber-

reinforced (PFRC) composites have also been effectively employed for underwater 

transducers and medical imaging applications (Bennett and Hayward, 1997 and 

Sigmund et al. 1998). The PFRCs show improvement in the mechanical performance 

and electromechanical coupling coefficients in comparison to the conventional 

piezoelectric materials. An example of a smart composite with a PFRC layer is shown 

in Figure 1.3. Research on the development of piezoelectric composite structures is 

directed towards the estimation of mechanical and electromechanical properties using 

micromechanical analysis. Aboudi (1998) predicted the piezoelectric coefficients of 

piezoelectric fiber-reinforced composites (PFRC) with a micromechanical analysis by 

considering different electric fields in the matrix and fiber. However, the piezoelectric 

constant which is responsible for actuation along the fiber direction did not show any 

improvement over the conventional piezoelectric materials. Smith and Auld (1991) 

predicted marginal improvement of the piezoelectric constants of the PFRC. In their 

work, rods of piezoelectric materials were placed vertically aligned with the thickness 
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of the composite material and the electric field was applied along the length of the 

piezoelectric fibers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3.  Smart composite plate with a piezoelectric fiber-reinforced composite 

(PFRC) layer. 

 

Also, the electric field was assumed to be constant in both matrix and piezoelectric 

fibers. To use the PFRC as distributed actuators for flexural vibration control, the 
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constant electric field in the longitudinal direction, i.e, along the length of the fibers 

when they are very long. A practical option is to apply the electric field in the thickness 

direction of the composites, i.e, transverse to the fiber direction. Since the thickness of 

the composite layer is sufficiently low in comparison to the in-plane dimensions, 

therefore, it will not be much difficult to maintain constant electricity in the thickness 

direction of the composites.  Mallik and Ray (2003) predicted the effective coefficients 

of PFRC by carrying out a micromechanical analysis and a constant electric field was 

applied in the transverse direction of the fiber direction. Piezoelectric materials can be 

used in numerous ways like high voltage and power sources, actuators, sensors, 

piezoelectric motors, reduction of vibration and noise and surgery, etc. 

1.4. Literature Review 

       In this section, the literature review on the mechanics of traditional laminated 

composites and smart composite plate structures is presented. The various approaches 

of modeling the structural responses of laminated composites and smart composite 

structures are discussed in detail followed by the literature on the various solution 

methods for solving the governing equations. 

1.4.1. Introduction 

          Structural analysis of laminated composite beams, plates, and shells is very 

crucial for an efficient design. Deriving the governing equations in terms of partial 

differential equations (PDEs) or ordinary differential equations (ODEs) describing the 

physical phenomenon like bending, vibration, and buckling, etc. is the primary step in 

any analysis. The formulations can be exact or approximate. In the exact formulations, 

there are no assumptions involved and the responses are free from any numerical error. 

The approximate formulations are derived based on some approximations made in the 

variation of the displacements and stresses of the structures. Though the solutions from 
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the approximate formulation are not exact, yet, the formulations are often useful 

because of the mathematical complexities involved in deriving the exact governing 

equations and also solving them to get the responses. The second step is to find the 

solutions to the governing equations. The solutions can be closed-form analytical 

solutions or numerical solutions. Closed-form analytical solutions do not invoke any 

additional error in the results as the solutions are valid for the entire domain and satisfy 

the boundary conditions, and the governing equations exactly at all the points in the 

domain. The numerical solutions are found at some specific points in the form of 

discrete values of the field variables. The values are further interpolated with some 

interpolation functions to obtain the magnitude of the field variables in between the 

selected points. The solutions from the numerical methods are approximate as some 

error gets initiated while selecting the interpolation functions, discretization of the 

domain, integration schemes, approximation in the derivatives, etc. However, numerical 

solutions are often useful as assuming closed-form analytical solutions for every 

problem is a difficult task. An extensive literature is available on different aspects of 

traditional laminated composites and smart composite beams, plates, and shell 

structures. It is extremely difficult to compile all the references in one common 

platform. The objective of this chapter is to present the significant research carried out 

in the past which are relevant to the present study. In an attempt to present the available 

literature of the present research, the literature review is divided into the following 

categories: 

 Elasticity Solutions 

 Modeling of plates using Plate Theories 

 Development of the plate theories 

 Classical Plate theory 

 First Order Shear Deformation theory 

 Higher-Order Shear Deformation theories 
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 Extension of the plate theories for the modeling of multi-layered 

structures 

 Equivalent Single Layer (ESL) Approach 

 Layer Wise (LW) Approach 

 Zigzag (ZZ) Approach 

 Carrera Unified Formulation (CUF) 

 Solution Techniques 

1.4.2. Elasticity Solutions (3 D) 

          The most efficient way of modeling the deformation responses of beams, plates, 

and shell structures to date is to start the formulation with the 3 D equilibrium equations 

(EE) of elasticity. However, these equations alone are not very useful as six unknown 

stresses are associated with three equations. Therefore the equations are converted in 

terms of strains and the resulting equations in terms of the displacements (U, V, and W) 

using the 3 D constitutive equations and the strain displacement relations, respectively. 

In this way, 15 unknowns are associated with 15 equations which now make the 

problem determinate. The resulting partial differential equations are then solved for the 

unknown displacements. Of course, we require the boundary conditions of the problem 

to assume mathematical solutions for the unknown variables. Significant contributions 

in this direction of deriving exact elasticity solutions of bending and vibration analysis 

of laminated composites and sandwich plates are presented by Pagano (1970), Pagano 

and Hatfield (1972), Srinivas and Rao (1970), Noor (1973) and Bhaskar et al. (1996). 

Additionally, the 3 D solutions of multifield problems mainly, the coupled 

electromechanical formulations of piezoelectricity are presented by Heyliger (1994), 

Ray et al. (1993, 1998), Mallik and Ray (2004), and Ray and Sachade (2006). The 

foremost reason for employing the elasticity formulations is that there are no 

approximations involved in any step which ensures that the responses obtained are free 

from any sort of numerical error. Numerical error creeps into the solutions from the 

approximate governing equations as well as approximate solution methods. In the 
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above-mentioned works, the formulations are exact and the solutions are closed-form 

analytical solutions that exactly satisfy the boundary conditions and the PDEs at every 

point in the domain. It is important to note that the exact solutions are restricted to a 

particular geometry, lamination sequence, and boundary conditions. In all the above-

mentioned references, trigonometric functions in the spatial domain (x, y) are assumed 

for the primary variables that exactly satisfy the diaphragm-supported boundary 

conditions. The governing PDEs are converted to ODEs in the thickness domain (z) 

with the assumed mathematical functions for the primary variables. However, assuming 

the initial functions for other types of boundary conditions is a difficult task.  Another 

simplicity that is noticed in the above-mentioned references is that the trigonometric 

solutions assumed for the diaphragm-supported boundary conditions transform the 

PDEs to ODEs in the thickness domain with constant coefficients. This is achieved by 

collecting the coefficients of the trigonometric functions and equating the coefficients of 

the right-hand side and left-hand side of the PDEs. This might not be the case in the 

problems with complicated boundary conditions even if someone manages to assume 

solutions for the primary variables by satisfying the boundary conditions. After 

substituting the assumed solutions in the PDEs, there are possibilities that we may not 

be in a situation to equate the coefficients of the trigonometric functions at both sides of 

the PDEs and exclusively get the ODEs in the z-direction. Therefore, it is evident that 

the methodology used in the aforementioned references has limitations at least in the 

context of boundary conditions. Significant progress in this regard is due to Kapuria and 

Kumari (2012, 2013) and Kumari and Behera (2017) in which a different methodology 

is presented and the 3 D solutions for static and dynamic responses of traditional 

laminated composite plates and smart composite plates are derived for various boundary 

conditions using the Extended Kantorovich method (EKM). One set of a boundary is 
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assumed to be diaphragm-supported while the other boundary set can have any 

conditions. The solution methodology is powerful in the sense that EKM converts the 

PDEs into two ODEs and then a closed-form solution or a numerical solution of the 

ODEs is feasible. Initially mathematical functions are assumed for the primary variables 

in an in-plane direction (x or y) with the simply-supported boundary conditions. The 

solutions for the other in-plane direction and the thickness-direction are then derived. 

This approach yields 3 D solutions at the cost of high computations. Due to the 

advancements in the theory of material science, many advanced materials are getting 

developed which have a rather complicated constitutive model than those of the 

traditional orthotropic materials. While deriving solutions in the framework of 3 D 

elasticity formulations for any general problem with arbitrary boundaries, geometries, 

constitutive model, lamination sequences, and loading conditions results in PDEs whose 

solution methods are prohibitively difficult and require heavy computations. 

Nevertheless, the exact solutions for the simpler cases can be considered as benchmark 

solutions for comparing the responses from approximate formulations and new solution 

methodologies. Apart from the elasticity solutions, there are semi-analytical or pseudo 3 

D solutions for the bending responses of simply-supported traditional laminated 

composites and also for the multifield problems of thermoelasticity and piezoelectricity. 

Contributions in this direction are made by Kant et al. (2007, 2008), Pendhari et al. 

(2012, 2015), Sawarkar et al. (2016, 2020) and LomtePatil et al. (2018). Similar to the 

exact elasticity formulations, these formulations also start with the 3 D equilibrium 

equations of elasticity and the charge equilibrium equations depending on the type of 

problem considered. Using the constitutive relations and the strain-displacement 

equations, the PDEs are converted to a system of six first-order ODEs in the thickness 

direction corresponding to the primary variables. The three displacements and the three 
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transverse stresses are considered as the primary variables in the works. Then the ODEs 

are solved numerically for the unknowns. The accuracy of the solutions presented in the 

aforementioned references is equally good as that of the elasticity solutions. The name, 

‘Pseudo 3 D’ is because the solutions of the ODEs are obtained numerically in the final 

step in contrary to the closed-form solutions in the exact elasticity formulations. The 

mathematical difficulties encountered while carrying out these works are less than those 

of the 3 D elasticity formulations, yet the solution methodology is not very 

straightforward. 

Relatively simpler approach for modeling the multi-layered laminated plate structures is 

by exploiting the geometry of the structures and somehow expresses the 3 D 

displacement variables in terms of mathematical functions in the thickness domain and 

unknown deformation modes defined in the spatial domain. Such an approach reduces 

the 3 D displacements to two-dimensional (2 D) deformation modes, subsequently a 3 D 

formulation to a 2 D formulation in the case of plate structures. Any structural system 

bounded by two planes and separated by a distance that is very small in comparison to 

the in-plane dimensions is called a plate. The fact of relatively small thickness in 

comparison to the in-plane dimensions helps in converting the 3 D structure to a 2 D 

midplane based on some approximations. Thus, it is now only required to model the 

deformation behavior of the midplane and obtain the solutions of the deformation 

modes. The known mathematical functions of the thickness coordinate should be 

carefully chosen so that the deformations are consistent with the actual responses of the 

system. In a nutshell, a theory is developed for deriving the deformation responses of 

the plates where the 3 D displacements of the plate are reduced to 2 D deformation 

modes at the midplane by expressing the displacements as a linear combination of the 

mathematical functions of the thickness domain and 2 D deformation modes. After 
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solving for the deformation modes, we can extrapolate the displacements, stresses, 

strains at any point in the plate with the assumed mathematical functions. A detailed 

description of the various plate theories and their underlying assumptions is presented in 

the next section. 

1.4.3. Modeling of plates using Plate Theories 

          The motivation behind the development of the various plate theories in the 

literature is the complicated theoretical formulations and solution methods associated 

with the 3 D approaches. In general, when the modeling of plates is accomplished using 

a plate theory, the formulation is such that the deformation modes defined at the 

midplane are the primary unknowns. The displacement components (U, V and W) are 

written in terms of known mathematical functions of the thickness coordinate and 

unknown deformation modes defined at the midplane. Once, the deformation modes are 

obtained, the stresses and strains at any point in the thickness domain can be derived. A 

flow-chart on the modeling of a plate structure in the framework of a plate theory is 

shown in Figure 1.4.  

1.4.3.1. Development of the plate theories 

          The foremost hypothesis in the early development of the theory of plates is that 

the thickness of the plate is very small in comparison to the in-plane dimensions. For 

very thick systems, the 3 D elasticity formulations are essential for modeling. Based on 

the consideration of a thin plate, the following assumptions will prove to be useful for 

deriving a theory for the plate. 

 The inplane 3 D displacements (U, V) vary linearly through the thickness of the 

plate. This assumption allows expressing the 3 D displacements of any arbitrary 

point ‘P’ at a depth z from the midplane in terms of a constant deformation 
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mode and a rotational mode defined at the midplane associated with a linear 

function (z) of the thickness coordinate.  

 The transverse displacement (W) is constant through the thickness of the plate. 

This simply means that the transverse normal will not undergo any change in 

length in the thickness direction.  

Under these assumptions, we can express the 3 D displacement components in the 

following manner. 

U (x, y, z) ≈ 𝑢𝑜(x, y) + z𝜃𝑥(x, y) 

V (x, y, z) ≈ 𝑣𝑜(x, y) + z𝜃𝑦(x, y) 

W (x, y, z) ≈ 𝑤𝑜(x, y)                                                                                                      1.1 

where 𝑢𝑜, 𝑣𝑜 and 𝑤𝑜 are the constant deformation modes in the x, y and z-direction and 

𝜃𝑥, 𝜃𝑦 are the rotational deformation about the y and x-axis, respectively. The above 

deformation profile is also shown in Figure 1.5 for physical realization. Equation 1.1 is 

the displacement field of the first-order plate theory about which is described in detail in 

the subsequent sections. Based on this background, we are now in a position to 

introduce and discuss the first plate theory in the literature known as the Kirchhoff plate 

theory or the so-called Classical Plate theory. 

1.4.3.2. Classical Plate theory 

             The Classical plate theory is a 2 D theory that is used to predict the deformation 

responses of thin plates only under the action of forces. It is known to be an extension 

of Euler-Bernoulli beam theory and the deformation of any point in the plate is based on 

the Kirchhoff hypothesis. The Kirchhoff hypothesis is stated as follows: 

 Straight lines perpendicular to the mid-surface (transverse normal) shall remain 

straight under the deformation of the plate.  

 

 



Chapter 1  Introduction 

19 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Flowchart on the modeling of a plate structure using any Plate theory 
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 The transverse normal does not undergo any change in length under the 

deformation of the plate. 

 The transverse normal rotate in a fashion such that it shall remain perpendicular 

to the midplane under the deformation of the plate. 

The first two assumptions have already been introduced earlier by which the 

displacement field in Eq. 1.1 is created. The first assumption clearly states that the in-

plane displacements (U, V) have a linear variation across the thickness of the plate 

structures. It also means that the transverse cross-section to the midplane shall not warp. 

The second assumption states that the transverse deflection at any point along the 

thickness-direction will remain constant, i.e, no elongation or contraction of transverse 

normal takes place. If we look into the displacement field in Eq. 1.1, we see that the 

transverse deformation (𝑤𝑜) and the rotations (𝜃𝑥,𝜃𝑦) are independent of each other. 

The third assumption is useful to establish a relationship between the transverse 

deformation and the rotational modes. The mechanistic meaning of the third assumption 

is that the transverse shear strains are zero as the angle in between the transverse normal 

and the midplane does not change during the deformation, also shown in Figure 1.6. 

The expressions of the transverse shear strains based on Eq. 1.1 are shown below. 

𝛾𝑥𝑧 = (
𝜕𝑈

𝜕𝑧
+

𝜕𝑊

𝜕𝑥
) = 𝜃𝑥 + 

𝜕𝑤𝑜

𝜕𝑥
 and 𝛾𝑦𝑧 = (

𝜕𝑉

𝜕𝑧
+

𝜕𝑊

𝜕𝑦
) = 𝜃𝑦 + 

𝜕𝑤𝑜

𝜕𝑦
                                     1.2a 

According to the third assumption, we can write that the transverse shears strains, 𝛾𝑥𝑧= 

𝛾𝑦𝑧 = 0. Thus Eq. 1.2a can be modified and written as follows: 

𝜃𝑥 = −
𝜕𝑤𝑜

𝜕𝑥
 and 𝜃𝑦 = −

𝜕𝑤𝑜

𝜕𝑦
                                                                                           1.2b 

We have now established a relationship between the rotational and the transverse 

degrees of freedom and have also reduced the total number of field variables from five 

(see Eq. 1.1) to three. Using Eq. 1.2b, the modified form of Eq. 1.1 is presented below. 

U (x, y, z) ≈ 𝑢𝑜(x, y) - z
𝜕𝑤𝑜 𝑥,𝑦 

𝜕𝑥
 



Chapter 1  Introduction 

21 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5. 3 D displacements (U, V, W) written in terms of the 2 D deformation 

modes (𝒖𝟎, 𝒗𝟎, 𝒘𝟎, 𝜽𝒙, 𝜽𝒚 ) and linear mathematical function of the thickness 

coordinate 
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V (x, y, z) ≈ 𝑣𝑜(x, y) - z
𝜕𝑤𝑜 𝑥,𝑦 

𝜕𝑦
 

W (x, y, z) ≈ 𝑤𝑜(x, y)                                                                                                      1.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6. Transverse normal remaining perpendicular to the midplane during 

the deformation  

 

The above equation, Eq. 1.3 is the displacement field of the so-called Classical Plate 

Theory (CPT). Ashton and Whitney (1970) used the CPT for modeling the deformation 

responses of laminated composite plates. The classical laminated plate theory (CLPT) is 

the simplest plate theory which is an extension of the CPT to laminated composite 

plates (Reissner and Stavsky, 1961; Stavsky, 1961; Dong et al., 1962 and Yang et al., 

1966). As mentioned at the beginning of this section, CPT is used to predict the 

behavior of thin plates only. Therefore, under the condition of a thin plate (Kirchhoff 

Before Deformation 

z = 0 
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hypothesis), the mathematical developments presented above will be meaningful. In the 

case of thick isotropic plate structures, the transverse shear strains are significant, and 

discarding the effects of the transverse strains will lead to erroneous responses. Also, in 

the traditional laminated composites and sandwich plates, the ratio of Young’s modulus 

to the transverse shear modulus is very high. Therefore, it becomes very important to 

include the transverse shear strains for understanding the real behavior of composite 

plate structures. The refinement of the CPT is the first-order shear deformation theory 

(FSDT) which takes into account the effects of transverse shear strains without many 

theoretical complexities (Whitney and Pagano, 1970; Librescu and Reddy, 1987 and 

Reddy, 2004).  

1.4.3.3. First Order Shear Deformation theory 

             All the assumptions that are taken in CPT hold in the FSDT except the third 

assumption which constraints the transverse normal to rotate in a fashion so that it 

remains perpendicular to the midplane during the deformation of the plate. The rotation 

of the transverse normal to the mid-plane according to FSDT is shown in Figure 1.7. 

We have already introduced earlier at the beginning of section 1.4.3.1 the displacement 

field of FSDT. Comparing Eq. 1.1 and 1.3, we now see that CPT is a special case of the 

FSDT when the total rotation of the transverse normal ‘𝜃𝑥,𝜃𝑦’ is equal to the negative 

slope of transverse displacement (−
𝜕𝑤𝑜

𝜕𝑥
, −

𝜕𝑤𝑜

𝜕𝑦
 ) in the x and y-directions, respectively. 

Reissner (1944, 1945) has first provided a theory to incorporate the effect of shear 

deformation. The basic assumption made by Reissner (1944, 1945) gives a consistent 

representation of stress distribution across the thickness, which results in a through-

thickness linear variation of in-plane displacements. Mindlin (1951) derived a theory 

using a displacement based approach at the same level of approximation as the one 

utilized by Reissner (1944, 1945). As per the Mindlin’s theory, the transverse shear 
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stresses are assumed to be constant in the thickness domain. The constant transverse 

shear strains can be observed in the expressions given in Eq. 1.2a. It is observed in the 

equation that the transverse shear strains are independent of the thickness coordinate, 

i.e, having a constant variation in the thickness domain. Consequently, the transverse 

shear stresses also become constant through the thickness of the plate structures. In 

reality, the stresses have a parabolic through-thickness variation in the thickness 

domain. The linear through-thickness variation of the in-plane displacements in Eq. 1.1 

is the reason for constant shear deformations. The responses of FSDT can be improved 

using an indirect post-processing approach which is based on the multiplication of a 

shear-correction factor (SCF) with the transverse shear stiffness coefficients. The 

magnitudes of the transverse shear coefficients in the stiffness matrix can be adjusted to 

the results of the 3 D elasticity formulations by multiplying the coefficients with the 

SCF. However, the value of the SCF is unknown at the beginning of the formulation 

and can only be decided once the exact responses from the 3 D formulations are 

obtained. Therefore, the indirect post-processing approach has severe limitations for a 

more general problem with different material properties, loading conditions, boundary 

conditions and lamination sequences, etc. whose elasticity solutions are not available. In 

this regard, research articles are presented by Whitney (1973), Noor and Burton (1989), 

Pai (1995) and Meunier and Shenoi (1999) in which attempts are made to determine the 

appropriate values of the SCF using different methods and also establish the 

dependencies of the SCFs with the various conditions of the problem like the loading, 

boundaries and material properties, etc. 

To have a more realistic model that can accommodate the non-linear nature of the 

transverse shear stresses without application of any indirect post-processing techniques, 

then the displacement field equation in Eq. 1.1 requires some modifications. The 
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modification in the displacement field equation is brought by using Taylor’s series 

expansion. The higher-order shear deformation theories (HSDTs) utilize the higher-

order terms of Taylor’s series expansion to accommodate higher-order modes in the 

displacement field of CPT and FSDT which are essential to refine the overall responses 

of the plate structures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. Rotation of the transverse normal to the mid-plane in FSDT 

 

1.4.3.4. Higher-Order Shear Deformation theories 

             Koiter (1960) made a recommendation, popularly known as the Koiter’s 

recommendation (KR) in his article of 2 D modeling of traditional isotropic elastic 

shells, which is stated as “a refinement of Love’s first approximation theory is indeed 

Before Deformation 

z = 0 
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meaningless, in general, unless the effects of the transverse shear and normal strains 

(stresses) are taken into account at the same time”. There are numerous HSDTs to date 

which account for the effects of transverse shear strains only or both transverse shear 

and normal strains in the kinematic model that partially or completely follow the KR, 

respectively. The HSDTs are refinements of the CPT and FSDT which try to bridge the 

gap between the mathematical complexities in obtaining the exact responses from the 3 

D formulations and the unsatisfactory performances of the CPT and FSDT for isotropic 

and traditional composite plate structures. In the literature, the HSDTs are available in 

the form of polynomial-based higher-order theories (PHSDTs) and non-polynomial-

based higher-order theories (NHSDTs). The foremost difference among the two classes 

of theories is the use of polynomial and non-polynomial mathematical functions for 

expressing the displacement components in terms of the deformation modes. The idea 

of constructing the kinematic field of the PHSDTs came from the higher-order terms in 

the Taylor series expansion. Using the Taylor series, we can express any function 

‘𝑓 𝑥 ’ in the following manner:  

𝑓 𝑥  =  
𝑓𝑛 𝑎 

𝑛!
∞
𝑛=0  𝑥 − 𝑎 𝑛                                                                                            1.4 

The pictorial presentation of expressing any function using the Taylor series is shown in 

Figure 1.8. It is observed in the figure as well as in Eq. 1.4 that the function ‘𝑓 𝑥 ’ can 

be expressed as a sum of linear and non-linear terms of x, i.e, higher-order terms. The 

higher-order terms shown in Figure 1.8 can be thought of as the higher-order 

deformation modes of the in-plane and transverse displacement components in HSDT. 

Theoretically, an infinite number of terms should be taken to express U, V and W. 

Practically, the series is truncated after taking a specific number of terms which are 

decided based on the accuracy of the responses. Using the same technique as shown in 

Eq. 1.4 and Figure 1.8, the displacement components U, V and W are written as 
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U 𝑥, 𝑦, 𝑧 = 𝑈 𝑥, 𝑦, 0  + z 𝑈1 𝑥, 𝑦, 0  + 
𝑧2

2!
𝑈2 𝑥, 𝑦, 0  + 

𝑧3

3!
𝑈3 𝑥, 𝑦, 0  + …….∞ 

V 𝑥, 𝑦, 𝑧 = 𝑉 𝑥, 𝑦, 0  + z 𝑉1 𝑥, 𝑦, 0  + 
𝑧2

2!
𝑉2 𝑥, 𝑦, 0  + 

𝑧3

3!
𝑉3 𝑥, 𝑦, 0  + …….∞ 

W 𝑥, 𝑦, 𝑧 = 𝑊 𝑥, 𝑦, 0  + z 𝑊1 𝑥, 𝑦, 0  + 
𝑧2

2!
𝑊2 𝑥, 𝑦, 0  + 

𝑧3

3!
𝑊3 𝑥, 𝑦, 0  + …….∞    

                                                                                                                                        1.5 

Eq. 1.5 is similar to Eq. 1.4, except that Eq. 1.5 is expanded in the z-direction and the 

value of ‘a’ in Eq. 1.4 is considered to be 0 in Eq. 1.5. 𝑈1, 𝑈2...𝑉1, 𝑉2…𝑊1,𝑊2…. are 

the derivatives of the respective displacement functions with respect to z. Now, we 

would like to extract some physical interpretations and significance of the various terms 

in Eq. 1.5. 𝑈 𝑥, 𝑦, 0 , 𝑉 𝑥, 𝑦, 0  and 𝑊 𝑥, 𝑦, 0  are the constant variations of the 3 D 

functions, U, V and W at z = 0 in the x, y and z-direction, respectively. These modes 

simply represent the rigid body motion, i.e, gives a measure of the amount of constant 

axial deformation of any point in the plate in the x, y and z-direction. The constant 

deformation modes are important to include because when a homogeneous plate is 

subjected to direct uniform traction, then the constant deformation modes give a 

measure of the amount of stretching experienced by the plate. It is important to note that 

these deformation modes are not constant in the spatial domain and constant only in the 

thickness domain. While studying the bending behavior of non-homogeneous plate 

structures, the constant modes also contribute in the bending deformations as non-

homogenous structures experiences coupled stretching-bending deformation under the 

action of transverse loads and vice versa. Therefore, these modes cannot be neglected 

even when no axial force is acting. 𝑈1 𝑥, 𝑦, 0 , 𝑉1 𝑥, 𝑦, 0  are the derivatives of the in-

plane 3 D displacement functions with respect to z, and simply gives a measure of the 

amount of rotation of the transverse normal about the y and x-axes at z = 0. The higher-

order terms, ‘𝑈2 𝑥, 𝑦, 0 , 𝑉2 𝑥, 𝑦, 0 ’ are the rate of change in slopes (curvature) of the 

in-plane 3 D displacement functions in the x and y-direction at z = 0, respectively. 
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Similarly, 𝑊1 𝑥, 𝑦, 0  and 𝑊2 𝑥, 𝑦, 0  are the slope and curvature of the 3 D transverse 

displacement function, W (x, y, z) in the z-direction. Further terms in Eq. 1.5 do not 

represent any physical quantity as such, however, required to refine the overall response 

of the system. The coefficient of the rotational deformation modes ‘𝑈1 𝑥, 𝑦, 0 , 

𝑉1 𝑥, 𝑦, 0 ’ is ‘z’ and has a linear anti-symmetric variation about the z = 0 midplane. 

Such a deformation shape truly represents the linear bending of the system. It is 

mentioned above that the constant deformation modes represent the stretching 

phenomenon in the x and y-directions. The modes have a constant coefficient associated 

with them, which also confirms to the above physical realization. It can be argued that 

the two deformation modes (constant and rotation) are the basic deformations and the 

higher-order modes are simply included for refinement of the stretching and rotational 

modes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Expressing a function ‘f (x)’ with the Taylor Series expansion centered 

at x = 1. 

 

𝒇𝟎(1) 

𝒇𝟎(1) 

(1, 0) (0, 0) 

a = 1 

x  

𝒇𝟏 𝟏  𝒙 − 𝒂 𝟏

𝟏!
 

(x – a) 

Linear 

approximation 

𝒇𝟐 𝟏  𝒙−𝒂 𝟐

𝟐!
 + 

𝒇𝟑 𝟏  𝒙−𝒂 𝟑

𝟑!
 +…. ∞ 

Non-linear 

approximation 

𝒙𝟏 

𝒙𝟐 

f (x) 

f (x) = 𝒇𝟎(1) + 
𝒇𝟏 𝟏  𝒙−𝒂 𝟏

𝟏!
 + 

𝒇𝟐 𝟏  𝒙−𝒂 𝟐

𝟐!
 + 

𝒇𝟑 𝟏  𝒙−𝒂 𝟑

𝟑!
+….∞ 

⋮ 

⋮ 

𝒇𝟏 𝟏  = (
𝒅𝒇

𝒅𝒙
)
𝒙=𝟏

 

𝒇𝟐 𝟏  = (
𝒅𝟐𝒇

𝒅𝒙𝟐
)
𝒙=𝟏

 



Chapter 1  Introduction 

29 
 

If we closely look at the coefficients of the higher-order modes, 𝑈2 𝑥, 𝑦, 0  and 

𝑈3 𝑥, 𝑦, 0 , it is observed that a quadratic and a cubic function of z is associated with 

them, respectively. Therefore the higher-mode ‘𝑈2 𝑥, 𝑦, 0 ’ is refining the constant 

deformation mode ‘𝑈 𝑥, 𝑦, 0 ’ and consequently the overall stretching response of the 

system. The inclusion of this mode will now make the mathematical model capable of 

modeling a non-uniform stretch experienced by the plate. The 𝑈3 𝑥, 𝑦, 0  mode is 

refining the simple linear rotational mode, ‘𝑈1 𝑥, 𝑦, 0 ’ and consequently, the bending 

response of the system. The inclusion of this mode will make the mathematical model 

capable of modeling the non-linear bending profile of a plate structure, i.e, warping of 

the transverse cross-section. Therefore, it is now evident from the preceding discussions 

that the odd and even powered terms of z in conjunction with the higher-order modes in 

the in-plane displacement components are used for refining the bending and stretching 

of the system, respectively. While, the exact opposite phenomenon can be found in the 

expansion of the 3 D transverse displacement function, ‘W’ in which the odd and even 

powered terms of z contribute to the stretching and bending of the system, respectively.  

The rotation of the transverse normal in HSDTs is shown in Figure 1.9.  

Hildebrand et al. (1949) were the first to present improved higher-order theories of 

plates/shells by expanding the displacement components with the help of Taylor Series 

expansion. Some more contributions are made by Nelson and Lorch (1974), Lo et al. 

(1977), Levinson (1980), Kant (1982), and Reddy (1984) by developing various HSDTs 

for determining the deformation responses of isotropic and orthotropic multilayered 

plate structures. In all the HSDTs, unknowns are introduced in the midplane with an 

additional increase in the power of the thickness coordinate. Another interesting way of 

reducing the 3 D displacement components to 2 D deformation modes is by employing 

a non-polynomial mathematical function of the thickness-coordinate. An example is 
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shown below in which the 3 D displacement component, U (x, y, z) is expressed in 

terms of the deformation modes with the help of a polynomial or a non-polynomial 

function.  

U (x, y, z) = 𝑢𝑜(x, y) - z 
𝜕𝑤𝑜 𝑥,𝑦  

𝑑𝑥
 + f (z) 𝑢2 (x, y)                                                                       

W (x, y, z) = 𝑤𝑜(x, y)                                                                                                       1.6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8. Rotation of the transverse normal to the mid-plane in HSDTs 

 

We can see in Eq. 1.6, that the displacement field is a refinement of the CLPT, and the 

refinement is done with the help of the mathematical function ‘f (z)’. The choice of f (z) 

can be a polynomial or a non-polynomial. If a polynomial function is used then the 

choices could be ‘z
3
’ and (𝑧 −

4𝑧3

3ℎ2
) so that the parabolic profile of the transverse shear 
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strains can be attained. The first function is assumed with the help of Taylor-Series and 

the second function is given by Reddy (1984). Both the functions are cubic powered and 

can generate the quadratic variation of the transverse shear strains. There is an 

additional advantage of using Reddy’s function as it automatically satisfies the traction-

free boundary conditions of the transverse shear stresses/strains at the extreme surfaces 

of the plates. The through-thickness variations of the Reddy’s function and its derivative 

with respect to z are shown in Figure 1.10. It is observed in the figure that f (z) is zero at 

the mid-plane and maximum at the extreme surfaces and the derivative is maximum at 

the mid-plane and zero at the extreme surfaces of the plate. The variations are exactly 

similar to the through-thickness bending deformations and transverse shear strain 

variations in the plate structures. These variations can also be used as a basis for 

developing various non-polynomial mathematical functions of the thickness coordinate 

in HSDTs. Various non-polynomial mathematical functions are proposed to date by 

Touratier (1991), Soldatos (1992), Aydogdu (2009), Mieche et al. (2011), Mantari et al. 

(2012a), and Mahi et al. (2015) to name a few and implemented in the HSDTs for 

modeling the deformation responses of plate structures.  The mathematical function, f 

(z) is also known as shear-strain function in the literature. The various shear-strain 

functions adopted in the above-mentioned research works are collected in Table 1.1. 

Substituting for f (z) in Eq. 1.6 with the shear-strain functions in the table will create 

various non-polynomial higher-order shear deformation theories (NHSDTs).  

Eq. 1.6 is just presented as an example and every NHSDTs would not exactly be in that 

form. It’s just that we have shown the refinement over the CPT to create various 

NHSDTs and similarly, the refinements can be done over FSDT using the same shear-

strain functions. The following conditions can be used as a basis for developing new 

shear-strain functions for the HSDTs. 
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Figure 1.10. (a). Through-thickness variation of Reddy’s shear strain function.  

(b) Through-thickness variation of the derivative of Reddy’s shear strain function 

with z 

 

 

 

Table 1.1.  Various shear strain functions used in the kinematic models 

Reference Shear Strain function 

 f (z) Ω 

Touratier (1991) 
ℎ

𝜋
 sin (

𝜋𝑧

ℎ
) 0 

Soldatos (1992) h sinh (
𝑧

ℎ
) cosh (

1

2
) 

Aydogdu (2009) z𝛼−2(
𝑧

ℎ
)2/𝑙𝑛 𝛼 

 0 

Mieche et al. (2011) 0.6626
ℎ

𝜋
 sinh (

𝜋𝑧

ℎ
) -0.6626 

Mantari et al. (2012a) tan 𝑚𝑧  -m sec
2 (

𝑚ℎ

2
) 

Mahi et al. (2015) 
ℎ

2
 tanh (2

𝑧

ℎ
) −

4

3cosh2 1 
(
𝑧3

ℎ2) 0 

 



Chapter 1  Introduction 

33 
 

 𝑓  0 = 0                                                                                                                  1.7 

The value of the shear-strain function at the mid-plane (z = 0) is zero. The shear-strain 

functions proposed by Touratier (1991), Soldatos (1992), Aydogdu (2009), Mieche et 

al. (2011), Mantari et al. (2012), and Mahi et al. (2015) satisfies this condition. It is 

shown earlier in Figure 1.10a that the through-thickness variation of the function ‘f (z)’ 

represents the non-linear bending profile of the plate structure, i.e, useful for refinement 

of the overall bending response of the structure. From the theory of bending, it is known 

that when a homogeneous structure experiences bending under the action of transverse 

loads, the midplane does not undergo any change in length. Thus the value of the 

function ‘f (z)’ is zero at the mid-plane. The same phenomenon may not happen in non-

homogeneous plate structures and the plate can also experience axial deformation in 

addition to the bending deformation under the action of transverse loads. In that case, 

the constant deformation modes and the higher-order refinements can be used to model 

the axial deformations. 

 𝑓/ 0  = 1                                                                                                                 1.8a 

 𝑓/ ±ℎ/2  = 0                                                                                                         1.8b 

The value of the derivative of the function at the mid-plane (z = 0) is 1 and at the 

extreme surfaces  ±ℎ/2  is 0. The derivative of the shear-strain function is required 

while calculating the transverse shear strains. By satisfying equation 1.8a, we ensure 

that the transverse shear strains are maximum at the midplane, and zero at the extreme 

surfaces of the plate structures by satisfying equation 1.8b. In a more general sense, we 

wish to obtain the maximum value of the transverse shear strains/stresses at the mid-

plane using Eq. 1.8a. All the shear-strain functions in the above-mentioned literature 

satisfy Eq. 1.8b. The functions in Soldatos (1992) and Mantari et al. (2012) do not 

satisfy Eq. 1.8a however, the results obtained are efficient. It is also important to note 
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that the maximum value of the transverse shear stresses is not always at the midplane 

especially, in the two-layered antisymmetric laminated plates. Eq. 1.8b is very useful as 

it states that the extreme surfaces of the plate are free from transverse shear strains. 

 ∫ 𝑓/ 𝑧 
ℎ

2

−
ℎ

2

dz = 0                                                                                                         1.9 

By satisfying Eq. 1.9, we ensure that the chosen shear-strain function is odd function. 

Eq. 1.7 constrains the shear-strain function to have a zero value at the mid-plane and 

Eq. 1.9 constrains the function to have an antisymmetric variation about the midplane. 

This is exactly similar to the bending profile of a structure. This completes the 

discussion on the HSDTs of both polynomial and non-polynomial nature. It can be said 

that there are only three different kinematic models available in the literature namely, 

CPT, FSDT and HSDT. The models were initially used for modeling the single-layered 

isotropic beams, plates and shell structures. Due to the advancements in the research on 

materials, advanced materials like composites, functionally graded materials, carbon-

nanotubes, smart materials, etc. are developed and successfully applied in various 

industrial applications. It is found that these materials are often used as discrete layers 

stacked in the thickness-direction (laminated composites) or sandwiched in between 

some other materials (functionally graded sandwich structures, CNT reinforced 

sandwich plates). Therefore, it is now essential to use the kinematic models earlier 

developed for the single-layered structure to model the deformation responses of 

multilayered structures. This is generally done by using the concept of Equivalent 

Single Layer (ESL), LayerWise (LW) and Zigzag (ZZ) approaches. A more detailed 

discussion on these approaches is presented in the subsequent sections. 

1.4.4. Extension of the plate theories for the modeling of multilayered structures 

          In this section, the various approaches of modeling the behavior of multilayered 

composite plates with the available kinematic models in the literature namely, CPT, 
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FSDT and HSDT are discussed. The modeling of the traditional homogeneous 

multilayered plate structures, smart structures and non-homogeneous structures is 

considered.  

1.4.4.1. Equivalent Single Layer (ESL) Approach 

             The simplest way of extending the single-layered plate theories to multilayered 

structures without many computational complexities is by using the Equivalent Single 

Layer approach. In this approach, the total number of primary variables required to 

model the multilayered systems is kept constant and is equal to the total number of field 

variables in the original kinematic model. Though the extension of the kinematic model 

from a single-layered system to a multilayered system is straightforward, however, the 

various integrals for evaluating the rigidity matrices should be correctly executed 

keeping in mind the thickness of each layer, material properties. In a nutshell, it can be 

said that a multilayered laminated composite plate is replaced by a single-layered plate 

structure in an integrated sense whose stiffnesses are a weighted average of the stiffness 

of each individual layer through the thickness. A pictorial presentation of modeling a 

multilayered laminated plate structure using CPT following the ESL approach is shown 

in Figure 1.11. This approach has been extensively used in the literature for modeling 

the structural responses of traditional laminated composite plates and smart composite 

plate structures.  

Wang and Rogers (1991) studied the bending responses of laminated composite plates 

with integrated piezoceramic patches using the CLPT. Moita et al. (2004) presented 

numerical solutions for the dynamic responses of laminated composite plates with 

PVDF actuator and sensor using the finite element method (FEM) in the framework of 

CLPT. CLPT does not consider the shear deformation in plates which is significant in 

the laminated composite structures. In this regard, Reddy (1982) presented a 
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comparison of the CLPT and FSDT responses for the forced-vibration responses of 

traditional laminated composite plates using the Navier-based analytical method. The 

displacement-time responses obtained using CLPT are underestimated in comparison to 

the FSDT responses.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11. ESL representation of a plate theory 

 

Chandrashekhara and Agarwal (1993) derived the vibration responses of smart 

composite plates with PZT patches in the framework of FSDT. Ray and Mallik (2004) 

derived the static responses of smart composite plate structures with PFRC actuator 

using a FE model based on FSDT. Later, Ray and Sachade (2006) extended the FE 

model for deriving the static responses of smart FG plate structures with a PFRC 

actuator. Shivakumar and Ray (2008) presented analytical solutions for the nonlinear 

static analysis of smart composite plates with PFRC actuator. Kerur and Ghosh (2011a, 

b) presented both linear and non-linear dynamic responses of smart composite plates 

with piezoelectric materials using FSDT. Behjat et al. (2011) carried out the static and 

dynamic analysis of smart FG plates subjected to various electrical and mechanical 

loadings using the FE method. The FSDT responses are satisfactory for thin systems 

U (x, y, z) = f (z)  𝒖 (x, y) 

z = 0 

x 
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only due to the linearly varying in-plane displacements across the thickness of the plate 

structures.  

 Lo et al. (1977) presented analytical solutions for the static analysis of traditional 

laminated composite plates using a PHSDT with eleven variables. The in-plane 

displacements and transverse displacement are assumed to have a cubic and quadratic 

expansion of the thickness coordinate, respectively. Reddy (1984) derived a five-

variable PHSDT for the static analysis of laminated composite plate structures and also 

artificially imposed the zero transverse shear boundary conditions of transverse shear 

stresses at the top and bottom surface of the plate structure. Reddy’s model discards the 

effect of the transverse normal strains as opposed to the PHSDT in Lo et al. (1977). In 

the literature, it can be found out that most of the HSDTs vary in the order of expansion 

of the in-plane and transverse displacement components. Kant and Swaminathan (2001, 

2002) presented analytical solutions for the static and dynamic analysis of laminated 

composite and sandwich plate structures using various HSDTs with different order of 

expansions of the in plane and transverse displacements. Significant contributions are 

made by Phan and Reddy (1985), Khdeir and Reddy (1989), Pandya and Kant (1988), 

Kant and Manjunatha (1988) and Kant et al. (1992) to name but a few who presented 

static, free and forced vibration analysis of multilayered laminated composite plates. In 

addition to the above-mentioned PHSDTs, there is a two-variable PHSDT developed by 

Shimpi (2002) for deriving the bending responses of isotropic plate structures. The 

kinematic model is also extended for studying the deformation responses of laminated 

composite plates by Shimpi and Patel (2006). The proposed kinematic model does not 

consider the constant membrane deformations in the x and y-direction and with the 

membrane deformations, the total number of field variables increases to four. In all the 

aforementioned references, the nonlinear profile of the transverse shear strains/stresses 
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are introduced with polynomial mathematical functions of the thickness coordinate. It is 

previously mentioned in the preceding section, that the nonlinear profile of the 

transverse shear strains/stresses can also be accommodated with non-polynomial 

functions. A non-polynomial function implicitly considers the higher-order terms of the 

Taylor Series expansion. Thus the number of primary variables in the kinematic model 

gets reduced in comparison to many PHSDTs in the literature like the HSDT of Lo et al. 

(1977), Kant and Manjunatha (1988), Pandya and Kant (1988), etc. In the framework of 

NHSDTs, several mathematical models are developed in the literature which exploits 

trigonometric functions (Touratier, 1991; Soldatos, 1992; Mantari et al., 2012a, 2012b 

and Grover et al., 2015), exponential (Karama et al., 2009 and Aydogdu, 2009) and 

hyperbolic (Mieche et al., 2011; Grover et al., 2013a; Mahi et al., 2015) for deriving the 

structural responses of multilayered composites and functionally graded plates.  

In the area of smart composites, the PHSDTs and NHSDTs are also widely used for 

their analysis. Ray et al. (1994) and Samanta et al. (1996) employed the PHSDT of Lo 

et al. (1977) for determining the static and dynamic responses of smart composite plates 

with PVDF actuator and sensor. Lee et al. (2004) used Reddy’s third-order theory 

(Reddy, 1984) for investigating the suppressed forced-vibration responses of smart 

laminated composite plates integrated with magnetostrictive layers. Further, Moita et al. 

(2005) utilized the same kinematic model for determining the suppressed forced-

vibration responses of smart composite plates with PVDF layers. Shiyekar and Kant 

(2010, 2011) extended the model of Kant and Manjunatha (1988) for studying the 

electromechanical responses of smart composite plates with PFRC actuator. A series of 

articles are presented by Rouzegar and Abad (2015), Rouzegar and Abbasi (2017, 

2018), and Rouzegar et al. (2019) in which the four-variable plate theory of Shimpi 

(2002) is utilized for modeling the coupled electromechanical behavior of smart 
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composite and FG plates. The membrane deformation modes are included in the 

original mathematical model of Shimpi (2002) which increased the number of field 

variables to four. Further, Wang et al. (2019) employed the NHSDT of Neves et al. 

(2011) which considers the thickness stretching effects for the modeling of FG plates 

with PFRC actuator. Some recent investigations have appeared like Barati et al. (2016, 

2017), Zenkour and Alghanmi (2019a, 2019b, 2021), Zenkour and Hafed (2020), 

Zenkour and Shahrany (2020) and Joshan et al. (2020) in which the static and vibration 

responses of smart plate structures have been investigated using various PHSDTs and 

NHSDTs. 

The main drawback of the ESL approach is that the variations of the transverse shear 

stresses are not consistent with the 3 D solutions as the transverse shear stresses are 

discontinuous at the interfaces of the plates. The ESL theories cannot satisfy the 

piecewise continuity requirements of the transverse displacements as the kinematic 

expansions consists of global mathematical functions of the thickness coordinate. As a 

result, the transverse shear strain and stress fields are continuous and discontinuous at 

the interface of the plates. The variation of the in-plane displacement (U) for a thick 

composite plate in the exact solutions of Pagano (1970) illustrates that the in-plane 

displacements have slope discontinuities at the interface of the plate structure. To 

accommodate the slope discontinuities the kinematic expansions of the 3 D 

displacements are required to be modified. As a refinement, the layerwise (LW) and 

zigzag (ZZ) approaches are developed in the literature to  eradicate the drawbacks of the 

ESL models. 

1.4.4.2. Layerwise (LW) Approach 

             In the LW approach, we assume separate kinematic field expansions within 

each layer of the multi-layered laminated composite plate. The various kinematic 
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models can be CLPT, FSDT and HSDTs of both polynomial and non-polynomial form 

assumed in each discrete layer. Even different orders of expansion of the displacement 

components in each discrete layer can also be assumed depending on the type of 

problem. The field variables of the kinematic model are layer dependent and increase 

with the increase in the number of layers. Practically the field variables of a particular 

layer ‘k’ cannot be independent with the field variables of the ‘(k+1)
th

’ layer. The 

relationships among the field variables of the adjacent layers can be established with the 

continuity conditions of the displacement components assuming that the layers are 

perfectly bonded. This kind of kinematic representation can generate highly accurate 

through-thickness variations of the stress/strain field in the multi-layered plate 

structures. Also, the estimations of the ply level stress sufficiently improve when the 

LW approach is employed instead of the ESL approach. The LW representation of a 

kinematic field is shown in Figure 1.12. 

Srinivas (1973) developed a refined plate theory by assuming that the in-plane 

displacements (U, V) are varying piecewise linearly through the thickness of the plate 

and the transverse displacement is assumed to be constant for the entire thickness 

domain. The idea behind this kinematic representation came from the 3 D analysis 

presented earlier by Srinivas and Rao (1973) and Pagano (1970) in which the in-plane 

displacements are found to be piecewise linear and the transverse displacement is more 

or less constant for both thick laminated composite and sandwich plates. Reddy (1989) 

presented a generalized theory for studying the bending of plates. Apart from the usual 

mid-plane deformations, some mathematical functions are also assumed in the thickness 

coordinate. The functions used are the standard 1 D Lagrange shape functions used for 

discretizing the thickness domain so that the continuity of displacement components is 

automatically satisfied. The functions assumed in the thickness domain generate 
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additional unknowns in each layer, thus the primary variables are layer-dependent. 

Reddy et al. (1989) extended the generalized theory of Reddy (1989) for studying the 

deformation responses of laminated composite plate structures. The standard 1D 

Lagrange shape functions are used for discretizing the thickness-domain for the in-plane 

displacement components. The transverse displacement is assumed to be constant. 

Robbins and Reddy (1993) presented the modeling of thick laminated composite plates 

in the framework of the generalized laminate theory of Reddy (1989). The approach 

presented is a good alternative to the conventional 3 D FE model of plate structures. 

The variation of the transverse displacement is not constant through the thickness of the 

plate in contrary to the work of Reddy et al. (1989). Further applications of the 

generalized theory of Reddy (1989) are presented by Davalos et al. (1994), Nosier et al. 

(1993), and Barbero et al. (1990) for the analysis of laminated beams, plates and shells, 

respectively. Plagianakos and Saravanos (2009) developed a LW laminated theory in 

which a piecewise linear distribution of the in-plane displacement components are 

assumed for each layer in the thickness coordinate to take into account the continuity of 

displacements. Further, the in-plane distributions are assumed to vary in a quadratic and 

cubic manner across the thickness of each layer. Ferreira et al. (1991) presented the 

modeling of sandwich plate structures in the framework of the LW approach. 

As opposed to the ESL model which assumes a constant rotation of the transverse 

normal for the entire laminated plate in the thickness-domain, the model in this research 

assumes independent rotation of the normal for each layer of the sandwich plate in the 

framework of FSDT. Goswami and Becker (2015) employed two PHSDTs with nine 

and eleven variables in the framework of the LW approach for modeling soft-core-

sandwich plates 
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Figure 1.12. LW representation of a kinematic field 

 

The kinematic description of the face-sheets is described with the nine-variable theory 

(Pandya and Kant, 1988) without taking into account the extensibility of the transverse 

normal and for the displacement components of the soft-core layer, the eleven-variable 

model (Lo et al., 1977) is assumed. This kind of hybrid kinematic representation can be 

used for modeling soft-core sandwich plates with thin face-sheets by taking into account 

the core-compressibility effect in the core layer only. Similar LW representation of 

transverse displacement only is also noticed in the works of Pandit et al. (2008) and 

Chalak et al. (2012a). Though the kinematic representation of the in-plane displacement 

components followed in the two works are based on the ZZ approach which is different 

from the LW approach used in Goswami and Becker (2015) yet these works share the 
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same vision of assuming different orders of expansion for the transverse displacement 

in the face-sheets and the core for a soft-core sandwich system. Also, some recent 

research works like Cetkovic (2015), Mantari et al. (2012c, 2013), Pandey and 

Pradyumna (2015) and Sarangan and Singh (2018) have appeared in the literature in 

which the PHSDTs and NPHSDTs are used for modeling the laminated composites and 

sandwich plates using the LW approach. Saravanos and Heyliger (1995) presented a 

coupled LW analysis of smart composite beam structures with piezoelectric layers. Two 

LW theories are presented in which one assumes that the transverse displacement is 

constant through thickness of the plate while the other accounts for the piecewise 

continuous variations. Lee and Saravanos (1996) extended the same model to 

investigate the thermal effects in the coupled responses of smart composite plates with 

piezoelectric actuators. Robins and Reddy (1991) derived the dynamic responses of 

piezoelectric actuated beams using the LW theory of Reddy (1989). A comparison of 

responses obtained from the LW theories with the ELS-based classical beam theory 

(CBT) and the first-order beam theory (FOBT) is also presented in the work. Saravanos 

et al. (1997) presented the dynamic analysis of laminated composite plate structures 

with piezoelectric layers using the LW approach. The mechanical field variables and the 

electric field variables are assumed according to the LW representations across the 

thickness of the smart composite plates. Han and Lee (1998) employed the generalized 

LW theory of Reddy (1989) for modeling smart composite plates with distributed 

piezoelectric actuators. The vibrational analysis of the smart composite plate is 

presented in the work. Sheikh et al. (2001) carried out a FE analysis of smart composite 

plates using the FSDT model. However, the model included the electric potential 

distribution across the thickness of the plate with piecewise linear mathematical 

functions. The model presented is hybrid in the sense that the mechanical field variables 
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are based on the ESL approach whereas the electric variables are based on the LW 

approach. Zabihollah et al. (2007) presented the vibration control of smart composite 

plates with piezoelectric layers using the LW theory of Reddy (1989). Moita et al. 

(2011a) presented the vibrational analysis of multi-layered smart sandwich plates using 

a refined model. The core layer is modeled using the FSDT while the thin piezoelectric 

layers are modeled using the CPT. Continuity conditions of the displacements are then 

artificially enforced to reduce the number of field variables. Further, Moita et al. 

(2011b) presented an improved model for the vibrational analysis of smart sandwich 

plates in which the deformation behavior of the core layer is modeled using the PHSDT 

of Reddy (1984) and the deformation of the face-sheets is modeled with CPT. The 

responses in the frequency domain and time-domain, are presented in the work. More 

articles like Kapuria et al. (2003), Garção et al. (2004), Lage et al. (2004), Kapuria and 

Hagedorn (2007), Beheshti-Aval et al. (2013), Naji et al. (2016, 2018) and Li and Shen 

(2018) have appeared in the literature in which the modeling of smart structures are 

carried out exploiting the LW approach. 

In a nutshell, it can be found that there are three different categories of LW theories that 

are very popular among the researchers namely, Reddy’s generalized LW theory 

(Reddy, 1989), Carrera’s Unified Formulation (Carrera et al., 2016), and Ferreira’s LW 

theory (Ferreira, 2005). The Carrera Unified Formulation (CUF) is not discussed here 

and a separate section has been made later in which detailed discussions on CUF are 

presented. In Reddy’s LW theory, each layer of the multi-layered composite plate 

structure is modeled as a single layer and the continuity of the displacements is 

achieved through C
0
 Lagrange shape-function in FE. On the other hand, CUF writes 

expansions for both displacement components and transverse stresses in the thickness 

direction for the top, bottom, and some other external surfaces of a kth layer. Legendre 
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polynomials are sometimes considered to the mathematical functions in the thickness-

domain and the parameters of the polynomials are obtained using the compatibility 

conditions at the interfaces. Ferreira’s LW theory assumes that the deformation of each 

layer follows the kinematic field of FSDT and the transverse normal of each layer 

rotates independently, i.e, having a unique rotation of the transverse normal. The 

displacement continuity conditions at the interfaces are enforced at the beginning of the 

formulation. Most of the advancements in the LW theories are based on the above-

mentioned LW theories. The LW representation provides an accurate description of the 

primary variables and the secondary variables in the thickness domain however, the 

computational efforts are very heavy, and finding solutions for multi-layered 

composites and smart composites become prohibitively expensive as the number of 

primary variables dramatically increases with the layers. Also, in the linear LW 

theories, the inter-laminar transverse stresses turn out to be constant and therefore, 

requires refinement in the discretization of the thickness-domain by taking higher-order 

Lagrange shape functions consequently, increasing the computational costs. In the next 

section, we are going to discuss the Zigzag (ZZ) representation of the plate theories. 

1.4.4.3. Zigzag (ZZ) Approach 

             In the ZZ approach, the total number of primary variables is fixed like that of 

the ESL approach and contrary to the LW approach. To generate the slope 

discontinuities of the displacement components at the interfaces, some unknowns are 

assumed at the interfaces of the multilayered laminated composite pate structures in 

addition to the usual kinematic representation followed in the ESL approaches. The 

unknowns are related to the 3 D displacement components with a piecewise linear 

interpolation function of the thickness coordinate and are useful to create discontinuities 

of transverse shear strains. Therefore an opportunity is created of making the transverse 
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shear stresses continuous at the interfaces.  After enforcing the continuity conditions of 

the transverse stresses, the unknown variables can be expressed in terms of the primary 

variables defined at the mid-plane. Therefore, the total number of variables is equal to 

the number of primary variables defined at the mid-plane. Overall the approach 

expresses the 3 D displacements in terms of the 2 D deformation modes defined at the 

mid-plane in conjunction with some unknowns defined at the interfaces of the plate 

structures. The ZZ representation of a kinematic model is shown in Figure 1.13. The 

mathematical functions relating the 3 D displacements with the unknowns are piecewise 

continuous at the interfaces while the global mathematical functions assumed for the 

deformation modes are anyway continuous. Therefore, the displacement continuity is 

automatically satisfied. The continuity of the displacements is also satisfied in the ESL-

based theories however, there are no provisions for generating continuous transverse 

stresses unless some post-processing techniques are applied for calculating the stresses. 

Moreover, the piecewise continuous variations of the in-plane displacement components 

observed in the 3 D results of laminated composite plates (Pagano, 1970 and Srinivas 

and Rao, 1970) cannot be achieved with the ESL approach only and some modifications 

are required in the kinematic representation as discussed above in this section. 

The starting step of any analysis with a plate theory is assuming some through-thickness 

variations of the 3 D displacements. Thus the accuracy responses of the system depend 

on how close the variations are with the exact responses. Substantial research has been 

carried out to circumvent the problems faced in the LW theories. In this regard, Di 

Sciuva (1986) presented a refined first-order ZZ model in which the FSDT model is 

used in conjunction with some unknowns defined at the interfaces. The unknowns are 

further defined in terms of the deformation modes of FSDT after satisfying the 

continuity conditions of the transverse shear stresses at the interfaces. 
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Figure 1.13. ZZ representation of a kinematic model 

 

The first-order ZZ model is utilized in a variety of problems by Tessler et al. (2010), 

Gherlone (2013), Iurlaro et al. (2013) and Flores (2014). Further improvement in the 

first-order ZZ model is the refined higher-order ZZ theory (RHZZT) in which Reddy’s 

third-order theory (Reddy, 1984) is utilized. Contributions are made by Di Sciuva 

(1992), Bhaskar and Varadan (1989) and Cho and Parmerter (1993) by developing 

RHZZTs for the analysis of laminated composite and sandwich plates. The RHZZTs 

satisfy the traction-free conditions of transverse shear along with the inter-laminar 

continuity conditions at the interfaces. Moreover, it also produces the parabolic profile 

of the transverse shear stresses across the thickness of the plate structures. The basic 

features of the aforementioned references are more or less the same, however, there are 

some modifications of one over the other. The model of Cho and Parmerter (1993) is 

further extended by many researchers for solving several problems of laminated 
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composites and sandwich plates. To begin with, the extensive research works of 

Chakrabarti and Sheikh (2004a, 2004b) in which a refined triangular FE is proposed to 

address the problem of C
1
 continuity of transverse displacement in the model of Cho 

and Parmerter (1993). Even the RHZZTs in Di Sciuva (1992) and Bhaskar and Varadan 

(1989) require the C
1 

continuity of transverse displacement at the interface of the 

elements due to the presence of the second-order derivatives of transverse displacement 

in the strain components. Pandit et al.  (2009, 2010a, 2010b) improved the model of 

Cho and Parmerter (1993) by including the core-compressibility effect. The FE 

modeling of soft-core sandwich plates is extensively carried out in these articles for the 

static and dynamic analysis including the random variations of the material properties. 

In these works, the C
1
 continuous kinematic model is first transformed to a C

0 

continuous model by enforcing some constraints. Then the constraint equations are 

variationally satisfied in the FE model by employing a penalty approach. More 

applications of the RHZZT are available in the articles of Chalak et al. (2012b, 2013) 

and Khandelwal et al. (2013a, 2013b) for the FE modeling of soft-core sandwich beams 

and plates including the core-compressibility effects. The above-mentioned references 

are all polynomial-based RHZZTs in which the nonlinearity of the transverse shear 

stresses/strains is introduced with the higher-order polynomial functions of the 

thickness coordinate.  

Cho and Oh (2004) studied the thermo-electro-mechanical responses of smart 

composite plates using the RHZZT of Cho and Parmerter (1993) by taking into account 

the extensibility of the transverse normal. Oh and Cho (2004) carried out the FE 

modeling of smart composite plates for the coupled thermo-electro-mechanical analysis 

of smart composite plates using the RHZZT. Oh and Cho (2007) also extended the 

RHZZT for deriving the thermo-electro-mechanical responses of smart composite 
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shells. Kapuria (2004) presented analytical solutions for the static analysis of 

piezoelectric laminated composite plates using a coupled third-order ZZ theory. Kapuria 

and Achary (2005) presented the dynamic analysis of piezoelectric laminated cross-ply 

plates using the coupled third-order ZZ theory. Kapuria and Kulkarni (2009) carried out 

the FE analysis of smart composites and sandwich plates using an improved 

quadrilateral element. The C
1
 continuity requirements of the transverse displacement are 

circumvented using the improved discrete Kirchhoff constraint technique. Topdar et al. 

(2004, 2006, 2007) employed the RHZZT model of Cho and Parmerter (1993) and 

investigated the static and dynamic control of smart composite plates. A hybrid model is 

noticed in their analysis as the electric variables are expressed using the LW approach 

while the kinematics of deformation is represented using the ZZ approach. Similarly, 

Khandelwal et al. (2013c, 2014) presented a hybrid mathematical model for the coupled 

electro-mechanical responses of smart composite plate structures by considering the 

LW and ZZ representation for describing the electrical and mechanical variables, 

respectively. More investigations on the smart composite plates and shell structures are 

available in Nath and Kapuria (2009, 2012), Mishra et al. (2019) and Das and Nath 

(2021) which have recently appeared in the literature. The above-mentioned ZZ theories 

used for modeling the smart systems are all polynomial-based. 

The ZZ theories have received much attention, in particular, the polynomial ZZ theories 

because of their accuracy and less computational efforts in comparison to the LW 

models. However, the non-polynomial ZZ theories have not been extensively applied in 

the literature for modeling the traditional laminated composites and smart composite 

plates. It is observed in the literature that the non-polynomial functions are widely used 

in the ESL-based non-polynomial higher-order shear deformation theories (NHSDTs) 

for the structural analysis of beams, plates and shells. The non-polynomial shear strain 
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functions in NHSDTs create additional advantages in comparison to the polynomial 

shear strain functions. To begin with, the number of primary variables gets reduced as 

with a single non-polynomial shear strain function the higher-order expansions of z can 

be implicitly accommodated. Also, the non-polynomial functions are much richer than 

the polynomial functions as shown below by comparing the shear-strain functions of 

Reddy (1984) and Touratier (1991). 

Reddy’s function (1984) 
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When we expand the functions, we get the polynomial expansions of z for both the 

cases as shown above. We can see that Reddy’s function has only two polynomial terms 

of z while the trigonometric function of Touratier contains an infinite number of odd 

terms of z therefore, much richer than Reddy’s function. The other non-polynomial 

functions in the literature can also be expanded with infinite terms of z.  

It is observed in the literature that the developments of the non-polynomial ZZ theories 

are mainly credited to Sahoo and Singh (2013, 2014) in which various non-polynomial 

shear-strain functions in the literature are employed, and the FE analysis of laminated 

composites and sandwich plates are carried out for the static and free vibration 

responses. Though the FE method can handle a wide range of complex problems, the 

solutions of the governing PDEs are approximate and the efficiency of the kinematic 

model cannot be ascertained with the FE solutions. In the FE method, the solutions for 

the primary variables are assumed over an element in terms of the interpolation 

functions and unknown generalized coordinates. The variational principle generates the 

governing equations in the algebraic form in terms of the generalized coordinates. After 
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solving the algebraic equations, the generalized coordinates provide the magnitude of 

the primary variables at some of the discrete points on the elements, also known as the 

nodes. It is important to note that any plate theory in the literature is approximate as the 

3 D displacements are reduced to 2 D deformation modes after making some 

assumptions. Based on the assumptions, suitable mathematical functions are chosen and 

the 3 D displacements are written in terms of the assumed functions and surface 

dependent variables. The efficiency of the solutions obtained from the plate theories 

depends on the accuracy of the mathematical functions, i.e, how consistent are the 

functions with the exact variations. Therefore some amount of error has already been 

initiated in the process of reducing the 3 D displacement to 2 D deformation modes. If 

the responses of the system are now obtained using FE in the framework of a plate 

theory, then the total error in the responses will be the cumulative error already incurred 

due to the initial approximations and some additional error generated due to the 

discretization, choice of the interpolation functions, and integration schemes adopted in 

the FE method, etc. In addition to this, the calculation of stresses in FEM involves 

additional approximation in the process and more error gets accumulated in the 

response. In general, the stresses are obtained at the gauss points of an element as the 

stiffness matrix is numerically evaluated at the gauss points by numerical integration in 

the isoparametric formulations. While comparing the stresses at the gauss points with 

the 3 D results of stresses, it is likely to be that the gauss points and the point in which 

the 3 D responses are evaluated are different. At this stage, either we compare the 3 D 

results with the stresses at the nearest gauss points or apply some method by which the 

stresses at the gauss points are extrapolated to the nodes. In the second case, some 

extrapolation functions are defined to extrapolate the stresses to the nodes. In the FE 

mesh, nodes are shared by the adjacent elements and it is found that the extrapolated 
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stresses at the shared nodes from the adjacent elements are different and one needs to 

further apply a nodal averaging scheme to get unique stress at the nodes. There are 

methods discussed in Cook et al. (2007) like the nodal averaging methods and patch 

recovery by which the stresses at the nodes can be calculated. Though the stresses are 

now obtained at the nodes, yet the approximations involved in the methods invoke an 

additional error in the results. In the analysis of multilayered composites, the 3 D 

equilibrium equations of elasticity are useful to estimate the transverse shear stresses to 

get a better estimation compared to the stresses obtained using the constitutive model. 

While calculating the transverse shear stresses using the equilibrium equations (EE) of 

elasticity, one needs to first determine the results of the in-plane stresses accurately. As 

the results of the in-plane stresses have already some error due to the extrapolations and 

nodal averaging techniques, therefore the estimations of the transverse shear stresses are 

likely to be not efficient. Thus the use of the equilibrium equations for accurate 

estimations of the transverse shear stresses won’t be useful anymore. It is now evident 

that the estimation of the stresses using the FEM involves more approximations in the 

steps and results in larger discrepancies than the results of the displacements. Therefore 

the efficiency of a plate theory cannot be fully ascertained with the FEM results only as 

the error accumulated in the responses is not only due to the assumptions in the plate 

theory but also due to the approximations in the method used to find the solutions. The 

analytical methods assume closed-form solutions for the primary variables that are valid 

for the entire domain and the solutions exactly satisfy the boundary conditions and the 

PDEs at every point in the domain. There are no additional approximations involved in 

the analytical method while calculating the displacements and the stresses. The error 

accumulated in the responses obtained analytically is entirely due to the assumptions in 

the plate theory and can exactly justify the accuracy of the kinematic model. It is 
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therefore essential to find the analytical solutions for the structural analysis of laminated 

composite plates using the non-polynomial ZZ theories developed by Sahoo and Singh 

(2013, 2014). The solutions will serve as a basis for determining the accuracy of the 

proposed theories. 

1.4.4.4 Carrera Unified Formulation (CUF) 

            A unified approach is presented in Carrera (2003), popularly known as the 

Carrera Unified Formulation (CUF) for solving a variety of problems on beams, plates 

and shells. CUF is very versatile as the formulation can be used in the ESL, LW and ZZ 

approaches. The stiffness matrix, mass matrix, and load vector are obtained in a unified 

manner with CUF irrespective of the type of the plate theory considered in the 

formulation. CUF also expresses the 3 D displacements in terms of shear-strain 

functions of the thickness coordinates and 2 D deformation modes defined at the 

midplane. 

The various elements of a FE formulation, i.e, stiffness matrix, load vector, and mass 

matrix are obtained in terms of the so-called fundamental nucleus (FN). The FN for a 

let's say, bar element is written as follows: 

𝐾𝑖𝑗 = ∫ (𝑁𝑗,𝑥𝐸𝑁𝑖,𝑥)𝑣
𝑑𝑣                                                                                                 1.10 

It is important to note that the FN in the above equation is not limited to a particular 

number of nodes of the considered bar element and interpolation functions of the 

element. The stiffness matrix of a bar element with N number of nodes can be 

constructed with Eq. 1.10. The general form of the stiffness matrix or the FN is derived 

by assuming the axial deformation of a bar in the following manner. 

𝑢𝑥(x) = 𝑁1(x)𝑢𝑥1 + 𝑁2(x)𝑢𝑥2+𝑁3(x)𝑢𝑥3+𝑁4(x)𝑢𝑥4+……………𝑁𝑁𝑛𝑒(x)𝑢𝑥𝑁𝑛𝑒        1.11a 

The virtual variations of the deformation is written as 

𝛿𝑢𝑥(x) = 𝑁1(x)𝛿𝑢𝑥1 + 𝑁2(x)𝛿𝑢𝑥2+𝑁3(x)𝛿𝑢𝑥3+𝑁4(x)𝛿𝑢𝑥4+……𝑁𝑁𝑛𝑒(x)𝛿𝑢𝑥𝑁𝑛𝑒      1.11b 
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In a condensed form, the above equations are expressed as 

𝑢𝑥(x) =  𝑁𝑖 𝑥 𝑢𝑥𝑖
𝑁𝑛𝑒
𝑖=1  and 𝛿𝑢𝑥(x) =  𝑁𝑗 𝑥 𝛿𝑢𝑥𝑗

𝑁𝑛𝑒
𝑗=1                                                1.11c                                              

where ‘i’ denote the displacement, ‘j’ denote the variations, 𝑁𝑛𝑒 is the number of nodes 

in an element and 𝑁𝑖 denote the shape functions. Using Eq. 1.11c, the strains are 

calculated with strain-displacement relations and with the virtual variation of the 

internal work, the FN in Eq. 1.10 is derived. In the above formulation, the deformation 

of the bar is assumed to be constant in the y and z-direction. However, if the 

deformation in the y and z-direction is not constant, then we need to modify Eq. 1.11a 

and the modified deformation is written as  𝑢𝑥(x, y, z) = 𝑁𝑖(x)𝐹𝜏 𝑦, 𝑧 𝑢𝑥𝑖, where 𝐹𝜏 𝑦, 𝑧  

is some function that gives the variation of the axial deformation of the bar on the cross-

section. Furthermore, we now introduce the two more displacement components in the y 

and z-direction as structural engineering problems are generally 3 D and the solution of 

the problem is aimed towards evaluating the deformation of any point along the three 

coordinate axes.  

𝑢𝑥(x, y, z) = 𝑁𝑖(x) 𝐹𝜏 𝑦, 𝑧  𝑢𝑥𝑖 

𝑢𝑦(x, y, z) = 𝑁𝑖(x) 𝐹𝜏 𝑦, 𝑧  𝑢𝑦𝑖 

𝑢𝑧(x, y, z) = 𝑁𝑖(x) 𝐹𝜏 𝑦, 𝑧  𝑢𝑧𝑖                                                                                       1.12 

The above deformation field in Eq. 1.12 can be easily extended to the plate and shell 

formulations. For 2 D domain, 𝑁𝑖 = 𝑁𝑖(x, y) and 𝐹𝜏 = 𝐹𝜏 𝑧  and for a 3 D domain, 𝑁𝑖 = 

𝑁𝑖(x, y, z) and 𝐹𝜏 = 1. The FN can now be obtained using the variation of the internal 

virtual work and it is interesting to note that FN is a (3x3) array in the case of stiffness 

matrix and (3x1) vector for the force vector and its form is invariant to the 1 D, 2 D and 

3 D formulations. 

The same analogy can be extended for constructing a plate theory. According to CUF, 

the deformation of any point inside the plate (2 D) can be written as 

�̃�(x, y, z) = �̅�𝑠 𝑧   �̃�𝑠 𝑥, 𝑦                                                                                           1.13a 
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The corresponding variations of the above deformation field is expressed as 

𝛿�̃�(x, y, z) = �̅�𝜏 𝑧   𝛿�̃�𝜏 𝑥, 𝑦                                                                                      1.13b 

where, �̃� is the vector containing the 3 D displacements and �̃�𝑠 contains the 2 D 

deformation modes in the x, y and z-direction. ‘𝑠, 𝜏’  are subscripts that can take the 

value 0,1…. M. M is the order of the expansion. The displacements can be explicitly 

written as 

𝑢𝑥 = �̅�0 𝑧  𝑢𝑥0 + �̅�1 𝑧  𝑢𝑥1 + …………………………………�̅�𝑁 𝑧  𝑢𝑥𝑛 

𝑢𝑦 = �̅�0 𝑧  𝑢𝑦0 + �̅�1 𝑧  𝑢𝑦1 + …………………………………�̅�𝑁 𝑧  𝑢𝑦𝑛 

𝑢𝑧 = �̅�0 𝑧  𝑢𝑧0 + �̅�1 𝑧  𝑢𝑧1 + …………………………………�̅�𝑁 𝑧  𝑢𝑧𝑛                  1.14 

�̅�0 𝑧 , �̅�1 𝑧 ……�̅�𝑁 𝑧  are the shear-strain functions and can be polynomial or non-

polynomial. The polynomial function of the Taylor series expansion can be used to 

substitute for the shear-strain function in Eq. 1.14 

𝑢𝑥 = 𝑢𝑥0 + 𝑧𝑢𝑥1 + 𝑧2𝑢𝑥2 + ………………..𝑧𝑁𝑢𝑥𝑛 

𝑢𝑦 = 𝑢𝑦0 + 𝑧𝑢𝑦1 + 𝑧2𝑢𝑦2 + ………………..𝑧𝑁𝑢𝑦𝑛 

𝑢𝑧 = 𝑢𝑧0 + 𝑧𝑢𝑧1 + 𝑧2𝑢𝑧2 + ………………..𝑧𝑁𝑢𝑧𝑛                                                      1.15 

Similarly, non-polynomial functions can also be used as the shear-strain functions to 

construct the displacement field using CUF. 

𝑢𝑥 = 𝑢𝑥0 + 𝑧𝑢𝑥1 + cosh(z)𝑢𝑥2 + sinh(z)𝑢𝑥3 + cosh(2z)𝑢𝑥4 + sinh(2z)𝑢𝑥5+…… 

𝑢𝑦 = 𝑢𝑦0 + 𝑧𝑢𝑦1 + cosh(z)𝑢𝑦2 + sinh(z)𝑢𝑦3 + cosh(2z)𝑢𝑦4 + sinh(2z)𝑢𝑦5+…… 

𝑢𝑧 = 𝑢𝑧0 + 𝑧𝑢𝑧1 + cosh(z)𝑢𝑧2 + sinh(z)𝑢𝑧3 + cosh(2z)𝑢𝑧4 + sinh(2z)𝑢𝑧5+…….        1.16 

The fundamental nucleus can now be obtained with Eq. 1.15 or 1.16, strain-

displacement relations, stress-strain constitutive model and the principle of virtual work. 

Carrera (1995) derived a class of 2 D models using CUF which is probably the first 

paper among the various research works on CUF that have addressed the issues related 

to 2 D problems. CUF is used to derive ESL-based models (Carrera, 1996), LW-based 

models (Carrera, 1999a; 1999b) for the analysis of layered structures. Carrera (2004) 



Chapter 1  Introduction 

56 
 

used the Murakami ZZ function (Murakami, 1984) in the framework of CUF for 

studying the deformation responses of layered structures. The thermal problems of 

multilayered composite structures are presented in Carrera (2005) and Robaldo et al. 

(2005) using CUF. CUF is extended to multiphysics problems of piezoelectricity by 

Robaldo et al. (2006) and Carrera et al. (2007). Carrera et al. (2008) and Brischetto et 

al. (2008) applied the CUF for modeling FG structures. Cinefra et al. (2012, 2013) 

employed the CUF for modeling the homogeneous and non-homogeneous shell 

structures. Several articles like Filippi et al. (2015), Moleiro et al. (2020), Natarajan et 

al. (2014a), Ferreira et al. (2013), Rodrigues et al. (2011) and Alesadi et al. (2017) have 

appeared in the literature which reflects the applicability of CUF in modeling beams, 

plates and shell structures. 

1.4.5. Solution Schemes 

          In this section, various solution techniques are discussed which are frequently 

used for finding the solutions of the governing equations. The Navier-based analytical 

method is very popular in the research community as it produces exact solutions of the 

governing equations of beams/plates and shell structures with diaphragm supported 

boundary conditions. There are several articles in the literature like Kulkarni et al. 

(2015), Punera and Kant (2017), Singh and Sahoo (2020), and Soni et al. (2020) in 

which the Navier-based solutions are obtained for the static and dynamic analysis of 

multilayered composites, FG and CNT-reinforced plate and shell structures. Navier’s 

solution is restricted to diaphragm supported boundary conditions only. Other analytical 

solution methods like the Galerkin method (Singh and Harsha, 2019 and Daikh and 

Zenkour, 2020), power series solution method (Shariyat and Alipour, 2013 and Alipour, 

2016), and Ritz method (Aydogdu, 2005 and Nguyen et al., 2017) are available in the 

literature in which solutions for different boundary condition are obtained analytically. 
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Khdeir and Reddy (1989, 1999) presented the free vibration and the forced-vibration 

responses of laminated composite plates using the state-space approach. A levy-type 

boundary condition is assumed in one direction and the assumed solutions for the 

primary variables reduce the system of PDEs to a system of higher-order ODEs in the 

other direction. Then the ODEs are further converted to a system of 1st order ODEs 

using the state-space approach and then solved to get the responses. There are many 

popular numerical approaches adopted in the literature for solving the governing 

equations of beams, plates, and shell structures. The main principle of any numerical 

approach is to reduce the governing PDEs and ODEs to a system of algebraic equations 

by making some approximations. This reduction helps to replace a continuous 

differential equation having a solution space that is infinite-dimensional with a finite 

system of algebraic equations whose solution space is now finite-dimensional. To begin 

with, the very popular and commonly used method in almost all disciplines of science 

and engineering, the finite element method (FEM). In the FEM, the field variables are 

assumed over an element as a linear combination of the polynomial shape functions and 

the nodal coordinates. The strong form of the governing equations is converted to an 

equivalent weak form and the assumed solutions are plugged in the weak form to get the 

elemental level equations. The elemental equations are then assembled to get the global 

discretized equations of the problem and then solved for the primary variables. Research 

works on structural analysis of homogeneous and non-homogeneous structures are 

available in Talha and Singh (2010), Bhar et al. (2010), Natarajan et al. (2012a, 2014), 

and Sarangi et al. (2014). The Extended Finite Element Method (XFEM) is another 

numerical method based on the FEM and it is especially used to treat crack 

discontinuities. The background of XFEM is the partition of the unity concept. By 

taking the advantage of the partition of unity concept, the FE approximation space is 
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enriched with some enrichment functions and extra degrees of freedom in the nodes 

near the cracks. Natarajan et al. (2011), Nguyen-Vinh (2012), and Nasirmanesh and 

Mohammadi (2015) employed the XFEM to predict the dynamic responses and 

buckling of cracked composite and FG plates. The Isogeometric analysis (IGA), a 

modern approach in FEM, is also extensively used in many engineering problems where 

the geometry of the structure is complex. The approximation error in the mesh reduces 

significantly when IGA is employed in comparison to the conventional FEM as the 

geometry of the problem is accurately defined in IGA. Other than that, the problem with 

strong singularities and discontinuities can also be handled with IGA. The Non-Uniform 

Rational B-Splines (NURBS) are used in IGA as the basis functions for describing both 

geometry and the field variables like the isoparametric concept is FEM. NURBS are 

mainly used in computer graphics for representing complex 3 D geometry with arc, 

circle or curves, etc. Natarajan et al. (2012b), Thai et al. (2015), Phung-Van et al. 

(2017) and Gupta and Ghosh (2019) presented the static and dynamic analysis of FG 

plates, traditional laminated composites, and smart composite plates using IGA. The 

scaled boundary finite element method (SBFEM) is another numerical approach that is 

based on the FEM and boundary element method (BEM). In the conventional BEM, the 

boundaries of the domain are only discretized, thus the spatial dimension is reduced to 

one. This also leads to a reduction in the total number of degrees of freedom. In the 

SBFEM, the conventional coordinate system is transformed to a scaled boundary 

coordinate system in the radial and circumferential directions. The governing PDEs are 

reduced to a set of ODEs and the numerical solution is obtained in the circumferential 

direction using FEM or Meshless methods (He et al., 2012) while a smooth analytical 

solution is obtained in the radial direction. Song (2009) used the SBFEM for solving 

problems in structural dynamics. Further, Garg et al. (2020) extended the SBFEM for 
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the modeling of laminated composite plates with weakly bonded interfaces. The 

conventional FEM requires that the mesh is frequently refined as the crack propagates 

in a crack propagation problem along with a conforming mesh. This is a limitation that 

is posed by the FEM when crack propagation problems are studied. As discussed above, 

the enrichment technique such as the XFEM proves to be very useful because the 

method does not require conforming mesh and mesh adaptation when the 

discontinuities, i.e, crack propagates. However, the enrichment functions near the cracks 

should be known a priori. In this regard, Natarajan and Song (2013) combined XFEM 

with the SBFEM to circumvent the need to know a priori the enrichment functions. 

Natarajan et al. (2014c) used the SBFEM in polygonal elements to model the crack 

propagation problems. Further, Li et al. (2013) employed the SBFEM for modeling 

fracture problems in piezoelectric materials. Recently, Natarajan et al. (2015) combined 

the IGA and SBFEM for studying fracture mechanics problems. Ray (2019) carried out 

the static analysis of smart composite plates using a Hybrid-Trefftz FEM. In the Trefftz 

method, some functions are derived known as the Trefftz function which satisfies the 

governing PDEs of the element. The final solution is the sum of the linear combination 

of the Trefftz function and the particular solution of the governing equations. Further, 

Ray and Dwibedi (2020) employed the Hybrid-Trefftz FEM for deriving the static 

responses of antisymmetric and angle-ply laminated composite plates. The Differential 

Quadrature Method (DQM) is employed by Alibeigloo and Liew (2015), Brischetto et 

al. (2016), Liu et al. (2016), and Sharma and Parashar (2016) for the modeling of smart 

structures, laminated composites, FG, and CNT-reinforced plate structures. Like any 

other numerical approach, the governing differential equations are transformed to a set 

of algebraic equations in terms of the discrete values of the field variables in DQM. 

This is achieved by expressing the derivatives of the primary variables at each grid 
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point in a particular direction as the weighted linear sum of the values of the primary 

variables at all the discrete points in the same direction. The Discrete Singular 

Convolution (DSC) approach is employed by Civalek (2007, 2017) for the free 

vibration analysis of laminated composites and FG plates and shells. The method is 

somewhat identical to the DQM, and in DSC also, the derivatives of the primary 

variables at a grid point are approximated by a linear sum of the discrete values of the 

primary variables and approximation kernels in a narrow bandwidth.  

1.5. Motivation and Literature Gap 

       Based on the literature survey, it is perceived that the ESL-based plate models are 

widely used to derive the structural responses of laminated composites and sandwich 

structures. ESL models are computationally easy to implement, however, the models 

cannot satisfy the piecewise continuous displacement requirements. Further, the 

transverse strain/stress fields are also not accurately represented. The LW and ZZ 

approaches are observed to eradicate the drawbacks of the ESL models. In the LW 

models, the number of primary variables dramatically increases with the increase in the 

number of layers, making it computationally very expensive. In the ZZ models, the 

displacement fields are developed by combining a global FSDT or HSDTs with a local 

ZZ function. The stress continuity conditions are then imposed at the interfaces of the 

plates which generate some relations between the local and global variables. As a result, 

the number of primary variables does not increase with the increase in the number of 

layers of the plates. In most of the ZZ models, the global HSDTs are of a polynomial 

type, and the application of non-polynomial HSDTs in the ZZ models is very rare in the 

literature. In the non-polynomial HSDTs, a single non-polynomial function is 

incorporated to model the non-linear variations of the transverse shear strains, resulting 

in a decrease in computational costs. Also, the ESL-based non-polynomial HSDTs have 
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shown better performance over the polynomial HSDTs by predicting more accurate 

structural responses of the composite structures. The non-polynomial HSDTs when used 

in the framework of the ZZ approach can produce more accurate responses at the cost of 

moderate computational efforts. 

Sahoo and Singh (2014) developed a non-polynomial ZZ model with a secant function 

for modeling the static responses of laminated composites and sandwich plates in the 

framework of the finite element method (FEM). The FEM has been firmly established 

in the literature as the most popular method for solving a variety of problems. However, 

the solutions are not free from numerical error as FEM is an approximate method. To 

produce responses that are free from numerical error, closed-form analytical solutions 

are required to be obtained for laminated composites and sandwich plates with the non-

polynomial ZZ model in Sahoo and Singh (2014). These solutions would serve as 

benchmark results for verifying the accuracy of the solutions obtained with other 

numerical methods in the framework of the proposed non-polynomial ZZ model.  

Smart composite structures are widely used in aerospace, mechanical and civil 

industries because the smart composites when coupled with a control strategy develop 

self-monitoring and self-controlling capabilities. The deflection, stresses and vibrations 

of the structures can be controlled by integrating traditional composite plates with 

piezoelectric materials. Similar to the laminated composite plate structures, the smart 

composite plates with piezoelectric materials are also multilayered structures. 

Therefore, it is essential to model the behavior of smart composites in the framework of 

the ZZ approach for producing efficient responses for both thick and thin systems. 

There are very few studies in the literature where the static responses of smart 

composite plates are modeled in the framework of ZZ kinematics. The efficiency of the 

newly developed non-polynomial ZZ theory of Sahoo and Singh (2014) is not yet 
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utilized in the literature for modeling the coupled electro-mechanical responses of 

laminated composite plates with piezoelectric materials.  

In the ESL models, the through-thickness variations of transverse shear stresses produce 

discontinuous stress values at the interfaces, and the variations disagree with the 3 D 

variations of the transverse shear stresses. The reason behind this is that the ESL models 

assume global functions of thickness coordinate for the entire thickness of the laminated 

composite plates in the kinematic expansions. The constitutive relations are used to 

predict the transverse shear stresses which produce discontinuous transverse stresses in 

the case of multi-layered composite structures. In most of the studies, it is observed that 

the transverse stresses are obtained using constitutive relations (CR) which cannot 

produce efficient results of transverse shear stresses. The equilibrium equations (EE) of 

elasticity can be used as supplementary equations along with the constitutive relations 

of the in-plane stresses to refine the results of the transverse shear stresses. The 

transverse shear stresses can be represented with first-order ordinary differential 

equations (ODEs). The ODEs are solved as a one-point boundary value problem (BVP) 

by using the traction-free conditions of transverse shear stresses at the top or bottom 

surfaces of the plates. The results obtained with this scheme are observed to be reliable 

and much better than the constitutive equations. Very few studies are available in the 

literature which employ the EE to derive the through-thickness variations of the 

transverse shear stresses. The results of transverse shear stresses for the laminated 

composite plates presented in Sahoo and Singh (2014) are obtained with the CR. 

Therefore, the accuracy of the stresses can be enhanced by using the EE. 

It is observed in the exact solutions of Mallik and Ray (2004) that the variations of the 

transverse shear stresses of a smart composite plate with piezoelectric actuators are 

different from the traditional laminated composite plates under the action of combined 
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electromechanical load. Some studies have reported the variations using the constitutive 

rule-based approach however the variations disagree with the exact solutions of Mallik 

and Ray (2004). It is evident from the studies that the use of constitutive rule produces 

the results of transverse stresses with significant error in the case of smart systems. It is 

therefore essential to employ the EE to enhance the accuracy of the results for the case 

of smart composite plates.  

In the literature, the dynamic analysis of traditional laminated composite plates has not 

been carried out in detail using the non-polynomial ZZ theories, especially the transient 

responses under the action of time-dependent mechanical loads. The forced vibration 

responses of the laminated composite plates are essential to be obtained as the various 

structural components in the aerospace and mechanical industries are frequently 

exposed to time-dependent loads like gust, sonic boom pulses, etc.  The laminated 

composite beams, plates, and shells are major structural components in engineering 

applications like supersonic flight vehicles, automobiles, space-station structures, and 

offshore structures, to name a few. The displacement-time responses under the action of 

mechanical loads give an idea of the amplitude of the dynamic responses experienced 

by the structures. Also, the free-vibration responses in the form of natural frequencies 

give information on the resonance condition of the structures. The forced vibration 

responses of laminated composite plates under the action of various blast loads 

generated from fuel and nuclear explosions and sonic boom pulses have also not been 

dealt with extensively. These loadings can create structural damage due to excessive 

mechanical vibrations unless efficient vibration characteristic research is carried out in 

the design stage.  

The dynamic analysis of smart composite plates with piezoelectric actuators and sensors 

is necessary to understand the dynamic controlling capacity of the piezoelectric patch. 
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The dynamic response under the action of time-dependent electromechanical excitations 

is essential to determine the controlled vibrational amplitudes of the smart composite 

plates.  A detailed investigation on the dynamic control is highly essential to understand 

the factors on which the electrical loads are dependent like the span-thickness ratio and 

aspect ratio of the smart composites, the magnitude of mechanical excitations, and 

thickness of the PFRC patch. There are very limited works in the literature in which a 

parametric study on the vibration control of the piezoelectric patches is carried out in 

the framework of non-polynomial ZZ theories. The Active Control of smart composite 

plate structures is also essential for developing the self-controlling capacities of the 

structures. In the Active Control, the electrical loads are not applied externally as an 

input and are obtained from the charges due to the mechanical strains in the sensor. The 

actuator and the sensor are coupled with a controller by which the electric voltages are 

fed back to the actuator. The vibrations get suppressed due to the electrical loads and a 

self-controlling capacity is generated.  

Analysis of plate structures resting on an elastic foundation is very crucial in structural 

engineering applications. Concrete slabs (plates) supported by elastic soil is a very 

common construction form. It is widely used in residential buildings, institutional 

structures and commercial buildings, etc. In some of the structures, very heavy slab load 

occurs like libraries, warehouses and grain storage buildings. The efficient design of 

mat foundations, swimming pools and storage tanks require the analysis of elastic plates 

supported by the soil medium. It is essential to find out the structural displacements 

under a given set of loads and to ensure that the induced stresses are within acceptable 

limits for a safe and economical design. In the analysis of plates supported by elastic 

medium, the behavior of the plates under the action of external loads is influenced by 

the elastic medium and the behavior of the elastic medium is, in turn, influenced by the 
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action of the plate under the external load. It is observed in the literature that there are 

very limited works which reports the static and dynamic analysis of plate structures 

resting on elastic foundation in the framework of a non-polynomial ZZ theory.  

1.6. Objective and Scopes of the Present Work 

       In view of the observations made in the previous section, the following major 

scopes are identified that defines the overall objective of the present work. 

Objective 

To develop an efficient Analytical and Finite Element (FE) model for the static and 

dynamic analysis of smart composite plates supported on elastic foundation in the 

framework of non-polynomial Zigzag theory.  

Scopes 

1. Deriving analytical solutions for the structural responses (static, free vibration 

and transient) of laminated composite plates and smart composite plates under 

electromechanical loads. 

2. To enhance the accuracy of the transverse shear stresses of traditional laminated 

composite plates and smart composite plates using a post-processing approach. 

3. To develop a generalized FE formulation for the structural analysis of smart 

composite plates. 

4. To investigate the dynamic behavior of multilayered composite plates under the 

action of various forms of blast loadings. 

5. To derive the controlling capacity of the piezoelectric materials by evaluating 

the counteracting electrical loads that eradicates the unwanted mechanical 

vibrations from the system. 

6. To study the Active Control of smart composite plates coupled with a feedback 

controller for the suppressed vibration responses of the plates. 
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7. To develop an efficient analytical model for the structural analysis of laminated 

composite and sandwich plates resting on an elastic foundation using non-

polynomial ZZ theory.  

8. To extend the analytical model for the structural analysis of smart composite 

plates resting on an elastic foundation using non-polynomial ZZ theory. 

1.7. Organization of the thesis 

       The complete work presented in the thesis has been organized into five chapters.                         

Chapter 1 contains a brief introduction to the traditional laminated composites, 

sandwich construction, smart materials and the applications of laminated composites 

and smart composite structures. It also contains a detailed discussion on the modeling of 

plate structures using plate theories, development of the plate theories and the 

underlying assumptions, various approaches used to extend the single-layered plate 

theories for multi-layered plate structures, literature review on the modeling of 

laminated composites, and smart composite plates using 3 D elasticity approach, 2 D 

plate models and the various solution techniques used for solving the governing 

equations. Chapter 2 is devoted to the detailed mathematical formulations of the 

problem. The fundamentals of traditional laminated composites and smart composites 

are discussed in this chapter. This chapter contains two major sections: the first section 

contains the analytical formulation and the closed-form solution scheme used to solve 

the governing equations. The second section is devoted to the finite element (FE) 

formulation and solution of the problem. Chapter 3 presents the discussions on the 

results obtained from the developed mathematical formulations for the static, free 

vibration, and transient analysis of traditional laminated composites and smart 

composite plate structures, validation of the solutions, and new results. This chapter 

contains seven major sections: the first section contains the static analysis of traditional 
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laminated composites and sandwich plates, the second section is devoted to the static 

analysis of smart composite plates with piezoelectric actuators and sensors, the third 

section contains the dynamic analysis (free and forced vibration) of laminated 

composites and sandwich plates, the fourth section presents the dynamic analysis of 

smart composite plates, the fifth section contains the static responses of traditional 

laminated composites and sandwich structures supported on the elastic foundation, the 

sixth section contains the dynamic responses of traditional laminated composites 

supported by an elastic medium, the seventh section deals with the coupled static 

responses of smart composite plates supported by an elastic medium subjected to 

electromechanical loads and the eighth section contains the dynamic responses of smart 

composite plates supported by an elastic medium. In Chapter 4, important findings have 

been summarized, major contributions of the present research are stated and the 

recommendations for the future scope of the work are identified. 
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