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Abstract 

 
The present study deals with the development of new analytical and finite element 

models for the modeling and analysis of traditional multi-layered laminated composites 

and smart composite plate structures supported by elastic foundations. Layers of 

piezoelectric materials are stacked on the laminated composite plates along the 

thickness direction for sensing and actuation of the responses of the smart structures. 

The plate deformations are modeled with an inter-laminar transverse shear stress 

continuous plate theory. The plate theory consists of a global non-polynomial shear 

deformation field and a local segmented zigzag field with changes in slopes of 

displacement components at each interface of the plates. The non-polynomial shear 

deformation field is a refinement of the classical plate theory that incorporates a 

trigonometric shear strain function to accurately model the non-linear variation of the 

transverse shear strains across the thickness of the plates. The zigzag field consists of 

piecewise linear mathematical functions that are defined for each layer. Additionally, 

some auxiliary variables are also defined at the interfaces between adjacent layers of 

different material properties to incorporate the slope discontinuities of the displacement 

components. The number of field variables of the present plate model is equal to that of 

the global non-polynomial shear deformation theory as the auxiliary variables can be 

expressed in terms of the field variables with the help of inter-laminar continuity 

conditions of transverse shear stresses at all the interfaces of the plates. The deformation 

of the elastic foundations is modeled with Pasternak’s foundation model, which takes 

into account the proportional interaction between the load intensity and deflection of 

any point on the surface of the elastic foundation and also accommodates the continuity 

of the adjacent displacements by considering shear interactions among the points on the 

elastic foundation. The governing equations of motion and the boundary conditions of 

the problem are derived using Hamilton’s principle and variational calculus. Two 

solution methods namely, generalized closed-form analytical solutions of Navier-type 

and numerical solutions in the framework of finite element method are adopted for 

solving the governing set of equations. The solution involves a spatial solution and a 

temporal solution of the primary variables. The spatial solutions of the primary 

variables in the analytical and finite element method reduce the governing partial 

differential equations to ordinary differential equations in time. The temporal solutions 

of the ordinary differential equations are further obtained with Newmark’s constant 

average acceleration method.  A detailed investigation of the static and dynamic 

responses of both traditional laminated composite plates and smart composite plates is 

carried out by considering different geometrical and material features of the plate 

structure. The uncontrolled and controlled static responses in the form of deflection and 

stresses are derived under the action of purely mechanical and electromechanical loads. 

The free vibration response in the form of natural frequencies and forced vibration 

response in the form of displacement-time responses under the action of several forms 

of time-dependent mechanical and electromechanical excitations are obtained. The 

vibration control of the smart composite plates is also carried out by coupling the 

laminated composite plate and the piezoelectric materials with a feedback controller. 



Additionally, the effects of the elastic foundations on the static and dynamic responses 

of traditional laminated composites and smart composites are also investigated in detail. 

It is concluded from the results that both analytical and finite element solutions are 

capable of accurately predicting the responses of laminated composite plates and smart 

composite supported on elastic foundations.  

Keywords: Trigonometric zigzag theory; Analytical; Finite Element method; Laminated 

composites; Sandwich structure; Smart Composites; Elastic foundations; Static; Free vibration; 

Transient analysis; Navier’s solution; Newmark’s time integration. 
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