


Chapter 6

An energy efficient smart metering

system using Edge computing in

LoRa network

6.1 Introduction

IoT is envisioned to improve the quality and experience of human living [84,85]. As one

of the potential applications of IoT [86,87], smart metering enables remote monitoring

of energy consumption, which is essential for both the consumers (end users) and the

operator (electricity utility or supplier). The amount of energy used by an appliance in

the house can be represented as Energy Time Series (ETS). An ETS consists of a large

number of smart meter readings. As a consumer usually has multiple appliances, they

generate Energy Multivariate time Series (EMS). Monitoring of EMS helps to identify

energy inefficient appliances, such as washing machine, air conditioner, grinder, or room

heater. It also induces energy-saving behaviour of EUs, load forecasting, electricity price

design, and promotions for reducing energy consumption [88–93]. Despite these advan-

tages, it is hard to communicate a large volume of EMS data from the consumers to the

operators. The communication of such EMS not only consumes considerable energy but
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also incurs significant communication delay and generates substantial network traffic.

A viable solution for smart metering is Edge computing, where the local processing

and storage are available close to the leaf devices (EUs) [94,95]. Due to local processing

of the tasks near to the users, Edge computing reduces communication delay and energy

consumption for transmitting the EMS data. The recent development of compression-

decompression techniques using deep learning in Edge Computing can help to reduce the

size of EMS at the Edge device near to the consumers [96–98]. Such compressed EMS

consumes low energy and requires smaller delay while transferring them from consumers

to the operators. Figure 6.1 illustrates an example scenario of smart metering where

Edge computing reduces the size of EMS of the appliances before communicating to

the operators.

The selection of communication protocols is another important factor for energy

consumption of Edge devices. While short-range communication protocols support low

coverage range and consumes low energy [21–24], long-range communication protocols

support a wide coverage with high transmission rates but at the cost of high power

consumption [3, 25]. Therefore, the selection of suitable communication protocols is

crucial to reduce the energy consumption of Edge devices. The LoRa, with its scal-

able star of stars network architecture and simple medium access mechanism, fulfills

the requirement of smart metering, i.e., long-range communication with low energy

consumption [5, 99].

In this chapter, we focus on the smart metering application of IoT, where a consumer

has different types of appliances generating EMS data. A large number of consumers

simultaneously transferring their EMS for energy consumption of appliances to the

operators, requires substantial time and energy. The objective of this chapter is to

successfully receive the EMS at the operator in a given time period with minimal energy

consumption. The energy efficient smart metering problem can be stated as: How to

efficiently transfer the EMS to the operator in a given time period with minimum energy
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Figure 6.1: Illustration of an example scenario of smart metering.

consumption?

To solve this problem, we present an Energy Efficient Smart Metering (EESM) sys-

tem that first compresses EMS data at the Edge device, transfers compressed EMS

using LoRa network, then decompresses it at the network server, and finally, the de-

compressed EMS is transferred to the operators. The high order compression indeed

reduces the energy consumption during data transmission, but increases energy con-

sumption of the compression process as well as the decompression error. Therefore,

while designing the EESM system, we need to address the following three challenges: i)

Ensure the data compression and decompression model provides the desired accuracy

suitable for Edge computing; ii) Compress the EMS in an appropriate size such that

the time duration for compressing and transmitting the EMS does not exceed the given

time period and the energy consumption is minimized; and iii) Assign the SFs to the

LNs in such a way that the energy consumption of all LNs is nearly equal.

6.1.1 Motivation of this work

The work proposed in this chapter is motivated by the following limitations as noted

in the existing literature.

• Data compression in smart metering: The authors in [89, 100–102] proposed

data compression techniques for smart metering. In [89], authors proposed a non-
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negative K-Single Value Decomposition (SVD)-based sparse coding technique for data

compression and pattern extraction of electricity consumption data. An adaptive data

reduction algorithm is proposed in [100] using compressive sampling technique such that

the bandwidth requirement for smart meter data transmission is reduced with minimum

loss of information. In [102], smart meter readings are compressed using burrow-wheeler

transform and entropy encoding. Lightweight data compression techniques using task

offloading for data compression Edge computing are proposed in [97, 98]. The time

complexity of the existing data compression techniques [89,100,101] is very high. They

require substantial processing power and energy, and hence are not suitable for Edge

devices. The work in [97,98] assumed a fixed compression ratio. However, considering a

system with a fixed compression ratio hampers efficient utilization of data transmission

resources.

•Data transfer in smart metering: For transferring EMS data to the operators, the

authors in [90–93] proposed techniques to aggregate energy readings of all appliances,

transfer the aggregated readings, and finally breakdown the EMS at the operators.

In [90] a TreeCNN model is developed for energy breakdown on low-frequency data.

Sparse coding based approach [93] has been proposed to breakdown EMS at an interval

of one hour. Since the work in [90] considers hourly and days smart meter readings

as input and therefore it breakdowns the EMS in days wise, which is not useful for

the near real time applications. The basic premise of [92] is that common design and

construction patterns for house creating a repeating structure in their energy data.

This assumption may not be practically true. Furthermore, the techniques proposed

in [90–93] transfer uncompressed EMS to the operators which consumes huge commu-

nication energy and delay in large size energy meter readings.

• Communication protocols in smart metering: The authors in [21] proposed a

ZigBee mesh network for smart metering applications with inherent redundancy, self-

configuring, and self-healing capabilities. Based on Bluetooth Low Energy (BLE), a
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house energy management system is proposed in [22] which can forecast energy con-

sumption conditions, such as predicting the house energy requirements at different times

of the day. In [23], wireless network is analyzed to support services similar to those

offered by wired LANs (e.g., Ethernet). Finally, long Term Evolution (LTE) network is

considered in [3, 25] for communicating the smart meter reading for high throughput,

low latency, and operation in plug and play mode. The long-range communication pro-

tocols [3,25] suffer from colossal power consumption, while short-range communication

protocols have limited coverage, and increased hardware and maintenance cost [21–23].

6.1.2 Major contributions

To the best of our knowledge, this is the first work to address the energy efficient smart

metering problem using LoRa computing. Our major contributions are as follows:

• Processing at Edge Device: We propose a deep learning based compression-

decompression model for reducing the size of EMS at the Edge device. Specially, we

use Long Short Term Memory (LSTM) for compression and decompression of EMS. We

present an analysis for estimating a relationship between the size of compressed EMS

and the required time and energy for compression.

• Compressing EMS: The EESM system formulates an optimization problem and

uses a Semi-smooth Newton method for finding the suitable compressed size of the

EMS, which provides an energy efficient smart metering. The system delay also satis-

fies the given time period for retrieving of the EMS at the operator. Different from the

existing work, we use first and second-order statistics in the proposed model to improve

its accuracy.

• Energy Efficient Communication of EMS: The EESM system uses LoRa network

that provides long-range communication with low energy consumption. We present an

algorithm for selecting the suitable SFs in LoRa network to communicate the com-

pressed EMS from the consumer to the operators. The algorithm uses a minimum heap
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(MinHeap) data structure to improve the time complexity.

• Simulation and Prototype Results: We validate the proposed EESM system us-

ing Network Simulator-3 [16] that simulates a large number of LoRaWAN scenarios.

We also build a prototype to demonstrate the impact of the compression model param-

eters, the network, the number of smart meters and appliances on the delay, energy

consumption, and accuracy.

The rest of the chapter is organized as follows. The next section describes the prelim-

inaries, while Section 6.3 analyzes the delay and energy consumption for compression

and communication of EMS data. Section 6.4 presents the EESM system, followed

by the experimental and prototype results in Sections 6.5 and 6.6, respectively. The

conclusions are offered in Section 6.7.

6.2 Preliminaries

This section defines the system model and terminology used in this chapter.

6.2.1 System model

The proposed energy efficient smart metering (EESM) system assumes each house is

equipped with various appliances connected with a smart meter. The smart meter

collects ETS of each appliance and then generates an EMS. Next, the Edge device

compresses the EMS by using LSTM and sends to the connected LN, as illustrated in

Figure 6.2.

The LoRa network consists of multiple LNs connected to a single LG. Let N =

{1, 2, · · · , N} denote the set of LNs, connected to the LG, which use the SF set F =

{7, 8, · · · , 12}. The orthogonality of SF facilitates LNs to simultaneously transfer the

data on different SFs. The LN further sends the compressed EMS to the LG using the

SF f ∈ F . In this work, we use layer-based Compression-Decompression model where

Q is the maximum number of layers of the model for EMS compression. Let Qn denotes
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the layer at which LN n compressed data and dQn is the compressed data size at layer

Qn. The data size vector dQ of N LNs is represented as:

dQ = [dQ1 , dQ2 , · · · , dQN
]. (6.1)

Let fn ∈ F denote the SF used by LN n to transmit dQn data to the LG. The SF vector

f for N LNs is given by

f =[f1, f2, · · · , fN ]. (6.2)
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Figure 6.2: An Energy Efficient Smart Metering system (EESM).

6.2.2 Definitions

Let A ∈ RY×Z denote an EMS of size Y × Z, where Y and Z are respectively the

number of time series generated by the connected Y appliances to an LN, and the total

number of events in each time series. Such events are generated in a fixed time interval

τ . The Y time series in A are denoted by A = A1,A2, · · · ,AY . The Energy Time

Series (ETS) Ai consists zero and non-zero smart meter readings when the appliance

i is OFF and ON, respectively, where 1 ≤ i ≤ Y . Figure 6.9 illustrates the ETSs of
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appliances.

Definition 6.1 (Energy Multivariate Time series, or EMS). A smart meter

reading corresponding to an ordered sequence of data points taken at a specific sampling

rate in real-time is called Energy Time Series (ETS). If the reading is generated through

multiple appliances, then it is called Energy Multivariate Time Series (EMS).

Definition 6.2 (Accuracy). The accuracy of the compression-decompression model

is defined as the ratio of correctly decompressed energy time series to the total energy

time series generated by the appliances. Let Yn denote the number of appliances con-

nected to an LN n generate energy time series. Then the accuracy of LN n is defined

as:

Accn =
1

Yn

Yn∑
i=1

1 (xi == x̄i) , (6.3)

where xi and x̄i denote a smart meter reading before and after decompression, respec-

tively, and the function 1(·) is given as

1(F ) =


1, if F is true,

0, otherwise.

(6.4)

6.2.3 Long Short Term Memory (LSTM) model

The LSTM is a deep learning model that learns long term dependencies in the input

sequence and extracts the temporal features. The input vector x to the LSTM is a

sequence of events, x = {x1, x2, · · · , xt}, such as meter readings of an appliance at

timestamp t. The principle mechanism of the LSTM model incorporates the gated

operations performed on a single LSTM unit consisting of four gates and a cell state.

The input gate, forget gate, output gate, and input modulation gate are denoted by

i, k, o, g, respectively; and let c denote the cell state. Let Wxj and Whj ∀j ∈ {i, k, o, g, c}



6.3. Delay and energy analysis in EESM 127

denote the weight matrices corresponding to the input vector x and previous output

state ht−1. The LSTM unit operation at time t is summarized as:

it = σ(Wxixt + Whiht−1 + bi), (6.5)

kt = σ(Wxkxt + Whkht−1 + bk), (6.6)

ot = σ(Wxoxt + Whoht−1 + bo), (6.7)

gt = tanh(Wxgxt + Whght−1 + bg), (6.8)

ct = kt ⊗ ct−1 + it ⊗ gt, (6.9)

ht = ot ⊗ tanh(ct), (6.10)

where σ(·) is the logistic sigmoid function defined as σ(a) = 1
1+e−a and the operator

⊗ denotes the element-wise product with the gate value. bj denotes the bias vector

corresponding to the jth component, ∀j ∈ {i, k, o, g, c}. Let L (·, ·, ·) denotes a function

that combines all the LSTM operation from Equation 6.5 to Equation 6.10. The update

of each LSTM cell with parameter φ is given by

ht = L (ht−1, xt, φ). (6.11)

6.3 Delay and energy analysis in EESM

In this section we first develop a deep learning based Compression-Decompression

model. Next, we present the parameters learning for compression and decompression

of EMS generated by appliances. Finally, we estimate the required energy and delay

for compressing and communicating the compressed EMS to the Lora gateway.

6.3.1 Compression-Decompression model

Figure 6.3 illustrates the proposed Compression-Decompression model, where the com-

pression maps a higher-dimensional point in the EMS to a lower-dimensional point.
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Figure 6.3: Illustration of Compression-Decompression model, where symbol ( ) de-
notes an LSTM cell.

The model uses LSTM, where at each layer the neuron reduces in a similar pattern.

For example, suppose the neurons at layer q− 1 is 128, then the neurons count reduces

to 64 at layer q and 32 at q + 1. On the contrary, the Decompression maps a lower-

dimensional point to the higher-dimension by arranging the layer in reverse order to

that of Compression.

6.3.1.1 Compression

We use LSTM model with Q layers as Compression (see Figure 6.3) for mapping input

sequences A ∈ RY×Z to a reduced-dimensional sequences A ′ ∈ RY×Z′ , where Z ′ ≤ Z.

The compression divides each time series Ai ∈ A into fixed d length windows, where

the number of windows z = dZ/de and 1 ≤ i ≤ Y . A jth window of Ai is denoted

by Aji , where 1 ≤ j ≤ z. The input A can be represented as the set of windows

{{A1
1, · · · , Az1}, {A1

2, · · · , Az2}, · · · , {A1
Y , · · · , AzY }}. The kth event of Aji window is de-

noted by A
(j,k)
i , where 1 ≤ k ≤ d. The window Aji and its length at qth layer of Q layers

Compression model are respectively denoted by Aj(i,q) and dq, where 1 ≤ q ≤ Q, the
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input layer Aj(i,1)=A
j
i , and d1 = d. The index terms {i, j, k, q} represent the time series,

window, event, and layer of the Compression model, respectively. Similarly, the event

A
(j,k)
i at layer q is denoted by A

(j,k)
(i,q) as shown in Figure 6.3. To compress A to A ′,

we reduce the length of windows with layers of the Compression model, i.e., dq′ < dq

and 1 ≤ {q < q′} ≤ Q. The compression uses the following mathematical expression to

generate the events of window Aj(i,q) at LSTM layer q.

Aj(i,q) = Fe(Wiq−1 �A(i,q−1) + U j−1
iq hj−1

(i,q) + biq−1), (6.12)

where Fe(.) denotes the activation function and � the dot product. Wiq−1 ∈ Rdq×pq−1

and U j−1
iq are used to denote the weight metric for input of all windows i.e., A(i,q−1) and

previous window output state i.e., hj−1
(i,q), respectively, and biq−1 ∈ Rdq denotes the bias.

The output of the last layer (i.e., Qth layer) of compression is the compressed events A

given by,

A ′ = {{A1
(1,Q), · · · , Az(1,Q)}, · · · , {A1

(Y,Q), · · · , Az(Y,Q)}},

where,

Aj(i,Q) = Fe(WiQ−1 �A(i,Q−1) + U j−1
iQ hj−1

(i,Q) + biQ−1),

= Fe(WiQ−1 � · · · � fe(Wi1 � Aj(i,1) + U j−1
i2 hj−1

(i,2) + bi1) + U j−1
iQ hj−1

(i,Q) + biQ−1),

= {A(j,1)
(i,Q), A

(j,2)
(i,Q), · · · , A

(j,dQ)

(i,Q) }. (6.13)

6.3.1.2 Decompression

The Decompression gradually transfers A ′ to produce an estimate Ā ∈ RY×Z . Fig-

ure 6.3 illustrates the block diagram of the proposed Decompression model. It uses

LSTM on each compressed window Aj(i,Q) which captures a wide range of temporal
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dependencies among the events of the window. To initialize the decompression, we

assume its initial state h1
1 = h1

2 = · · · = h1
Y = 0. Next, the decompression uses the

fully-connected Q layers to map to each window from RdQ back to Rd. Similar to com-

pression, the events window Aj(i,q) is produced at layer q by the following expression.

Aj(i,q) = Fd(W
′
iq−1 �A(i,q−1) + U ′

j−1
iq hj−1

(i,q) + b′iq−1), (6.14)

where Fd(.) denotes the activation function, � the dot product. W′
iq−1 ∈ Rdq×dq−1 and

U ′j−1
iq are used to denote the weight metric for input of all windows i.e., A(i,q−1) and

previous window output state i.e., hj−1
(i,q), respectively, and the bias b′iq−1 ∈ Rdq , where

Q + 1 ≤ q ≤ 2Q. The output of the last layer of decompression (2Qth layer) is the

events A ′, i.e.,

Ā ={{A1
(1,2Q), · · · , Az(1,2Q)}, · · · , {A1

(Y,2Q), · · · , Az(Y,2Q)}},

where,

Aj(i,2Q) ={A(j,1)
(i,2Q), A

(j,2)
(i,2Q), · · · , A

(j,d2Q)

(i,2Q) }. (6.15)

6.3.1.3 Compression-Decompression parameters learning

The compression and decompression are non-linear mapping of A → A ′ and A ′ → Ā ,

respectively. By using Equations 6.11, 6.13 and 6.15, the compressed of a window Aj(i,1)

at layer Q and decompressed of a window Aj(i,Q) at layer 2Q are updated as given by

Aj(i,Q) = Le(A
j
(i,1), h

j−1
i,1 , χ), (6.16)

Aj(i,2Q) = Ld(A
j
(i,Q), h

j−1
i,Q , χ

′), (6.17)

where χ = {W,U,b} and χ′ = {W′,U′,b′} are the weight and bias parameters of
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compression and decompression, respectively. Using L2-norm, the mean discrepancy

error of the Compression-Decompression model of Ai ∈ A time series is given by

Errx̄(Ai) =
1

zd

z∑
j=1

d∑
k=1

∥∥∥A(j,k)
(i,2Q) − A

(j,k)
(i,1)

∥∥∥2

2
. (6.18)

The mean error of the model is first-order statistics, a simplistic way to compare two

time series [103]. Next, we consider second-order statistics, i.e., variance information of

A and Ā for computing the variance discrepancy error. Similar to Equation 6.18, the

variance discrepancy error of the Compression-Decompression model of Ai ∈ A time

series is given by

Vj(A(i,1)) =
1

d− 1

d∑
k=1

∥∥∥∥∥A(j,k)
(i,1) −

1

d

d∑
k=1

A
(j,k)
(i,1)

∥∥∥∥∥
2

2

,

Vj(A(i,2Q)) =
1

d− 1

d∑
k=1

∥∥∥∥∥A(j,k)
(i,2Q) −

1

d

d∑
k=1

A
(j,k)
(i,2Q)

∥∥∥∥∥
2

2

,

Errv(Ai) =
1

z

z∑
j=1

∥∥Vj(A(i,1))− Vj(A(i,2Q))
∥∥2

2
.

The objective function of the Compression-Decompression model can be expressed

as the minimization of the sum of loss and regularization terms, and is given as

L =
1

Y

Y∑
i=1

(Errx̄(Ai) + ΥErrv(Ai)),

I? = arg min
I={W,W′,U,U ′}

L. (6.19)

By solving Equation 6.19, the Compression-Decompression model learns the weight

matrices (W,W′, U, U ′) and the corresponding bias vectors (b,b′). The learned weight
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matrices and bias vectors minimize the loss or discrepancy between the actual data

and decompressed data. In other words, the minimization of loss reciprocates to the

maximization of accuracy. Thus, we can infer that the reduction in the discrepancy

between the actual value and decompressed value results in accuracy improvement. The

accuracy of the Compression-Decompression model can be written as

Acc = 1− L = 1− 1

Y

Y∑
i=1

(Errx̄(Ai) + ΥErrv(Ai)). (6.20)

Using Equation 6.20, we can compute the accuracy Accn of generated Yn time series of

LN n as defined in Definition 2.

Example 1: Let an EESM system consist of an LN connected to two appliances. The

example EMS of the appliances is A ∈ R2×10={{0,0,0,0,4,2,2,4,0,0,0,0},{0,0,2,3,7,8,3,9,7,3}},

where zero and non-zero values show that the appliances are OFF and ON, respec-

tively. Using the compression model, the compressed EMS is A ′ ∈ R2×4 and the de-

compressed EMS is Ā ∈ R2×10={{0,0,0,0,4,3,2,4,0,0,0,0},{{0,0,2,3,7,8,3,9,7,3}}. This

example shows that the EESM system compressed 20 smart meter readings to 8 and

therefore it needs 60% less communication energy and delay. It also shows that Ā has

one smart meter reading error.

6.3.2 Estimation of delay and energy consumption

Our Compression-Decompression model is trained on a high-end machine only once

to obtain an optimal configuration of weights and biases. During testing, each LN

attached with the smart meter collects and compresses the EMS by using the proposed

Compression model and communicates to the LG. The LG in turn forwards it to the

wireless base station where the compressed EMS is decompressed for future processing.

The EESM system incorporates the compression and communication delay for the EMS.
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The energy consumption of the EESM system is computed as the sum of the energy

consumed due to the compression and communication of EMS.

6.3.2.1 Compression

The following lemma estimates the compression delay and energy consumption at LN

n connected with the smart meter.

Lemma 6.1 Given a LoRa network with Qn layers of an LN n, where dq is the length

of the window at layer q. Let A ∈ RYn×Z be an Energy Multivariate Time Series of

length Z with Yn dimensions, generated by appliances with a sampling rate of κn. Then

the predicted delay for compressing the data is given by

T compn =
Yn∑
i=1

Qn−1∑
q=1

κinτ lq+1(2dq + η)

l
. (6.21)

Let Ec be the energy consumption per floating point operation, then the total energy

consumption for compression is given by

Ecomp
n =

Yn∑
i=1

Qn−1∑
q=1

κinτ lq+1(2dq + η)

l
Ec. (6.22)

Proof: To estimate the runtime, we count the required FLOating Point operations

(FLOPs). Equation 6.21 shows that an event window of length l requires dq × (2dq−1)

FLOPs between layers q − 1 and q for dot products and addition of bias. The total

required FLOPs per window for Qn layers compression is given by
∑Qn−1

q=1 2dqdq+1.

Such compression also uses
∑Qn−1

q=1 dq+1 activation functions per window, requiring∑Qn−1
q=1 dq+1η FLOPs, where η is the distinct operation in the activation function. The

total runtime of compression per window is
∑Qn−1

q=1 2dqlq+1+
∑Qn−1

q=1 lq+1η=
∑Qn−1

q=1 lq+1(2dq+

η). The ith ETS of an LN n with κin sampling rate consists of κinτ/l windows during τ

time duration, where 1 ≤ i ≤ Yn. The total FLOPs for A is the sum of the required
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FLOPs for all Yn time series and given in Equation 6.21. Next, the total energy con-

sumption for compression of A → A ′ is the product of compression time and energy

per FLOP operation i.e., T compn × Ec and given in Equation 6.22. �

6.3.2.2 Communication

After successful compression of the data stored at the LNs, the compressed data is

further transferred to the LG. The time required for transmission of data from an LN

n to the LG is known as communication time, denoted as T commn . It depends on the

SF onto which the LN transfers the data to the LG. Let an LN n ∈ N use SF fn and

bandwidth W for transmitting data to the LG with coding rate c. The transmission

rate from LN n to LG can be obtained from [45], which is given as

rfn = W × fn
2fn
× 4

4 + c
. (6.23)

Now, let Eo denotes the energy consumed per unit data for communication in the

EESM system. The communication delay and energy consumption for transmitting the

compressed dQn data of LN n are given by

T commn =
dQn

rfn
, (6.24)

Ecomm
n =

dQn

rfn
Eo. (6.25)

After compressing data, the LNs try to transmit data at the LG on the selected SF.

Data is transmitted immediately if the selected SF is free; otherwise the LN has to

wait for getting its turn. Let LN n select SF fn for transmitting data at the LG. Then

in the worst case, LN n has to wait Twaitn =
∑N

i=1,
fn==fi

T commi time for getting its turn.

Twaitn = 0 for LN n, if selected SF fn is free. Therefore the total delay of LN n is the
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sum of compression, waiting, and communication delay, given as

Tn = T compn + Twaitn + T commn . (6.26)

Similarly, the energy consumption of LN n is the sum of the energy consumption during

compression and communication which are functions of the data size dQn and SF fn.

It is calculated from Equations 6.22 and 6.25. That is,

ξn = Ecomp
n + Ecomm

n . (6.27)

6.4 Energy Efficient Smart Metering System

The objective of the EESM system is to minimize the energy consumption for success-

fully transferring the data of appliances to the electricity operator using LNs and LG

within the given time delay. In this section, we formulate an optimization problem for

the EESM system and solve it using Semi-smooth Newton method.

6.4.1 Problem formulation

Let LN n ∈ N uses SF fn for transmitting the compressed dQn data to the LG, where

1 ≤ n ≤ N , 1 ≤ Qn ≤ Q, and fn ∈ F . Let us define
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EESM Problem:

min
dQ,f

N∑
n=1

ξn, (6.28a)

s.t. C1 : ξn ≤ Eth
1 , (6.28b)

C2 : ||ξn − ξj|| ≤ Eth
2 , (6.28c)

C3 : Accn ≥ Ath, (6.28d)

C4 : dminn ≤ dQn ≤ d1, (6.28e)

C5 : Tn ≤ Dthn , (6.28f)

where ξn can be obtained from Equation 6.27, ∀n ∈ N , j ∈ N /n, and {fn, fj} ∈ F .

Constants: The input to the EESM Problem includes the set of LNs (N ), their

connected appliances sampling rate (κin for ith appliance of nth LN), and maximum

time Dthn within which an LN n transmits compressed data to the LG.

Variables: The energy consumption ξn of an LN n comprises Ecomp
n and Ecomm

n which

depends on the datasize dQn and SF fn. Therefore, the total energy in the LoRa network

depends on vector dQ = {dQ1 , dQ2 , · · · , dQN
} and SF vector f = {f1, f2, · · · , fN} of all

LNs.

Objective function: The objective function of EESM Problem, denoted as
∑N

n=1 ξn,

is the total energy consumed by the LoRa network of N LNs for transmitting the com-

pressed data dQ on SF f to the LG.

Constraints: Constraint C1 indicates that the energy consumed by any LN does not

exceed a threshold Eth
1 . Constraint C2 tries to equalize the energy level of all LNs, thus

increasing the lifetime of the entire network. The thresholds Eth
1 and Eth

2 are determined

experimentally. Constraint C3 ensures that the Compression-Decompression model

maintains the accuracy of LoRa network greater than a threshold. Constraint C4 tries

to compute minimum energy consumption among the reduced data size within the range
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of dminn and d1. Constraint C5 ensures that each LN scheduled on an SF transmits its

data within a specified deadline.

6.4.2 Solution to the EESM problem

The solution mechanism of the EESM Problem involves two steps. Step 1 aims to

find out the optimal data size vector for a fixed SF of N LNs by using the Semi-

Smooth Newton method. In Step 2, we repeat Step 1 for all SFs to find out the optimal

set of SFs i.e., f = {f1, f2, · · · , fN} to transmit data to the LG of optimal size, i.e.,

dQ = {dQ1 , dQ2 , · · · , dQN
}.

6.4.2.1 Step 1: Solve the EESM problem for fixed SFs

We convert the problem into a Quadratic Programming Problem (QPP) [104], define

the Karush Kuhn Tucker (KKT) conditions, and use Semi-Smooth Newton method for

searching the optimal value of dQ = {dQ1 , dQ2 , · · · , dQN
} for fixed SFs.

• Convert EESM problem into QPP: For this purpose, we convert the problem in

Equation 6.28 into QPP. In the worst case, the event is generated at the end of the

event window; then the length l at layer q + 1 is the same as dq+1, i.e., lq+1 = dq+1.

The energy consumption of LN n for every time series data is given as follows.

ξn =

Qn−1∑
q=1

dq+1(a1dq + a2) + a3dQn , (6.29)

where a1 = 2YnκnτEc

l
, a2 = ηYnκnτEc

l
, and a3 = Eo

rfn
. Qn is the number of layers needed for

compressing dQn data of LN n. Assume that the data on each layer of the compression

is x% more than the data on that layer after compression. In other words, the data

at layer q is x % more from the data at layer q + 1, i.e., dq = dQn(x′)Qn−q, where

x′ = (1 + x
100

) and 1 ≤ q ≤ Qn. So, Equation 6.29 can be rewritten as
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ξn =a1d
2
Qn

(x′ + x′
3

+ · · ·+ x′
(2Q−3)

) + a2dQn(1 + x′ + · · ·+ x′
(Q−2)

) + a3dQn ,

= a1
1− (x′2)2Q−3

1− x′2︸ ︷︷ ︸
un

d2
Qn

+

(
a2

1− (x′)Q−2

1− x′ + a3

)
︸ ︷︷ ︸

vn

dQn . (6.30)

• KKT Conditions for the EESM Problem: The objective function of the prob-

lem (Equation 6.28) is a convex optimization problem with inequality and equality

constraints. We use the KKT condition to solve the EESM Problem, where the in-

equality constraints are converted into equality constraints by adding slack variables,

i.e.,

ξn = Eth
1 − γ1n, ∀n ∈ N , fn ∈ F , (6.31)

||ξn − ξj|| = Eth
2 − γ2n, ∀{n, j} ∈ N , {fn, fj} ∈ F , n 6= j, (6.32)

Accn = Ath + γ3n, ∀n ∈ N , (6.33)

dQn = dminn + γ4n, ∀n ∈ N , (6.34)

dQn = d1 − γ5n, ∀n ∈ N , (6.35)

where {γin}5
i=1 are slack variables, ∀n ∈ N . Let {Ai}5

i=1 and {bi}5
i=1 are N × 5 and

N × 1 real valued matrix, respectively, u and v ∈ Rn. Thus, the EESM Problem is

min uTd2
Q + vTdQ

s.t. AdQ = B, (6.36)
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where u = {u1, u2, · · · , uN},v = {v1, v2, · · · , vN}.Assuming Acc = {Acc1, Acc2, · · · , AccN},

A =



A1

A2

A3

A4

A5


=



uTdQ + vT

uTdQ + vT − ξj/dQ
Acc/dQ

1

1


, and BBB =



b1

b2

b3

b4

b5


=



Eth
1 − γ1n

Eth
2 − γ2n

Ath + γ3n

dmin + γ4n

d1 − γ5n


.

Next, we introduce Lagrangian multipliers ααα = {αn}Nn=1, βββ = {βn}Nn=1, λλλ = {λn}Nn=1,

ΓΓΓ = {Γn}Nn=1, and ζζζ = {ζn}Nn=1 one for each constraint. The Lagrangian form of

Equation 6.36 is as follows.

L(dQ,ααα,βββ,λλλ,ΓΓΓ, ζζζ) =uTd2
Q + vTdQ −

N∑
n=1

αn(A1dQ − bbb1)−
N∑
n=1

N∑
j=1,j 6=n

βnj(A2dQ − bbb2)

+
N∑
n=1

λn(A3dQ − bbb3) +
N∑
n=1

Γn(A4dQ − bbb4)−
N∑
n=1

ζn(A5dQ − bbb5).

(6.37)

By using the gradient method, we can find the optimal value of dQn for fixed SF.

Differentiating Equation 6.37 w.r.t., dQn , we obtain

dQn =
λnAccn + Γn − ζn − vnδn

2unδn
, (6.38)

where δn = αn+βn−1. The Hessian of the function can be calculated by differentiating

the gradient, i.e., ∇dQn
(λnAccn + Γn − ζn − δn(2undQn + vn)) = −2unδn. Let assume

the slack variable ωn = 2δnundQn . Finally, we use Semi-Smooth Newton method [105]

for optimal solution of the EESM Problem, as shown in Procedure 6.1.
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Procedure 6.1: Semi-Smooth Newton method for solving EESM Prob-
lem.
Input: A, B, uuu, vvv;
Output: Optimal data size dddQ = {dQ1, dQ2, · · · , dQN} for fixed SFs ;

1 Initialization: Data size vector ddd0
Q ≤ d1, slack variable ω0

n > 0, iteration k = 0,

terminating constant ε;
2 do

// Compressed data size

3 (dddQ)k = diag((dQ1)k, (dQ2)k, · · · , (dQN )k);
// Using gradient and Hessian and Equation 6.37

4 dist =
∇2

dQn
(L(dQ,ααα,βββ,λλλ,ΓΓΓ,ζζζ))

∇dQn
(L(dQ,ααα,βββ,λλλ,ΓΓΓ,ζζζ))

;

// Update compressed data size

5 (dddQ)k+1 = (dddQ)k + dist;
// Update slack variable

6 ωk+1
n = λnAccn + Γn − ζn − δnvn;

// Next iteration

7 k = k + 1;
// Optimality test

8 while ((ωkn)T (dddQ)k < ε);

6.4.2.2 Step 2: Find out the optimal set of data size and SFs

In this section, we solve the EESM Problem to determine the optimal set of SFs

i.e., f = {f1, f2, · · · , fN} to transmit to the LG data of optimal size, i.e., dQ =

{dQ1 , dQ2 , · · · , dQN
}. Algorithm 6.1 illustrates the steps to solve the problem. Lines

2-4 of this algorithm collect data from appliances for all LNs. Lines 5-8 of the algo-

rithm run Procedure 6.1 for all allocated SFs and LNs in the network. The SF allocation

can be done based on the distance from the LG. An SF fn ∈ F is allocated to an LN

n ∈ N for transmitting its data if n lies in the range [0, ranfn ] of fn, where ranfn is

the maximum distance at which the LN n can transmit on SF fn. For example, if an

LN lies in the range of SF8 with respect to the covered distance from the LG then

SF8, SF9, SF10, SF11, and SF12 are the allocated SFs of the LN. Line 8 calculates the

optimal data size for fixed SFs. The optimal solution must also satisfies the deadline

constraint C5. Lines 9-11 of the algorithm ensure that the time taken by LNs for trans-

mitting data to the LG meets deadline. If the calculated total time of any LN exceeds
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its deadline, then we check for the next solution, otherwise create a min Heap tree H

based on the minimum energy consumption by inserting the calculated value of dQ.

Algorithm 6.1: Energy Efficient Smart Metering.

Input: Time series of smart meters connected with the LNs;
Output: dQdQdQ = {dQ1, dQ2, · · · , dQN}, fff = {f1, f2, · · · , fN};

1 Initialization: minHeap H = NULL, Flag = 0;
2 for n← 1 to N do
3 for i← 1 to Yn do
4 Collect data from appliance i for τ time interval for all LNs;

5 for f1 ← SF7 to SF12 do
6 for f2 ← SF7 to SF12 do

...
7 for fN ← SF7 to SF12 do
8 Call Procedure 6.1;

// Deadline constraint

9 for n← 1 to N do

10 Tn = TCompn + Twaitn + TCommn ;

11 if Tn ≥ Dthn then
12 Flag ← 1;
13 break;

14 if Flag == 0 then
15 Insert minHeap(H,pQpQpQ, sss);

16 Extract Min(H,dQdQdQ, fff);
17 return (dQdQdQ, fff);

Example 2: Continue Example 1 with three LNs, i.e., N = 3 connected to 2, 4,

and 5 appliances (i.e., Y1=2, Y2=4, and Y3=5). Let assume that d0
Q = {d0

Q1
, d0

Q2
, d0

Q3
}

is the vector of initial data size of all three LNs. d0
Q1

vector is shown in Example 1.

Procedure 6.1 calls Equation 6.28 which leads to call Equations 6.22 and 6.25 for cal-

culating the energy consumption for compression and communication, respectively. For

estimating the compression energy, Equation 6.22 needs the number of layers which is

calculated based on the initial data size. Next, Equation 6.25 calculates the communi-

cation energy on a given SF. Procedure 6.1 is repeated for all three LNs and calculates

the optimal data size which consumes minimum energy consumption for the given SFs.



142 6.4. Energy Efficient Smart Metering System

Optimal data of first LN is shown in Example 1. This optimal data size is used at

Line number 8 in Algorithm 6.1. Algorithm 6.1 checks all the combination of SFs

among the LNs to calculate the optimal set of SFs f = {f1, f2, f3} and optimal data

size dQ = {dQ1 , dQ2 , dQ3} which consumes minimum energy and meet the constraints.

Lemma 6.2 The time complexity of the proposed EESM system is O(M logN), where

M and N are the total number of LNs in the network and the number of LNs connected

to the LG, respectively.

Proof: In Algorithm 6.1, the for loops in line 2 and line 3 take N×Y time for collecting

the EMS of each appliance for all LNs connected to the LG. Let ρ be the number of

iterations for which Procedure 6.1 calculates the data size for fixed SFs. As line 8 calls

Procedure 6.1 which is inside N “for loops” which run at most 6 times for each. This is

because the number of possible SFs for each LN is at most 6, hence its time complexity

is O(Nρ). Similarly, line 10 and line 15 requires N × ρ time for N times and N logN

times (average time complexity of the min heap tree), respectively. Therefore, the total

time complexity is O(Nρ+N2ρ+N2ρ logN) = O(N2ρ logN). Since the total number

M of LNs in the network is much higher than N , the time complexity of lines 8, 10, and

15 can be approximated as O(Mρ logN), where M ≈ N2. As Semi-smooth Newton

method is used among N LNs, the number of iterations required for the convergence of

Procedure 6.1 is in the order of constant because of the small value of N . Therefore the

total time complexity, with including O(N logN) time complexity for line 16 (average

time complexity of the min heap tree), is O(ND+M logN+N logN). Since number Y

of appliances is limited and much smaller than N , the time complexity of the proposed

EESM system is O(M logN).

�
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6.5 Performance evaluation by simulation

This section validates the performance of the proposed EESM system through simula-

tion experiments and answers the following questions:

• How do the parameters of the compression model affect the compression and com-

munication time, energy consumption, and accuracy of the EESM system?

• Does the size of compressed EMS affect the energy consumption and time of EESM

system?

• What is the impact of the number of appliances and the consumers on the time and

energy consumption of EESM system?

• Is the proposed EESM system more effective and energy efficient than the existing

works [90,100].

Performance metrics: In the simulation results, we mainly used time and energy

consumption as performance metrics. The time is the sum of the system delay required

for compressing the EMS, waiting for accessing the LG, and communicating the com-

pressed EMS to the operators as given in Equation 6.26. The energy consumption is

the sum of the energy consumed during compression and communication as given in

Equation 6.27.

6.5.1 Simulation setup

The LSTM model in EESM system is implemented in python language using Tensor-

Flow libraries. The protocol for communication of compressed EMS is implemented

in Network Simulator-3 which supports multiple channels, SFs, and bi-directional net-

works with a large number of LNs. We have modified the traffic control model (lorawan-

tracing-example.cc). The network is set up by randomly deploying the LNs in a disc-

shaped field of radius 10Km. Most of the network parameters are obtained from the

datasheet of LoRaWAN Multitech mDot [48, 49]. The LNs and LG are configured to

use 125 KHz bandwidth with 868.1 MHz channel frequency. The energy consumption
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of LNs during the idle, transmit, and receive are 2µJ, 32µJ, and 11µJ, respectively. We

assume the battery (energy) capacity of each LN is 2400 mAh. We further consider

that all LNs have a duty cycle of 1% and follow perfect orthogonality in SFs. We repeat

the experiment 100 times by changing the locations of LNs and the average in results.

All the results in this work are with 95% confidence level though the error bars are not

visible in the plots.

6.5.2 Impact of compression model parameters

We study the impact of LSTM model parameters, i.e., number of layers and neurons,

on the time required for compression and communication, energy consumption, and ac-

curacy of the system. The layers of LSTM and the number of neurons are varied from

1 to 6 and 16 to 512, respectively. Part (a) and part (b) of Figure 6.4 demonstrate that

with the increase in the number of LSTM layers, the compression time increases while

the communication time decreases. The reduction in communication time is due to the

fact that the decreases of EMS size with the inclusion of more layers for compression.

However, the addition of layers leads to increase processing time and energy consump-

tion. The increase in the number of neurons shows a similar pattern, as illustrated in

Part (c) and part (d) of Figure 6.4. The optimal condition for both communication

and compression times is achieved with 4 layers and the neurons are arranged in the

decreasing order from 128 to 16 in these four layers. The compression time and com-

munication time at the optimal point are 7.4 secs and 3.9 secs, respectively. Similarly,

compression energy and communication energy at the optimal point are estimated as

48 joules and 33 joules, respectively

The number of layers and neurons also affect the accuracy of the system. Part (e) of

Figure 6.4 illustrates the impact of different activation functions used at each layer of

LSTM. We use Sigmoid, Tanh, and Relu activation function for the comparison [106].

The Relu activation function achieves higher accuracy compared to that of Tanh and
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sigmoid functions. The best accuracy achieved is around 92% with 4 layers of the

LSTM model. The number of neurons influences the accuracy of the LoRa network

when different activation functions are used, as illustrated in part (f) of Figure 6.4. The

windows for dividing a time-series also play a vital role in determining the accuracy of

the LoRa network for smart metering. Part (g) and part (h) of Figure 6.4 illustrate

that the accuracy is the highest when the number of windows dZ/de) > 15.

6.5.3 Impact of EMS size

Next, we study the impact of the size of EMS on the required time and energy. For

experimental purpose, we considered 6 appliances EMS as the base size and increment

in percentages of the base size. We also considered 3 consumers (LNs) and 90secs

as the average deadline of these LNs. As the EMS size increases, the compression of

the acquired data also increases for completing the task within the specified deadline.

Figure 6.5 shows that the proposed approach transfers the EMS to the operator within

the deadline, whereas without Edge computing scheme the required time and energy

consumption is huge. We observe that EESM system takes less time and energy than

the approach without Edge computing when the size of EMS is large because other

scheme does not compress data and hence requires large communication time. EESM

system compressed EMS to the optimal compressed data size so that EMS can reach

to the operator within the specified deadline.

6.5.4 Impact of the number of appliances

As discussed earlier, each of the appliances generates energy time series that are at-

tached to an Edge device used for compressing the EMS. Part (a) and part (b) of

Figure 6.6 respectively illustrate the time and energy increase with growing number

of appliances. This is because a larger number of appliances generate more EMS,

thus increasing the data size for compression and communication. A sharp increase in
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Figure 6.4: Impact of LSTM parameters on compression and communication time,
consumed energy, and accuracy of the system.
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Figure 6.5: Impact of EMS size on time and energy of EESM system.

the compression and communication time is observed when the number of appliances

reaches 16 (breakpoint). At the breakpoint, the EESM system takes more time than

the given deadline. Therefore, for transferring the EMS to the operator within the

deadline, more reduction of data is needed which requires high energy consumption

for compression. Hence, energy consumption has also the same breakpoint. Part (c)

and part (d) of Figure 6.6 illustrate the time and energy with and without using the

compression model, respectively. As expected, the proposed EESM system compresses

the EMS, consuming less energy and time. These results also show similar breakpoint.
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Figure 6.6: Impact of number of appliances attached to an Edge device.
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6.5.5 Impact of the number of consumers

Each consumer in EESM system has an Edge device which is embedded with a smart

meter and a LN. This section illustrates the impact of the number of consumers in

the system on required time and energy consumption. In Figure 6.7, EESM result

illustrates the system time and energy for the different number of consumers in the

system. The results show that the increment in the consumers increases the time and

energy consumption of the system. It is because more LNs send more data to the LG

and requires more time during communication. The energy consumption of the system

also increases because the increment in the number of LNs reduces the chance of getting

the energy-efficient SFs for transmitting the data.

6.5.6 Comparison with existing approaches

This section compares the EESM system with Tree-structure Neural Network model

(TNN) [90] and Data Characterization and Reduction scheme (DCR) [100]. We com-

pare the proposed work with [90] because it considers the appliances that are constantly

ON, such as fridge and ON/OFF appliances, such as washing machine. The proposed

EESM system also works on both types of appliances. We have also considered [100]

for comparison as they use Edge computing technique for reducing data at the edge

devices.

Some appliances are ON for a very short time period and not frequently such as

toaster or water purifier. For successfully recognise such appliances, we collect the smart

meter reading of the appliances with high sampling rate. However, high sampling rate

creates long energy time series. The results in Figure 6.7 illustrate the total energy

consumption and time of the system. To make the comparison fair, we incorporate

similar computation and communication mechanisms as in TNN and DCR. The results

show that the approach in [90] consumes more energy than the proposed one. This is

because it doesn’t reduces the length of the energy time series. However, the length of
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the energy time series in the practical scenario is very long. The long time series requires

more fixed size communication messages on LoRa network and therefore increases the

energy consumption and delay. The authors in [90] also claimed that the existing

work is suitable for low sampling rate. Figure 6.7 also illustrates that the approach

in [100] takes more energy and time. This is because they use redundancy algorithm

for reducing data which requires more time than our LSTM model for compression.

The another reason for outperforming of the proposed work with existing work is that

EESM system can compress the EMS based on the available LoRa network parameter.

The EEMS system uses full length of the LoRa packets with minimum packets. The

existing approaches compress the EMS on a fixed size and each packet of the LoRa

network is not used its full length. Such partially used packets incense the energy

consumption and delay of the system.
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Figure 6.7: Comparison of time and energy consumption of the EESM system with
existing works.

6.6 Prototype experiments

We built a prototype of EESM system using Edge devices and LoRa network for com-

pression and transmitting the EMS from the consumers to the operator. The prototype,

as illustrated in Figure 6.8, was deployed in six houses in an apartment at IIT (BHU),

Varanasi. Each house in EESM system considers as consumer which consists differ-

ent set of appliances. The houses and appliances are represented by {h1, · · · , h6} and
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{a1, · · · , a12}, respectively, as shown in Table 6.1.

Table 6.1: List of appliances in six houses (X = Yes; 7= No), where personal com-
puter (a1), air conditioner (a2), washing machine (a3), microwave (a4), refrigerator (a5),
heater (a6), television (a7), mixer grinder (a8), induction (a9), toaster (a10), geyser (a11),
and water pump (a12).

Houses
Appliances

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12

h1 X 7 X X X X X X 7 7 X X
h2 X 7 X X X X X 7 7 7 X 7

h3 7 X X X X X X X 7 X 7 X
h4 7 X 7 X 7 7 X X X 7 X X
h5 X X X X X X X X X X X X
h6 7 7 7 7 X X X 7 X X X X

6.6.1 Prototype specification and overview

Each house has a smart meter and all the appliances of a house are connected with

its smart meter for estimating the energy consumption. The smart meter transmits

the energy consumption data to the connected Edge device attached with the LN.

The hardware specification of the prototype is shown in Table 6.2. The Raspberry

Pi 3 board works as an Edge device for compressing the EMS and the LN works as

transceivers for communicating the compressed EMS to the LG. The LG, present in

the department, forwards the compressed data to the Network Server (NS) using the

internet connection. Upon receiving data from LG, the NS decompresses the data and

forwards to the electricity operator. Here, a Dell Inspiron desktop in the lab is acting

as both the NS and electricity operator. A python script is developed for performing

the entire operations, including compression, communication, and decompression. To

successfully run the python script, we install mini-conda on Raspberry Pi and install

all necessary Keras packages. All the components used in the prototype are shown in

Figure 6.8. All the results in this work are with 95% confidence level though the error

bars are not visible in the plots.
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Figure 6.8: Smart metering prototype deployed at IIT (BHU), Varanasi. Prototype
components: (1) Deployment area, (2) Smart meter, (3) LoRa IC, (4) Raspberry Pi-3,
(5) LoRa Gateway, and (6) LoRa node (Pi + LoRa IC).

Table 6.2: Hardware specification of prototype.

Device Specification
Appliances a1 to a12 as Shown in Table 6.1 (Connected with smart meter)

Smart meter DDS238-4W single-phase (Attached with Edge device)
Edge device Raspberry Pi-3 (Attached with LN)
LoRa Node RFM95W-868S2 (Communicate to LG)

LoRa Gateway Drigano LG01-SIOT

6.6.2 Experimental results

This section discusses the dataset of smart meter readings and the experimental results.

6.6.2.1 Dataset creation

We conduct an experiment to create a dataset using EESM system. Energy consump-

tion of the appliances captured at the interval of 20 seconds and the experiment for

data collection performed for a total 240 hours. Figure 6.9 illustrates the energy con-

sumption of four appliances. Appliances whose energy consumption is 0 which means

that respective appliances are OFF. The energy consumption of the Washing machine is
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consistently 0 from initial to 30 time instances because this time the Washing machine

is OFF. It can also be seen that there is a high peak in the energy consumption of

Washing machine from a time interval 33 to 46 and afterwards consumes low energy

comparatively. This is because of the washer and dryer ON at the same time for the

interval 33 to 46 and then washer is OFF.
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Figure 6.9: Energy consumption of appliances in EESM system.

6.6.2.2 Result 1: Number of appliances

We evaluate the impact of the appliances on the accuracy, time, and energy consumption

of the system. We compare the simulation and prototype results for varying number of

appliances. The system periodically collects the smart meter readings of y appliances

individually whether it is ON or OFF, where y = {2, 4, 6, · · · }. The simulation results

achieve better performance than the prototype results. This is because the signal

strength of the LoRa network varies with the distance and the new obstacles coming in

between transmitter and receiver. The performance of the LoRa network also depends

on the different network load on the LNs and LG. Network Simulator-3 does not fully

consider these challenges and hence performs better than the prototype results. Part (a)

and part (b) of Figure 6.10 demonstrate that the average time and energy consumption

of the EESM system increases with the increase in the number of appliances. This

is because when we increase the number of appliances, size of EMS also increases

as we have considered energy consumption reading of appliances are captured at a
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defined interval irrespective of their energy consumption and the ON or OFF state.

The number of appliances also affect the accuracy of the system and battery life of the

LN (operatilithium-ion battery) as illustrated in part (c) and part (d) of Figure 6.10.

The results illustrate that the accuracy and residual energy (remaining energy of LNs)

decrease with an increase in the number of appliances. It shows that the residual energy

of LNs in the EESM system is higher than the non-EESM system.

0

30

60

90

120

2 4 6 8 10 12

Ti
m

e
(in

se
c)

Number of appliances

Simulation
Prototype

100

120

140

160

180

200

2 4 6 8 10 12

E
ne

rg
y

(in
jo

ul
es

)

Number of appliances

Simulation
Prototype

(a) Time consumption. (b) Energy consumption.

20

40

60

80

100

2 4 6 8 10 12

A
cc

ur
ac

y
(%

)

Number of appliances

Simulation
Prototype 20

40

60

80

100

2 4 6 8 10 12

R
es

id
ua

le
ne

rg
y

(%
)

Number of appliances

ESM
Non-ESM

(c) Accuracy of the system. (d) Residual energy of the LoRa nodes.

Figure 6.10: Impact of appliances on time, energy, accuracy, and residual energy.

6.7 Conclusion

In this chapter, we proposed an Energy Efficient Smart Metering (EESM) system using

edge computing in LoRa network. The system built a deep learning based compression-

decompression model and estimated the required energy and time for compression and

communication of smart meter readings. The work incorporates Semi-smooth newton

method to find the appropriate compression size and presented an algorithm for select-

ing the suitable SFs in LoRa network. The experimental and prototype results show
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that EESM system has achieved high energy efficiency and successfully transfer the

EMS within the given time.

The analysis of this work considers the SF parameter of the LoRa network. How-

ever, LoRa network also consists other parameters, such as bandwidth and coding

rate. Future directions of research include the extension the analysis by considering

these parameters for improving the energy efficiency. Along with energy efficient smart

metering, secure communication of EMS is an essential future direction which is not

covered in this chapter.


