
Chapter 3

Centralized and distributed

approaches to estimate the time

duration for effective use of the

Spreading factors

3.1 Introduction

The LoRa is one of the most promising wireless communication technology because it

allows for long-range communication with low power consumption. The interference

problem in LoRa occurs when LNs are attached with a LG using the same spreading

factor. To overcome the problem, the literature assumes that the SF is allocated to

each node for a fixed time duration. Since all LNs may not have equal data to transmit

to the LG, the network revenue estimated by using fixed time duration is lower than

the allocation based on the size of the data of the LNs. In this chapter, we assume that

each LN in the network takes multiple services from the same or different LGs. We

address the problem: How long a LN uses the allocated SF from a given LG such that

the LN satisfies its service requirement and the network maximizes its revenue? We
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refer to this problem as (n,m,s,c)-Time duration Allocation problem or simply (n,m,s,c)-

TA problem, where n, m, s, and c denote the LN, LG, service, and CR, respectively.

Presence of multiple LNs in the network with selfish behaviour and limited resources

for the data transmission leads to the competition among LNs. Therefore, we use the

game-theoretic framework for solving the above problem.

3.1.1 Motivation of this work

The work in this chapter is motivated by the following observations from the literature.

• Effective transmission rate: The literature in LoRa network did not consider the

effects of the interference problem from EUs to the NS while analyzing the perfor-

mance of the network. Part (a) of Figure 3.1 illustrates the Effective Transmission

Rate (ETR) in percentage which is the ratio of the achieved Transmission Rate (TR)

with interference to the TR without any interference problem. The authors in [16, 41]

assumed that the ETR equals to the TR without any interference problem as shown

Net1. Authors in [14,18] analyzed the SFs interference problem by considering the TR

only between LN and LG. Therefore, the ETR in [18] goes down when large number of

LNs are connected as shown Net2. The more realistic ETR is shown as Net3 in part

(a) of Figure 3.1, where TR goes down due to the interference at LGs and insufficient

bandwidth between LG and NS.
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Figure 3.1: Motivations of the proposed work.

• Allocation of time duration for using the SFs : The authors in [15, 41, 42] assumed

that each LN directly interacts with the LG to setup the network. Part (b) of Fig-
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ure 3.1 illustrates the average utility of the allocated SFs which is calculated as 1 −(
1/N

∑N
i=1

(tia−tiu)
tia

)
, where tia and tiu are the allocated and used time duration of SFs

by a LN i, respectively, and 1 ≤ i ≤ N . It shows that if the LG randomly allocates

time duration to the LNs for using the SFs then some LNs do not access or over access

the network and therefore average utility goes down (All1 in figure) [42]. Figure also

illustrates that the fixed time duration allocation of SFs to each LN (All2 in figure)

reduces the average utility [15,41]. Also due to imbalance of load on SFs, average utility

goes down (All3 in figure).

• Connectivity of LNs to the LGs : Authors in [39, 43, 44] demonstrated that network

performance drastically reduces in a densely deployed LNs network due to the imbalance

of load on the LGs.

3.1.2 Major contributions

This work addresses (n,m,s,c)-TA problem for LoRa network. Apart from this, the

major contributions are as follows:

• Effective transmission rate: This work considers a network with multiple LGs, where

each LN takes multiple services from the same or different LGs. In such scenario,

transmission rate between LGs and NS is also an important aspect to be considered

while selection of LG. We estimate the effective transmission rate between a LN and

the NS for data transmission.

• Nash Equilibrium among LNs : We formulate the interaction among the LNs as a

Nash equilibrium game to allocate the time duration of using the SFs [28]. We propose

a NE algorithm for finding the optimal time duration for all LNs to use the given SF.

• Stackelberg Game between LGs and LNs : Imbalance of the load on LGs leads to the use

of same SF by more than one LN which causes the interference problem. After finding

NE among LNs, we formulate the interaction between LGs and LNs as a Stackelberg

game to balance the load on the LGs and reduce the effect of the interference problem.
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We also provide the proof of the existence and uniqueness of the SE for the game.

• Implementation of the solution: We propose distributed and centralized algorithms

based on the participation of LNs and the selection of processing node, respectively.

• Finally, we validate the analysis and demonstrate the significance of the number of

LNs, LGs, services, and transmission rate in the estimation of time duration for using

the SFs.

The rest of the chapter is organized as follows: Next section describes the net-

work model and problem statement. The game model and the analysis for solving the

(n,m,s,c)-TA problem are presented in Sections 3.3 and 3.4, respectively. Next, Sec-

tion 3.5 illustrates how to implement the proposed solution in LoRa network. Finally,

Section 3.6 presents the results followed by the conclusions in Section 3.7.

3.2 Preliminaries and problem statement

This section describes the network model, definition of effective transmission rate, and

the problem statement. Throughout this chapter, we use the bold notation to indicate

a vector.

3.2.1 Network model

We consider a scenario where each LN in network transmits data to LG over a single

wireless hop and LG transmits it to NS through a non-LoRa network as shown in

Figure 3.2. BW in the network is the frequency range of the chirp signal. LoRa

operates with SFs ranging from SF7 to SF12, where SF7 and SF12 are the shortest and

longest time on air, respectively. LoRa modulation adds forward error correction bits

in every data transmission. This implementation is done by encoding 4-bit data with

redundancies into l-bits, where 5 ≤ l ≤ 8. The CR of network equals to 4/l.

The LoRa network consists of set N of N LNs and set M of M LGs. Let n, m, s,

and c denote the indexes of the LN, LG, service, and, CR, respectively. Each randomly
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Figure 3.2: End-to-end architecture of a LoRa network.

deployed LN has sets S = {1, · · · , S} and C = {1, · · · , C}, where S and C denote the

number of services and CRs, respectively. Let ts,cn,m is the time duration of a LN n ∈ N

using SF from m ∈M for s ∈ S on c ∈ C. The service time vector of all LNs for given

s, c, and m is therefore

ts,cm = [ts,c1,m, · · · , ts,cn,m, · · · , ts,cN,m]T . (3.1)

Let ρs,cm is the price per unit time paid by a LN to m for s on c. The price vector of all

LGs for a service s on c is given by

ρρρs,c = [ρs,c1 , · · · , ρs,cm , · · · , ρs,cM ]T . (3.2)

3.2.2 Effective transmission rate

The Transmission Rate (TR) in LoRa is the number of bits successfully transmitted

per unit time from a LN to the NS.

Definition 3.1 Let a LN n ∈ N for s ∈ S and c ∈ C uses SF f and BW W for

transmitting the data to LG m ∈ M. The transmission rate from n to m is given
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by [45]

rs,cn,m = W × f

2f
× 4

4 + c
. (3.3)

Let Nm LNs lie in the range of m ∈ M. Figure 3.2 illustrates that a LN lies in

the range of two LGs. In such scenario, multiple LNs can simultaneously transfer

data to the same LG with same SF and create interference problem in the network.

However, LoRa network does not have interference problem when LNs are connected

with different LGs even using the same SF. Equation 3.4 describes the probability of

successful transmission of a bit from LN n to the LG m [18],

Psucc(r
m
n ) =

Nm∑
j=1

(
Nm

j

)
(1− pf )Nm−j × P n

capcoSF
(j), (3.4)

where j denotes the total number of LNs using SF f among Nm, pf is the probability of

getting SF f , and P n
capcoSF

(j) is the probability that a received signal from n has a SNR

above the threshold. The effective TR from n to m, denoted by r̄s,cn,m, is the successful

transmission of the data per unit time from LN n to the LG m, i.e.,

r̄s,cn,m = rs,cn,m × Psucc(rmn ). (3.5)

Next, the network transfers the data from LG to NS using non-LoRa network. Let

r̄m denotes the TR from m to NS. The effective TR from m to NS by using Shannon-

Hartley equation [46] is given as

r̄
m = bm log2

(
1 +

gmpm

σ2

)
, (3.6)

where bm, gm, pm, and σ2 are the bandwidth, channel gain, power used, and white

gaussian noise in the network from LG m to NS, respectively.

Definition 3.2 The effective transmission rate of the end-to-end network (i.e., n to m
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using LoRa network and m to NS using other network) is given as

Rs,c
n,m = min

(
r̄s,cn,m, r̄

m
)
, (3.7)

where r̄s,cn,m and r̄m are given in Equations 3.5 and 3.6, respectively.

3.2.3 Overview of (n,m,s,c)-TA problem

In this chapter, we deal with LoRa network where a LN n can learn the price of LG

m for a given s and c, and adjust its service time duration for using the allocated

SF to maximize its utility. We are interested in determining the service price of the

LG for allocating the SF to the connected LNs such that its utility is maximized. We

consider SG for solving the problem where LGs and LNs work as leaders and followers,

respectively. The LGs start the game and choose the price of the received data from

the LNs. Based on the LG strategy, each LN selects the time duration for transferring

the data to the LG using allocated SF which maximizes its utility.

3.3 Game model for (n,m,s,c)-TA problem

This section derives the expressions of the models and formulates the optimization

problems of followers and leaders.

3.3.1 Follower (LoRa node) model

Each LG m ∈ M at the beginning of the game announces the price ρs,cm as given in

Equation 3.2. Based on ρs,cm , each LN reacts by selecting an optimal strategy which

maximizes its utility.

• Price gain from end users: The LNs gain price from the EUs for transmitting the

data to the NS in a given time duration. Due to the interference problem, the gain of

a LN also depends on the strategies of other LNs. To enhance the utility, the LNs try
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to transfer more data and deviate from the stable state. Hence to prevent LNs from

deviation, price gain function reduces price when any LN transmits data for more time

duration than the time duration estimated by the SE. Therefore, the price function for

the given values of m ∈ M, s ∈ S, and c ∈ C, is modeled as oligopoly market [28] and

defined as,

P(ts,cm ) = a−
N∑
i=1

Rs,c
i,mt

s,c
i,m, (3.8)

where ts,cm = [ts,c1,m, · · · , ts,cn,m · · · , ts,cN,m]T and a is the forecasted demand of total data.

Such forecasted demand is calculated based on the past demand of the transmitted

data from all the LNs to the NS via LG and the available resources of the NS in the

network. Since the magnitude of the price function can not be negative, we model this

function as ReLu function given as:

P ′(ts,cm ) = max{0,P(ts,cm )}. (3.9)

The price gain of a LN n ∈ N is the product of price function, effective transmission

rate, and data transmission time, i.e.,

Lg(tn) =
S∑
s=1

C∑
c=1

M∑
m=1

P ′(ts,cm )Rs,c
n,mt

s,c
n,m, (3.10)

where, tn = [t1
n, · · · , tsn, · · · , tSn], tsn = [ts,1n , · · · , ts,cn , · · · , ts,Cn ], and ts,cn = [ts,cn,1, · · · , ts,cn,m,

· · · , ts,cn,M ].

• Price paid to the LGs: The LNs need to pay the price to LGs for relaying the

data to the NS. The price paid by n ∈ N is the product of the time it uses the LGs for

relaying the data and price per unit time charge by LGs, i.e.,

Lc(tn) = δn

S∑
s=1

C∑
c=1

M∑
m=1

ts,cn,mρ
s,c
m , (3.11)
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where δn is the constant which makes the cost to the same order of magnitude as the

utility.

3.3.1.1 Utility function of follower

The utility of a follower n ∈ N during tn is the difference of the price gained from the

EUs and the cost paid to the LGs, i.e.,

Un(tn, t−n) = Lg(tn)− Lc(tn),

=
S∑
s=1

C∑
c=1

M∑
m=1

((
a−

N∑
i=1

Rs,c
i,mt

s,c
i,m

)
Rs,c
n,mt

s,c
n,m − δnts,cn,mρs,cm

)
. (3.12)

3.3.1.2 Follower game

Based on the price announced by the leaders, the followers compete with each other to

maximize their utilities. The game uses the following information:

• Players: Each LN is one player and there are N players.

• Strategies: The strategy of a follower n is the time duration vector tn and total

service time of n for s does not exceed its remaining duty cycle Tmaxn,s .

• Utilities: Let t−n is the strategies vector for all the players except of player n.

The utility of n is given in Equation 3.12.

The follower level game is expressed as follows:

Problem 1 max
tn

Un(tn, t−n),

s.t.
C∑
c=1

M∑
m=1

ts,cn,m ≤ Tmaxn,s ,

ts,cn,m ≥ 0,

where ∀s ∈ S, ∀c ∈ C,∀m ∈M. (3.13)
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3.3.2 Leader (LoRa gateway) model

Due to imbalance of load on SFs, interference problem occurs in the network. The

leaders set the pricing strategies in such a way that the SFs can be allocated to the

LNs in a balanced way. The utility function of the leader consists the following terms:

• Price gain from the LNs: The LGs gain the prices from the LNs for providing

services as given in Equation 3.11. The price gain from LNs during tm time duration

is given as

Gg(tm) =
N∑
n=1

S∑
s=1

C∑
c=1

ρs,cm t
s,c
n,m, (3.14)

where tm = [t1,m, · · · , tn,m, · · · , tN,m], tn,m = [t1
n,m, · · · , tsn,m, · · · , tSn,m], and tsn,m =

[ts,1n,m, · · · , ts,cn,m, · · · , ts,Cn,m].

•Maintenance cost of the LG: Let xm be the cost for providing services to the LNs

for m ∈M. Therefore the maintenance cost of m during tm is given as

Gc(tm) = xm

N∑
n=1

S∑
s=1

C∑
c=1

ts,cn,m. (3.15)

3.3.2.1 Utility function of leader

The net utility of a leader m ∈ M when it charges ρρρm price is the difference of the

price gained from the LNs and the maintenance cost, i.e.,

Um(ρρρm, ρρρ−m) =Gg(tm)−Gc(tm),

=
N∑
n=1

S∑
s=1

C∑
c=1

ρs,cm t
s,c
n,m − xm

N∑
n=1

S∑
s=1

C∑
c=1

ts,cn,m. (3.16)

3.3.2.2 Leader game

Based on the strategies selected by followers, the leaders optimize their strategies to

maximize their utilities. The game uses the following information:
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• Players: Each LG is one player and there are M players.

• Strategies: The price ρs,cm paid by the LNs for the data and time duration taken

by n for all services on m must not exceed its allocated time Tmaxn,m .

• Utilities: The utility for a leader is given in Equation 3.16.

The leader level game is expressed as follows:

Problem 2 max
ρρρm

Um(ρρρm, ρρρ−m),

s.t.
S∑
s=1

C∑
c=1

ts,cn,m ≤ Tmaxn,m ,

ρs,cm ≥ 0,

where ∀s ∈ S,∀c ∈ C,∀n ∈ N . (3.17)

3.4 Game analysis for solving (n,m,s,c)-TA

This section solves (n,m,s,c)-TA problem by using the Stackelberg game. Figure 3.3

illustrates the block diagram of Stackelberg Game.

NoNo

Yes

End

Algorithm 3.1.
Equilibrium among LNs using

[t1, ..., tN ]

Leaders

Followers

price ρρρ1.

Step4 Leaders find optimal

Step3 Compute Nash

price based on [t1, ..., tN ].

Algorithm3.2
converges?

Step1LG1 announces Step1LGM announces
price ρρρM .

response strategy t1.
Step2LN1selects best Step2LNN selects best

response strategy tN .

Figure 3.3: Illustration of the block diagram of Stackelberg game.
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3.4.1 Best response strategy of LNs

To define the best response strategies of LNs, we solve Problem 1 which maximizes

the utilities of LNs with the constraints. For simplicity, let ts,cn,m is denoted as t̂n, Rs,c
n,m

as R̂n, and ρs,cm as ρ̂m. Theorem 3.1 proves the existence of the best response strategy

of each LN.

Theorem 3.1 Let t̂n be the strategy of a LN n ∈ N for accessing the service s ∈ S

from LG m ∈M on CR c ∈ C. The best response t̂?n of the LN is given as

t̂?n =
1

2R̂2
n

(
Q̂n −

C∑
c=1

M∑
m=1

2R̂2
n

(
C∑
c=1

M∑
m=1

Q̂n

2R̂2
n

− Tmaxn,s

))
,

where Q̂n =aR̂n − R̂n

N∑
j=1,j 6=n

R̂j t̂j − δnρ̂m. (3.18)

Proof: We start with a simple scenario where M = 2, S = 2, and C = 1 and will

generalize the scenario later in this section. From Equation 3.13, the utility of a LN

n ∈ N is given as

max
tn

Un(tn, t−n) =
2∑
s=1

2∑
m=1

(
a−

N∑
i=1

R̂it̂i

)
R̂nt̂n − δn

2∑
s=1

2∑
m=1

t̂nρ̂m,

s.t. t1,1n,1, t
2,1
n,1, t

1,1
n,2, t

2,1
n,2 ≥ 0,

2∑
m=1

t̂n ≤ Tmaxn,s . (3.19)

Using Lagrangian multipliers λn,1, λn,2, λn,3, λn,4 and λn,5 for constraints defined in
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Equation 3.19

Ln(tn, t−n) =
2∑
s=1

2∑
m=1

(
a−

N∑
i=1

R̂it̂i

)
R̂nt̂n − δn

2∑
s=1

2∑
m=1

t̂nρ̂m − λn,1
(

2∑
m=1

t̂n − Tmaxn,s

)

+λn,2t
1,1
n,1 + λn,3t

2,1
n,1 + λn,4t

1,1
n,2 + λn,5t

2,1
n,2,

s.t. λn,1(
2∑

m=1

t̂n − Tmaxn,s ) = 0, λn,1 > 0, λn,2t
1,1
n,1, λn,3t

2,1
n,1, λn,4t

1,1
n,2, λn,5t

2,1
n,2 = 0,

∀l ∈ {2, 3, 4, 5}, λn,l, t1,1n,1, t2,1n,1, t1,1n,2, t2,1n,2 ≥ 0.

(3.20)

The first order derivative of Ln(tn, t−n) w.r.t. t1,1n,1 is dLn(tn,t−n)

dt1,1n,1

= aR1,1
n,1− 2(R1,1

n,1)2t1,1n,1−

R1,1
n,1

∑N
j=1,j 6=nR

1,1
j,1 t

1,1
j,1 − δnρ1,1

1 − λn,1 + λn,2. The second order derivative of Ln(tn, t−n)

w.r.t. t1,1n,1 is −2(R1,1
n,1)2. Similar, we can derived the derivatives of Ln(tn, t−n) w.r.t.

t2,1n,1, t
1,1
n,2 and t2,1n,2 and conclude that d2Ln(tn,t−n)

d(t̂n)2
< 0. It shows that the second order

derivative of Ln(tn, t−n) is negative, the utility function in Equation 3.13 is concave

and continuous, therefore, the follower level game has at least one SE. Let A and B are

the coefficient matrix. dLn(tn,t−n)

dt1,1n,1

can be rewritten as

A︷ ︸︸ ︷

A1,1 A1,2 . . . A1,N

A2,1 A2,2 . . . A2,N

...
...

. . .
...

AN,1 AN,2 . . . AN,N



t︷ ︸︸ ︷

t1,11,1

t1,12,1

...

t1,1N,1


=

B︷ ︸︸ ︷

b′1 − δ1ρ
1,1
1

b′2 − δ2ρ
1,1
1

...

b′N − δNρ
1,1
1


, (3.21)

where An,n = 2(R1,1
n,1), An,l = R1,1

n,1R
1,1
l,1 for l ∈ N and l 6= n, and b′n = aR1,1

n,1 − λn,1 +

λn,2. From the strictly diagonal dominant theorem [28], the matrix A is nonsingular

if (R1,1
n,1)2 ≥ R1,1

n,1

∑N
j=1,j 6=nR

1,1
j,1

2
,∀n ∈ N . Since matrix A is nonsingular, inverse of the

matrix A is possible. Best response strategies of the followers as the time duration

t̂ = [t̂1, · · · , t̂n, · · · , t̂N ] to transmit data to the LG can be calculated as A−1B, which
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is defined as tw,1n,v
?

=
aRw,1

n,v−Rw,1
n,v

∑
j 6=nR

w,1
j,v t

w,1
j,v −δnρ

w,1
v −λn,1+λn,k

2(Rw,1
n,v )2

, where v, w ∈ {1, 2} and

k = {2, 3, 4, 5} for (v, w) = {(1, 1), (1, 2), (2, 1), (2, 2)}. The optimal time duration of

n from m for s and c, for generating the network scenario where N LNs, M LGs, S

services, and C CR exist, can be obtained from the constraint of Equation 3.20 as

t̂?n =
aR̂n − R̂n

∑N
j=1,j 6=n R̂j t̂j − δnρ̂m − λn,1

2(R̂n)2
. (3.22)

By putting value of t̂n into the constraint of Equation 3.20, we get

λn,1 =
C∑
c=1

M∑
m=1

2R̂2
n

(
C∑
c=1

M∑
m=1

aR̂n − R̂n

∑N
j=1,j 6=n R̂j t̂j − δnρ̂m
2R̂2

n

− Tmaxn,s

)
. (3.23)

Substituting λn,1 from Equation 3.23 into Equation 3.22 and hence proved. �

Proposition 1 The best response strategy of a LN n ∈ N is unique and optimal solu-

tion.

Proof: (Proof of uniqueness) The best response strategy of a follower, defined in

Equation 3.22, is unique if it consists positivity, monotonicity, and scalability. From the

constraint of Equation 3.13, we confirm that t̂n > 0 because
∑C

c=1

∑M
m=1

Q̂n

2R̂2
n
− Tmaxn,s

will always return negative value which yields positivity of the t̂n. Let t̂−n and ˆ̃t−n

are the data transmission time duration of LNs except n. Equation 3.18 shows that

if t̂−n ≥ ˆ̃t−n then F (t̂−n) ≤ F (ˆ̃t−n) and therefore t̂n consists monotonicity. The best

response strategy t̂n consists scalability if µF (t̂−n) is greater than F (µt̂−n) and µ ≥ 0.

Using Equation 3.18, we get µF (t̂−n)−F (µt̂−n) ≥ 0 and therefore scalability is proved.

(Proof of optimality) Equation 3.13 is convex optimization problem because objective

function Un(tn, t−n), defined in Equation 3.22, is the quadratic function with respect

to t̂n and constraint is affine. From Equation 3.22, t∗n = min{tn, Tmaxn,s }. Let assume

tn ≥ Tmaxn,s and hence t∗n = Tmaxn,s . The objective function Um(tn, t−n), defined in

Equation 3.16, after substituting t∗n is to maximize Problem 2. We can observe that
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the objective function is an increasing function with respect to ρ̂m. For maximizing this

function, we must have ρ̂m ≥ aR̂n−R̂nµ
∑

j 6=n R̂j t̂j−λn,1−2R̂2
nT

max
n,s

δn
. But from the assumption

i.e., tn ≥ Tmaxn,s , we have ρ̂m ≤ aR̂n−R̂nµ
∑

j 6=n R̂j t̂j−λn,1−2R̂2
nT

max
n,s

δn
, which is the contradiction.

Thus t∗n = tn, which completes the proof.

�

3.4.2 Near Nash Equilibrium (NE) among the LNs

Consider a game of N players. A set of strategies (t̂1, . . . , t̂n, . . . , t̂N) constitute NE if

for n ∈ N

Un(t̂?n, t̂
?
−n) ≥ Un(t̂n, t̂

?
−n). (3.24)

We propose a near optimal time duration allocation algorithm (Algorithm 3.1) that

terminates in polynomial time. Algorithm 3.1 finds near NE by using the estimated

best response strategies of LNs. We first define near NE (i.e., η-NE ) as

Definition 3.3 (η-NE): A set of strategies (t̂1, . . . , t̂n, . . . , t̂N) constitute an η-NE of

game if for n ∈ N

Un(t̂?n, t̂
?
−n) ≥ Un(t̂n, t̂

?
−n)− η. (3.25)

In η-NE, players have small incentive to deviate from NE but they can not increase their

utilities by more than η > 0. Algorithm 3.1 will eventually converge to a fixed point,

where strategies of LNs can not increase the utility by more than η. Algorithm 3.1 does

not consider the communication overhead of announcing the prices because it is same

for all LNs and thus does not has an impact on the utility in the game.

Theorem 3.2 Near NE algorithm among LNs illustrated in Algorithm 3.1 reaches the

η-NE in O(N/η) iterations for any given η > 0.

Proof: According to Definition 3.3, LN n changes its strategy if utility increases by

more than η in each iteration. Thus Un(t̂
(τ)
n , t̂−n)−Un(t̂

(τ−1)
n , t̂−n) > η. Therefore, each
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Algorithm 3.1: Near Nash Equilibrium among LNs

Input: Precision threshold η, τ ← 0, t̂n[0]← η ;

Output: Best response strategy t̂n of n ;
1 do

2 Unτ (t̂n, t̂
?
−n) = Un(t̂n, t̂

?
−n) using t̂n[τ ];

3 τ ← τ + 1; . Using Equation 3.18 for estimating t̂n[τ + 1].

4 t̂n[τ + 1] =
aR̂n−R̂n

∑N
j=1,j 6=n R̂j t̂j [τ ]−δnρ̂m−λn,1

2(R̂n)2
;

5 Unτ+1(t̂n, t̂
?
−n) = Un(t̂n, t̂

?
−n) using t̂n[τ + 1];

6 while
(∥∥Unτ+1(t̂n, t̂

?
−n)− Unτ (t̂n, t̂

?
−n)
∥∥ > η

)
;

LN increases its utility by atleast η in each iteration. We next show the upper bound

of the utility of LN at NE. An upper bound of the utility of each LN can be obtained

when there is no competition with other LNs. As a result, utility of LN at NE is always

less than Un(t̂?n, 0). Therefore, the number of iterations of LN n is atmost Un(t̂?n,0)
η

. In a

worst case, the number of iterations for any LN is no more than maxn∈N Un(t̂?n,0)
η

. We can

conclude that the time complexity of Algorithm 3.1 to determine near NE for all LNs

is O(N/η), and hence proved. �

3.4.3 Optimal strategies of LGs

In this section, we prove that the unique and optimal best response strategies of LNs is

admitted by each LG. Using backward induction method, Problem 2 can be rewritten

as

Problem 3: max
ρρρm

Um(ρρρm, tn) =
N∑
n=1

S∑
s=1

C∑
c=1

(
ρ̂mt̂

?
n − xmt̂?n

)
,

s.t.
S∑
s=1

C∑
c=1

t̂?n ≤ Tmaxn,m

ρ̂m ≥ 0,∀n ∈ N ,∀m ∈M. (3.26)
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The optimal solution of Problem 3 can be obtain by Karush-Kuhn-Tucker conditions

and the Lagrangian is given as

Lm(ρρρm, tn) =
N∑
n=1

S∑
s=1

C∑
c=1

ρ̂mt̂
?
n − xm

N∑
n=1

S∑
s=1

C∑
c=1

t̂?n − Λ1

S∑
s=1

C∑
c=1

(t̂?n − Tmaxn,m ) + Λ2ρ̂m,

s.t. Λ1

S∑
s=1

C∑
c=1

(t̂?n − Tmaxn,m ) = 0, {Λ1,Λ2} ≥ 0, and Λ2ρ̂m = 0, (3.27)

where Λ1 and Λ2 are the Lagrangian multipliers of ρ̂m. Derivative of Lm(ρρρm, tn) w.r.t.

ρ̂m is given as

dLm(ρρρm, tn)

dρ̂m
=t̂?n + ∆t̂n(ρ̂m − xm − Λ1) + Λ2, (3.28)

where ∆t̂n = −δn
2R̂2

n
+

δn
∑C

c=1

∑M
m=1 2R̂2

n

4R̂4
n

. Since ρ̂m > 0, hence from constraint of Equa-

tion 3.27 and Equation 3.28, we obtain

ρ̂?m =
∆t̂nxm − t̂?n

∆t̂n
. (3.29)

Theorem 3.3 The LG admits a unique optimal best response strategies of the LNs.

Proof: The second order partial derivative of Um(ρρρm, tn) w.r.t. ρ̂m and ρ̂m̄ is given as


H11 0 . . . 0

...
...

...

0 0 . . . HMM

 , (3.30)

where Hmm = −δn
2R̂2

n
+

δn
∑C

c=1

∑M
m=1 2R̂2

n

4R̂4
n

. The diagonal elements of Hessian matrix are

negative for δn
2R̂2

n
>

δn
∑C

c=1

∑M
m=1 2R̂2

n

4R̂4
n

and off-diagonal elements are zero. Therefore, the

Hessian matrix of Um(ρρρm, tn) is strictly negative definite which implies that Problem

3 is a standard convex maximization problem and hence proved. �
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3.4.4 Stackelberg Equilibrium for solving (n,m,s,c)-TA problem

The LoRa network consists of a SE when LGs estimate the optimal price gain from

LNs for maximizing their utility while the LNs select their time duration for data

forwarding to maximize their benefits. Algorithm 3.2 explains how to find the SE by

using the estimated best response strategies of LNs and optimal strategy of each LG by

using Algorithm 3.1. The outcome of Algorithm 3.2 is the solution of the (n,m,s,c)-TA

Problem, i.e., the time durations (t̂?n, where n ∈ N ) of using the allocated SFs by

the LNs which satisfy the service requirement of the LNs and maximizes the network

revenue.

Algorithm 3.2: Stackelberg Equilibrium in LoRa

Input : Precision threshold ω, ε, τ ← 0, ρ̂m[0];

Output: Optimal strategy t̂?n of n and ρ̂?m of m;
1 do
2 τ ← τ + 1;

3 . Follower game: Each n maximizes its net utility Estimate t̂n of each n ∈ N
using Algorithm 3.1;

4 . Leader game: Use Equation 3.29 for estimating ρ̂m[τ + 1]
5 ρ̂m[τ + 1] = ρ̂m[τ ] + ε5Um (ρ̂m[τ ]);

6 while (‖ρ̂m[τ + 1]− ρ̂m[τ ]‖ < ωρ̂m[τ ]);

3.5 Implementation of the solution of (n,m,s,c)-TA

This section proposes distributed and centralized algorithms for implementing the so-

lution of (n,m,s,c)-TA problem.

3.5.1 Distributed algorithms for solving (n,m,s,c)-TA problem

In a distributed solution, each LN and LG run Algorithm 3.1 and Algorithm 3.2, respec-

tively, for solving the (n,m,s,c)-TA problem. Due to the limited resources of the LNs,

some of them can not always participate for estimating the time duration. Depending

on the participation of the LNs, fully distributed or semi-distributed algorithms are pro-
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posed for solving (n,m,s,c)-TA problem. For deciding whether to use fully-distributed

or semi-distributed algorithm requires O(N) time complexity.

3.5.1.1 Fully-distributed algorithm

The Fully-Distributed (FD) algorithm runs at each LN to compute its best response

strategy based on the pricing strategies of LGs and time duration of other LNs. A

LN n broadcasts its best response strategy to other LNs which helps to calculate best

response strategies of other LNs. The LNs repeat these steps till not finding the stable

state as shown in Algorithm 3.3. To reduce the computation load on LNs, the LNs run

Algorithm 3.3 only for the feasible set of SFs and LGs.

3.5.1.2 Semi-distributed algorithm

The Semi-Distributed (SD) algorithm is similar to the FD algorithm except for the

participation of the LNs in the network as shown in Algorithm 3.3. Some LNs are

presented in the network with low power level due to which they can not perform the

computation which require high energy. Therefore, such LNs set, denoted by N ′, will

not change their strategy at each iteration. Other LNs in the network compute their

optimal time duration without the participation of these low power level LNs.

3.5.2 Centralized algorithm for solving (n,m,s,c)-TA problem

In the Centralized (CE) algorithm, a LN or the NS acts as a computation node, denoted

by n′, for estimating the best response strategies of the LNs. Each LN n ∈ N in CE

algorithm initially communicates the computation power level %n to the NS and NS

nominates a LN from the among LNs as a computation node n′ which has maximum

computation power, i.e. %n′ ≥ %n and 1 ≤ n ≤ N . The NS nominates itself as a

computation node n′ if none of the LN in the network have sufficient computation

power level, i.e., %n < %th where %th is the threshold for minimum required computation
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Algorithm 3.3: Distributed algorithm

Input : Precision threshold ω, ε, τ ← 0, ρ̂m[0];

Output: Optimal strategy t̂?n of n and ρ̂?m of m;

1 if Fully-Distributed Algorithm then
2 All LNs n ∈ N send remaining duty cycle and power level to the NS;

3 if Semi-distributed Algorithm then
4 Selected LNs n ∈ N ′ send remaining duty cycle and power level to the NS;

5 NS sends feasible set of SFs Fn to all n;
6 do
7 τ ← τ + 1;
8 . Follower game: LN n maximizes its net utility
9 for each LN n do

10 for each feasible SF f ∈ Fn do

11 Each n estimates t̂n using Algorithm 3.1;

12 . Leader game: Using Equation 3.29 for estimating ρ̂m[τ + 1]
13 ρ̂m[τ + 1] = ρ̂m[τ ] + ε5Um (ρ̂m[τ ]);

14 while (‖ρ̂m[τ + 1]− ρ̂m[τ ]‖ < ωρ̂m[τ ]);

power. The CE algorithm is called as CEL algorithm and CEN algorithm if n′ is NS

and a LN, respectively. Algorithm 3.4 shows the steps of the centralized algorithm.

3.6 Results and discussion

This section presents the simulation setup and results by evaluation of the derived

expressions.

3.6.1 Simulation setup and overview of results

We validate the analytical models for the performance of the game using Network

Simulator-3 [47]. LoRaWAN MAC protocol in Network Simulator-3 supports multiple

channels, SFs, LGs, and bi-directional networks with a large number of LNs. We have

modified the traffic control model (lorawan-tracing-example.cc). We repeat each exper-

iment 100 times and take the average. Simulations consist of one NS and multiple LGs

and LNs randomly deployed in a disc-shaped field with a radius of 10 Kms. All LGs

and LNs are configured to use the same 125-kHz BW with 868.100 MHz channel fre-
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Algorithm 3.4: Centralized algorithm

Input : Precision threshold ω, ε, τ ← 0, ρ̂m[0];

Output: Optimal strategy t̂?n of n and ρ̂?m of m;

1 Each n ∈ N communicates %n to NS;
2 NS computes j = arg maxi{%1, %2, · · · , %i, · · · , %n};
3 if (%≥%th) then
4 n′ ← nj ; . Algorithm is called as CEN Algorithm;
5 else
6 n′ ← NS; . Algorithm is called as CEL Algorithm;

7 Each n ∈ N communicates information In to n′ node;
8 . Run at n′ node;
9 do

10 τ1 ← τ1 + 1;
11 . Follower game: Each n maximizes its net utility;
12 do
13 Flag ← 0;
14 τ2 ← τ2 + 1;
15 for n← 1 to N do

16 . Using Equation 3.18 for estimating t̂n[τ2 + 1];

17 t̂n[τ2 + 1] =
aR̂n−R̂n

∑N
j=1,j 6=n R̂j t̂j [τ2]−δnρ̂m−λn,1

2(R̂n)2
;

18 if
(∥∥t̂n[τ2 + 1]− t̂n[τ2]

∥∥ > η
)
then

19 Flag ← 1;

20 t̂n[τ2]← t̂n[τ2 + 1];

21 while (Flag == 1);

22 Estimate t̂n of each n ∈ N using Algorithm 3.1;
23 . Leader game: Using Equation 3.29 for estimating ρ̂m[τ1 + 1];
24 ρ̂m[τ1 + 1] = ρ̂m[τ1] + ε5Um (ρ̂m[τ1]);

25 while (‖ρ̂m[τ1 + 1]− ρ̂m[τ1]‖ < ωρ̂m[τ1]);
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quency. The bit rate (bits per second) of the LNs are {5470,3125,1760,980,440,225} for

{SF7, SF8, SF9, SF10, SF11, SF12}, respectively. Two CR configurations (4/5 and 4/7)

have been exhaustively evaluated (except for the 20-bit physical header, for which a CR

of 4/8 is used). We consider that all LNs have a duty cycle of 1% (which translates into

36 seconds per hour) and follow perfect orthogonality in SFs [5]. The communication

delay between LNs and LG are 42.4ms and 3.2ms for uplink and downlink, respec-

tively. We assume the battery capacity of each LN is 2400 mAh. Most of the network

parameters are obtained from the datasheet of LoRaWAN Multitech mDot [48, 49].

3.6.2 Impact of the proposed solution

Table 3.1 illustrates the average packet delivery ratio with and without using the pro-

posed solution (Algorithm 3.1 and Algorithm 3.2). Each LN uses the SFs for a fixed

time period when the network is not using the proposed solution. It shows that the

proposed solution provides high utility as compared with others. This is because if the

LG allocates fixed time duration to the LNs for using the SFs then some LNs do not

access and over access the network and therefore average utility goes down. It also

shows that the difference of the utility with and without using the proposed solution is

high in a dense network, e.g., the utilities are 34.6 and 58 for N=22 and M=2. This is

because, each LN frees SF as it completes its transmission and other LNs get a chance

to transmit data on the free SF which reduces the network congestion or retransmission

of data.

Parts (a) and (b) of Figure 3.4 show the results of the total number of LNs versus the

average utility in percentage of LNs and LGs, respectively. Here, the average utility of

LNs (or LGs) in percentage is calculated as 1/X
∑X

i=1(uia−uiu)/uiu, where uia and uiu are

the utility of LNs (or LGs) with and without using the proposed solution, respectively,

1 ≤ i ≤ X, and X is the number of LNs (or LGs). Part (a) illustrates that the utility

of the LNs increases exponentially as the number of LNs increase in the network. This
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Table 3.1: Average packet delivery ratio without and with using the solution.

Fixed time period Proposed solution
M=2 M=3 M=4 M=2 M=3 M=4

N

2 98.6 98.6 99 98.6 98.8 99.1
7 94 95.7 96 95.6 96.3 97
12 82 84 85.7 86 89 91
17 55.2 61 72.8 77 82 86.5
22 34.6 48 61 58 67 76

is because, the proposed solution considers the need and requirement of the end users

and therefore fully utility the network and increases the gain. Part (b) illustrates that

average utility of LGs have less increment as compared with LNs because LGs get

revenue for the time allocation whereas LNs get price for data transmission.
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Figure 3.4: Performance comparison of LNs and LGs between proposed approach and
fixed time period SF allocation based approach.

Next, we illustrate the impact of the proposed solution on the ETR and the utility

of allocated SFs. The ETR in percentage is the ratio of the achieved TR with in-

terference to the TR without any interference problem. Part (a) of Figure 3.5 shows

that if the network uses the proposed solution then interference problem reduces and

ETR increases. The exiting work [18] considered the interference problem at the LG

and therefore ETR of the exiting work is less than the proposed solution but better

than the randomly allocated SFs [16]. The proposed solution considered the need and
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requirement of the SFs and therefore increases the utility of the allocated SFs as shown

in part (b) of Figure 3.5.
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Figure 3.5: Impact of the proposed solution on ETR and average utility of SFs.

3.6.3 Impact of the parameters of game analysis

This section illustrates the impact of the parameters of Theorem 3.1 (forecasted demand

of total data a), Algorithm 3.1 (terminating constant η), and Algorithm 3.2 (terminating

constant ω). The experiment considers the LoRa network scenarios where M = 2 and

M = 3 in parts (a1)-(a4) and (b1)-b(4) of Figure 3.6, respectively.

3.6.3.1 Forecasted demand of total data

Parts (a1), (a2), (b1), and (b2) of Figure 3.6 illustrate the impact of the forecasted

demand of total data, denoted by a, on the utilities of the LNs and LGs. The results

show that the utilities of the LNs and LGs are increasing with the increase of a for

the given LNs and LGs, where a = {10%, 15%, 20%}. This is because, the LNs and

LGs forward more data from the end users to the NS when forecasted demand is high.

An interesting observation from parts (a1) and (b1) is that, at a given a, the utility

of the LNs decreases when the number of LNs increased. This is because, when we

increase the LNs in a given network scenario, they get less time duration to access the

SFs due to which they are not able to forward the data from end users to the NS and

therefore their utilities decrease. Parts (a2) and (b2) illustrate that when the number
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of LNs increases in the network, the utility of LGs initially increases upto a certain

point. This is because, a large number of LNs increases the computation of accessing

the limited available SFs at the LGs. However, continuously increasing the LNs creates

the congestion in the network and therefore decreases the utility of LGs after a certain

point.

3.6.3.2 Terminating constants η and ω

We next present the impact of terminating constant η in Algorithm 3.1 on the utilities

of followers and leaders. Parts (a3) and (b3) of Figure 3.6 illustrate that 87 and 98

utility are achieved by the LNs when M = 2 and M = 3, respectively. It shows that

more LGs increases more iterative loop for finding the best SFs for the LNs. Similarly

with the parts (a4) and (b4) of Figure 3.6 show the impact of terminating constant ω.

3.6.4 Impact of FD, SD, CEL, and CEN algorithms

The Convergence Rate (CoR) of an algorithm illustrates how much time the algorithm

takes for finding the stable state of the network. The CEL and CEN centralized al-

gorithms are running on the NS and a selected LN, respectively. The FD and SD

distributed algorithms are running on all LNs and the selected LNs, respectively. The

CoR of FD, SD, CEL, and CEN algorithms are denoted by <FD, <SD, <CEL, and <CEN ,

respectively. Figure 3.7 illustrates the CoR of algorithms where the LoRa network con-

sists 10 LNs and 2 LGs which are randomly deployed in the FoI. Parts (a) and (b) of

Figure 3.7 illustrate the average utility of LNs (∆Un) and LGs (∆Um) of the given algo-

rithm, respectively, where ∆Un =
∑N

n=1 Un(tn, t−n)/N , ∆Um =
∑M

m=1 Um(ρρρm, tn)/M ,

N = 10, and M = 2. Part (a) shows that the followers (LNs) initially set high time

duration for using the allocated SFs. The results illustrate that the followers iteratively

update their time duration and the utility eventually converges to a stable value at

iteration, confirming the convergence and stability of the algorithms. An interesting
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Figure 3.6: Impact of the number of LNs on the utilities of LNs and LGs and rate of
convergence. Parts (a1)-(a4) and parts (b1)-(b4) show the results when 2 and 3 LGs
deployed in the network, respectively. Parts {(a1),(a2),(a3), and (a4)} show the avg.
utility of LNs and LGs for LG=2. Similarly, parts {(b1),(b2),(b3), and (b4)} show the
avg. utility of LNs and LGs for LG=3.
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observation from this results is the order of CoR is <CEL < <SD < <FD < <CEN . This

is because, the computation power of NS is much higher than the LNs and therefore

<CEN is highest. The SD algorithm considers limited LNs and therefore quickly finds

the stable state than FD algorithm, i.e., <FD > <SD. Finally, CEN algorithm runs on

a low processing LN which takes huge time for finding the stable state and therefore

CEN is the slowest algorithm. Similarly, the results on the convergence of LGs are

shown in part (b) of Figure 3.7. The order of CoR of the algorithms for LGs are the

same as LNs. This is because, a LG starts finding its optimal strategy only after the

best response strategy of LNs.

Next, we illustrate the impact of algorithms on finding the stable state of the net-

work with different values of the LNs (N = {2, 7, 12, 17, 22}) and LGs (M = {2, 3, 4}).

Previous result illustrates that CEN algorithm requires maximum time for finding the

stable state and therefore consists highest CoR. We calculate the CoR of CEL in per-

centage of CEN algorithm as (<CEN −<CEL)× 100/<CEN . Similarly, we calculate the

CoR of FD and SD algorithms w.r.t. CEN algorithm as shown in Table 3.2. The result

illustrates that the CEL algorithm is the fastest algorithm in all algorithms. We there-

fore conclude that if the network is small then FD is the best algorithm for finding the

best solution of (n,m,s,c)-TA problem.
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Figure 3.7: Illustration of convergence rate of follower (LNs) and leaders (LGs) of FD,
SD, CEL, and CEN algorithms.
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Table 3.2: CoR in % of CEL, FD, and SD algorithms w.r.t. CEN algorithm.

N
<CEL <SD <FD

No. of LG (M) No. of LG (M) No. of LG (M)
2 3 4 2 3 4 2 3 4

2 1.1 1.3 1.5 1.1 1.3 1.3 1.1 1.3 1.3
7 14.7 19.3 25.3 14.2 18.9 22.6 13.2 17.3 20.4
12 23 30.2 36.7 21.3 28.4 31.3 20.3 25.6 28.4
17 37 40 43 35.3 39.4 41.2 32.1 37.6 38.2
22 45 49 53 40 46 49 38 44 48

3.7 Conclusion

In this chapter, we studied the allocation of SFs based on the needs and requirements

of the LNs which helps to handle the interference problem. We estimated the required

time of a LN for accessing the SFs such that it satisfies its service requirement and the

network maximizes its revenue. Unlike earlier work in the literature, we used the end-

to-end network to compute the effective transmission rate and time duration for using

the allocated SF with interference problem in the network. We proposed centralized and

distributed algorithms to implement the proposed solution. The results demonstrated

that the interference among LNs should be considered to compute the transmission

rate, particularly for high density of LNs.


