CERTIFICATE

It is certified that the work contained in the thesis titled "Resource Allocation Techniques for extending the performance of Long-Range Network" by Preti Kumari has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

(Dr. Hari Prabhat Gupta)

Assistant Professor,

Dept. of Computer Science and Engineering,

Indian Institute of Technology (BHU) Varanasi

(काशी हिन्दू विश्वविद्यालय) (Baneras Hindu University)

द्राराम् सीमान्यकाम् । 221005

DECLARATION BY THE CANDIDATE

I, Preti Kumari, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of Dr. Hari Prabhat Gupta from July 2017 to September 2020 at Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc. reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 09-09-2020

Place: Varanasi

Treti Kumani

(Preti Kumari)

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

(Dr. Hari Prabhat Gupta)

Assistant Professor,

Dept. of Computer Science and Engineering,

Indian Institute of Technology (BHU) Varanasi

(काशी हिन्दू विश्वविद्यालय) (Banaras Hindu University) हाएश् रीपVeranasi-221005

. 1. 10 Va

Signature of Head of Department

Professor & flead संगणक विज्ञान एवं अनियाविकी विज्ञान Department of Computer Sc. & Engg भारतीय प्रौद्योगिकी संस्थान Indian Institute of Technology (बनारस डिन्टू यूनियारीटी) (Banaras Hindu University) नामावासी-२२१००५/Varanasi-221006

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Resource Allocation Techniques for extending the performance

of Long-Range Network

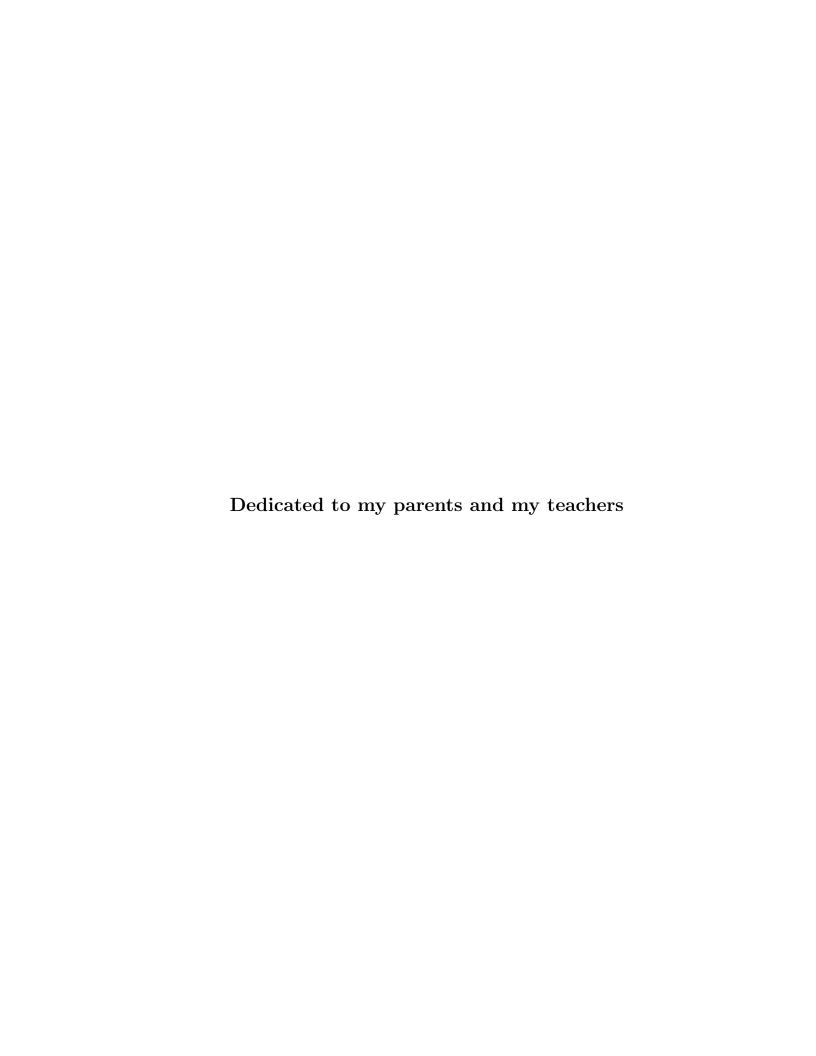
Name of the Student: Preti Kumari

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras

Hindu University) Varanasi all rights under copyright that may exist in and

for the above thesis submitted for the award of the *Doctor of Philosophy*.


Date: 9-9-2020

Place: Varanasi

Treti Kumani

(Preti Kumari)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Dr. Hari Prabhat Gupta, for his invaluable support and assistance. I feel immense pleasure in expressing my profound sense of gratitude and sincere regard for his constant feedback and expertise during all these years. I am eternally grateful to have had the opportunity to work on my thesis under his supervision.

This work couldn't be in its present form without the invaluable and seamless support of Prof. Sajal K. Das, Dept. of Computer Science, Missouri University of Science and Technology, Rolla, Missouri. I would also like to thank the other members of my Doctoral committee, Dr. Bhaskar Biswas, Department of Computer Science and Engineering, and Dr. Shyam Kamal, Department of Electrical Engineering, for their help and support throughout the tenure of my studies. Special thanks to Dr. Tanima Dutta for her consistent assistance in both work and life aspects. I would also like to convey my sincere gratitude to Dr. Rajeev Srivastava, Head of Department of Computer Science and Engineering and all the RPEC and DPGC members for their suggestions and endorsement to this work.

I am grateful to my colleagues and friends, Ashish Gupta, Rahul Mishra, Randheer Bagi, and Surbhi Saraswat for the long discussions and their brilliant insights that have helped me to overcome the challenges I have faced in the development of this work.

Finally, I express my heartfelt gratitude to my parents and my sisters for their constant support, love, encouragement, and sacrifices. Their affectionate love and care cannot be expressed in words.

Truti Kumani (Preti Kumari)

Contents

List of Figure	List	of	Fig	ures
----------------	------	----	-----	------

List of Tables

List of Symbols

List of Abbreviations

Preface

1 Introduction				1
	1.1	Motiv	ation of the research work	3
	1.2	Contri	ibutions of the thesis	5
2	Pre	limina	ries and related work	9
	2.1	Overv	iew of LoRa network	9
		2.1.1	LoRa network devices	10
		2.1.2	LoRa resources	11
	2.2	Overv	iew of Game Theory	12
		2.2.1	Nash equilibrium	12
		2.2.2	Bayesian game	13
		2.2.3	Stackelberg game	14
	2.3	Relat	ed work	14
		2.3.1	Interference with same SF (Co-SF interference)	15
		2.3.2	Interference with Co-SF and inter-SF interference	16
		2.3.3	Cross-technology radio interference	18
		234	Resource management for interference problem	10

for	effecti	ve use of the Spreading factors	2
3.1	Introd	luction	2
	3.1.1	Motivation of this work	2
	3.1.2	Major contributions	2
3.2	Prelin	ninaries and problem statement	2
	3.2.1	Network model	2^{\cdot}
	3.2.2	Effective transmission rate	2
	3.2.3	Overview of (n,m,s,c)-TA problem	2
3.3	Game	e model for (n,m,s,c)-TA problem $\dots \dots \dots \dots \dots$	2
	3.3.1	Follower (LoRa node) model	2
	3.3.2	Leader (LoRa gateway) model	30
3.4	Game	e analysis for solving (n,m,s,c) -TA	3
	3.4.1	Best response strategy of LNs	3
	3.4.2	Near Nash Equilibrium (NE) among the LNs	3
	3.4.3	Optimal strategies of LGs	3
	3.4.4	Stackelberg Equilibrium for solving (n,m,s,c) -TA problem	3
3.5	Imple	mentation of the solution of (n,m,s,c) -TA	3
	3.5.1	Distributed algorithms for solving (n,m,s,c)-TA problem $\ \ .\ \ .\ \ .$	3
	3.5.2	Centralized algorithm for solving (n,m,s,c)-TA problem	3
3.6	Resul	ts and discussion	4
	3.6.1	Simulation setup and overview of results	4
	3.6.2	Impact of the proposed solution	4
	3.6.3	Impact of the parameters of game analysis	4
	3.6.4	Impact of FD, SD, CEL, and CEN algorithms	4
3.7	Concl	usion	4
An	incen	tive mechanism-based Stackelberg game for scheduling o	of
Lo	Ra Spr	eading factors	4
4.1	Introd	duction	4
	4.1.1	Motivation of this work	5
	4.1.2	Major contributions and overview of the solution	5
4.2	Overv	riew of the network scenario	5
4.3	Findin	ng the feasible subsets of SFs	5
4.4	Identi	fy optimal subset of SFs for each LN	5
	4.4.1	Analysis of follower (LoRa node) game	58

		4.4.2	Analysis of leader (LoRa gateway) game	68
		4.4.3	Finding optimal subset of SFs	73
	4.5	Sched	uling of LNs using SFs to minimize the waiting time	74
	4.6	Result	ts and discussions	80
		4.6.1	Simulation setup	80
		4.6.2	Experimental results	81
		4.6.3	Comparison with existing work	85
	4.7	Conclu	usion	86
5	A I	Bayesia	an game based approach for associating the nodes to the	
		-		89
	5.1	Introd	luction	89
		5.1.1	Motivation of this work	90
		5.1.2	Major contributions	91
	5.2	Prelin	ninaries and system model	92
		5.2.1	Network model	92
		5.2.2	Bayesian game model	93
		5.2.3	Reputation model	94
	5.3	BG ba	ased approach for associating LNs to LGs	95
		5.3.1	Bayesian Game (BG) parameters	95
		5.3.2	Problem formulation and solution using BG	99
		5.3.3	Proof of existence and uniqueness BNE among LNs	103
	5.4	Evalua	ation of the proposed work	106
	5.5	An ap	plication of the proposed approach	113
		5.5.1	Overview of TILR	113
		5.5.2	Campus experiment	114
		5.5.3	Experimental results	114
	5.6	Conclu	usion	116
6	An	energy	y efficient smart metering system using Edge computing in	
	LoF	Ra netv	work 1	19
	6.1	Introd	luction	119
		6.1.1	Motivation of this work	121
		6.1.2	Major contributions	123
	6.2	Prelin	ninaries	124
		6.2.1	System model	124
		6.2.2	Definitions	125

		6.2.3	Long Short Term Memory (LSTM) model	126
	6.3	Delay	and energy analysis in EESM	127
		6.3.1	Compression-Decompression model	127
		6.3.2	Estimation of delay and energy consumption	132
	6.4	Energ	y Efficient Smart Metering System	135
		6.4.1	Problem formulation	135
		6.4.2	Solution to the EESM problem	137
	6.5	Perfor	mance evaluation by simulation	143
		6.5.1	Simulation setup	143
		6.5.2	Impact of compression model parameters	144
		6.5.3	Impact of EMS size	145
		6.5.4	Impact of the number of appliances	145
		6.5.5	Impact of the number of consumers	148
		6.5.6	Comparison with existing approaches	148
	6.6	Protot	type experiments	149
		6.6.1	Prototype specification and overview	150
		6.6.2	Experimental results	151
	6.7	Concl	usion	153
7	Cor	nclusio	n and future work	155
\mathbf{R}	efere	nces		157
${f Li}$	st of	Publi	cations	168

List of Figures

1.1	A smart home scenario using LoRa network	2
3.1	Motivations of the proposed work	22
3.2	End-to-end architecture of a LoRa network	25
3.3	Illustration of the block diagram of Stackelberg game	31
3.4	Performance comparison of LNs and LGs between proposed approach	
	and fixed time period SF allocation based approach	43
3.5	Impact of the proposed solution on ETR and average utility of SFs	44
3.6	Impact of the number of LNs on the utilities of LNs and LGs and rate	
	of convergence	46
3.7	Illustration of convergence rate of follower (LNs) and leaders (LGs) of	
	FD, SD, CEL, and CEN algorithms	47
4.1	Illustration of the block diagram of single leader and multiple followers	
	Stackelberg game	53
4.2	A smart home scenario using LoRa network	55
4.3	Network deployment of a LoRa illustrating the arrangement of LNs	56
4.4	Illustration of Hasse diagram of feasible subsets of SFs for n	58
4.5	Avg. time duration and utility of LNs at convergence of Algorithm 4.1.	68
4.6	Utility of LG and LNs at the convergence of Algorithm 4.2	73
4.7	Illustration of Hasse diagram of optimal subsets of SFs	74
4.8	Illustration of scheduling of SFs	75
4.9	Illustration of scheduling of SFs for LNs	78
4.10	Average utility of LNs and LG	82
4.11	Impact of number of LNs on utility of LNs and LG	82
4.12	Impact of the convergence parameters on the utility of LNs	84
4.13	Impact of the number of LNs and optimal SFs on waiting time of SFs.	85

4.14	Comparison of waiting time and throughput of proposed approach with	
	existing work	86
5.1	Illustration of deployment of LoRa network	92
5.2	Impact of EUs on the PDR and PDD with different schemes	109
5.3	Impact of the network topology on PDR and PDD	110
5.4	Impact of weight parameter on ARL, PDD, and PDR	112
5.5	Comparison of the proposed approach with existing work	113
5.6	Illustration of TILR	114
5.7	Experimental scenarios of TILR	117
6.1	Illustration of an example scenario of smart metering	121
6.2	An Energy Efficient Smart Metering system (EESM)	125
6.3	Illustration of Compression-Decompression model, where symbol (\blacksquare)	
	denotes an LSTM cell	128
6.4	Impact of LSTM parameters on compression and communication time,	
	consumed energy, and accuracy of the system	146
6.5	Impact of EMS size on time and energy of EESM system	147
6.6	Impact of number of appliances attached to an Edge device	147
6.7	Comparison of time and energy consumption of the EESM system with	
	existing works	149
6.8	Smart metering prototype deployed at IIT (BHU), Varanasi	151
6.9	Energy consumption of appliances in EESM system	152
6.10	Impact of appliances on time, energy, accuracy, and residual energy	153

List of Tables

3.1	Average packet delivery ratio without and with using the solution	43
3.2	CoR in % of CEL, FD, and SD algorithms $w.r.t.$ CEN algorithm	48
4.1	Illustration of properties of different functions	59
4.2	Illustration of optimal subsets of SFs for LNs	75
4.3	Rate of convergence of Algorithm 4.1 and Algorithm 4.2	84
5.1	Real-world network topologies used in experiment	110
6.1	List of appliances in six houses	150
6.2	Hardware specification of prototype	151

List of Symbols

Symbol	Description
N	No. of LNs in network
$\mathcal N$	Set of N LNs
n	$n \in \mathcal{N}$, index of LNs
M	No. of LGs in network
\mathcal{M}	Set of M LGs
m	$m \in \mathcal{M}$, index of LGs
S	No. of services request from LN
${\mathcal S}$	Set of S services
s	$s \in \mathcal{S}$, index of services
C	No. of CRs of LN in network
\mathcal{C}	Set of C LGs
c	$c \in \mathcal{C}$, index of CRs
F	No. of SFs in network
${\cal F}$	Set of F SFs
f	$f \in \mathcal{F}$, index of SFs
σ^2	Power of white Gaussian noise
t_n^m	Transmission time duration of LN n on LG m
t_n^f	Transmission time duration of LN n using SF f
$t_{n,m}^{s,c}$	Transmission time duration of LN n on LG m for service s on CR c
$ ho_m^{s,c}$	Price paid by LN to the LG m for service s on CR c
R_n^m	Transmission rate between LN n and LG m
R_n^f	Transmission rate of LN n using SF f
$R_{n,m}^{s,c}$	Transmission rate between LN n and NS via LG m for service s on CR c
p_n	Power level used by LN n for data transmission
η,ω	Terminating constant
h_n^m	Channel gain from LN n to LG m
W	Bandwidth between LN to LG

Symbol	Description
Q	Maximum number of layers of Compression-Decompression model
Q_n	Number of layers of LN n
d_{Q_n}	Compressed data size at Q_n layer

Abbreviations

Abbreviation Description

AS Application Server BG Bayesian Game

BNE Bayesian Nash Equilibrium

BW Band Width

CF Channel Frequency
CoR Convergence Rate

CR Coding Rate

CSS Chirp Spread Spectrum

EESM Energy Efficient Smart Metering

ETR Effective Transmission Rate

EU End User

IoT Internet of Thing

ITS Intelligent Transportation System

LAN Local Area Network

LG LoRa Gateway
LN LoRa Node
LoRa Long-Range

LoRaWAN Long-Range Wide Area Network
LPWAN Low Power Wide Area Network

NE Nash Equilibrium
NS Network Server

SE Stackelberg Equilibrium

SF Spreading Factor
SG Stackelberg Game

TILR Traffic Information acquisition system based on Long Range

TP Transmission Power
TR Transmission Rate

Preface

The Internet of Things (IoT) framework can be widely used to remotely monitor and manage everything such as lighting, traffic congestion, road warnings, and early detection of things. One of the energy-efficient wireless communication technology of Low Power Wide Area Network (LPWAN) is Long-Range (LoRa) that supports sustainable IoT due to its capability to offer tradeoffs among power consumption, communication range, and data rate. LoRaWAN open standard is an effective LPWAN protocol that builds on the top of the LoRa modulation scheme. The LoRa architecture consists of end users, nodes, gateways, servers, and applications. Nodes acquire and transfer the data to the gateways by using LoRaWAN protocol. LoRa supports high-density deployment of nodes because of its physical layer which offers degrees of freedom in carrier frequency, bandwidth, coding rate, and spreading factors to orthogonalize transmissions. The spreading factors act as virtual channels. A lower spreading factor provides high data rates but reduces transmission range, whereas, a higher spreading factor provides longer range at the low data rate. Despite the above advantages of LoRa, it suffers from the interference problem. The interference problem occurs when multiple nodes are connected with a gateway using the same spreading factor and thus subject to collisions. The transmissions of data with different SFs are also not completely immune to the adjacent SFs due to the imperfect orthogonality within SFs. Therefore, the performance of the network deteriorates due to the interference problem.

An efficient way of allocation of the resources can reduce the interference problem.

In the thesis, we propose the techniques to allocate the resources for extending the performance of the LoRa network. We first study the allocation of spreading factors based on the needs and requirements of the nodes, which helps to handle the interference problem. We estimate the required time of a node for accessing the spreading factors, such that it satisfies its service requirement and the network maximizes its utility. Unlike earlier work in the literature, we use an end-to-end network to compute the effective transmission rate and time duration for using the allocated SF with the interference problem in the network. We propose centralized and distributed algorithms to implement the solution. Next, we propose an approach for optimal spreading factors allocation and scheduling the nodes that are connected to the gateway. We compute the required transmission time duration of each node for using the spreading factors, such that the requirement of nodes is satisfied and the network maximizes the utility. We use a game theory-based approach for computing the time duration of nodes on suitable spreading factors. The obtain optimal time duration of nodes are then scheduled to minimize the waiting time. Further, we propose an approach for identifying the best gateways within the communication range of the nodes and optimal time duration for data transmission on those gateways. We use a Bayesian game for modeling the LoRa network in which the nodes can have variable transmission power. We also demonstrate an application of the analysis to design a traffic information acquisition system based on the LoRa network. Finally, we propose an energy efficient smart metering approach for transferring information about energy consumption to the operator. The approach uses Compression-Decompression model that incorporates deep learning techniques. The model compresses the multivariate data of the smart meter (from different consumer devices) at the node and transfers it to the gateway. The gateway decompresses the received data using a similar architecture as Compression model. Further, the gateway transfers the decompressed data to the electricity provider, which can be utilized for accurate decision making.