
50 

 

Chapter 5: Variable Length Character N-Gram Embedding 

Of Protein Sequences for Secondary Structure Prediction 

In this chapter, an effective n-gram based representation of protein primary sequences 

used for their secondary structure prediction.  The proposed method for tokenization 

of primary sequences includes the variable length of character n-gram words. The 

most frequent n-gram words in the given dataset used for dense vector representation. 

Further, a stack of long short term memory networks used to find the complex 

contextual information to predict the secondary structure. The proposed model 

performance compared with other states of the art methods on publicly available data. 

5.1  Introduction 

Proteins are biological molecules that perform necessary functions for all human body 

processes, such as cell communications, enzymatic activity, and metabolism. The role 

of a protein is directly related to its three dimensional structure. Often, distinct amino 

acid sequences incorporate a similar structure, and the resulting structures show the 

same functionality only due to the similarity in their conformations [81]. Biologists 

have evolved four levels of the amino acid organization to understand protein 

structures. These are primary, secondary, tertiary, and quaternary structures [55]. The 

functions of protein are related to tertiary structure [56]. Protein secondary structure 

depends on the primary sequences, necessary for tertiary structure prediction [1][10]. 

Protein secondary structure prediction is one of the important tasks in proteomics 

[82]. Several computational methods used for protein secondary structure prediction, 
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which include rule-based [23] methods as well as machine learning-based methods 

[24] and evolutionary information [25]. Some feature extraction tools have been 

developed to generate features from primary sequences, such as Pse-in-One [11], 

BioSeq-Analysis [12], Pse-Analysis [13], and iFeature [14]. Pse-in-One is a 

webserver using 28 modes to generate feature vectors based on pseudo components. 

These feature vectors combined with machine learning methods for analyzing 

biological processes. The BioSeq-Analysis uses amino-acid compositions, 

autocorrelation, pseudo acid composition (PseAAC), profile-based features, and 

predicted structure features. BioSeq-Analysis2.0. uses Residue composition (One-hot, 

One-hot (6-bit), Binary (5-bit), Learn from alignments, Position-specific of two 

residues), physicochemical property, Structure composition, and Evolutionary 

information. BioSeq-Analysis2.0 incorporates two classification algorithms (Support 

Vector Machine (SVM), Random Forest (RF), and a sequence-labeling algorithm 

(Conditional Random Fields (CRF). Pse-Analysis automatically complete feature 

extraction, optimizing parameter, model training, cross-validation, and evaluation 

according to user-provided benchmark dataset for the query sequence. iFeature is a 

python tool to generate features for protein and peptide sequences. It combines feature 

clustering, selection, and dimensionality reduction algorithms with machine learning 

models for analysis and modeling. 

Recently, deep neural network approaches have been proposed for the protein 

secondary structure prediction directly from the primary sequences. Convolution 

neural networks and recurrent neural networks have the learning capability of 

complex representation of sequences mostly used in protein secondary structure 
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prediction. A deep neural network with chained conditional neural network and next 

step conditioning achieve Q8 accuracy of 71.4% [62]. Protein secondary structure 

prediction using a deep convolution neural network with multiple layer shifts and 

snitch achieve Q8 accuracy of 68.4% [63]. Recurrent neural networks with profiles 

information perform protein secondary structure prediction with Q8 accuracy of 

51.1% [64]. The bidirectional long short term memory network performs secondary 

structure prediction with Q8 accuracy of 67.4% [83]. A 2-D convolutional neural 

network combines with a two-way recurrent neural network achieves Q8 accuracy of 

70.2% [27]. The supervised generative stochastic network[35] utilized both local 

dependency and long-range dependency for protein secondary structure prediction. 

DCRNN [65] combines cascaded convolution and recurrent neural networks for 

protein secondary structure prediction. DeepCNF [26] used the conditional random 

field for secondary structure prediction with 82.3% Q3 accuracy and 68.3% Q8 

accuracy.  

The proposed work's main contribution is: (1) Protein primary sequences are 

represented as the variable-length character n-gram to extract local contexts between 

amino acid residues. A vector containing counts of these variable-length character n-

grams shows each protein sequence. These character n-grams vectors transform into a 

low dimensional deep embedding representation. (2) Stacked bidirectional Long Short 

Term Memory networks used for extracting the non-local context between amino-acid 

residues. (3) The proposed model evaluated three-class secondary structure 

predictions on publicly available datasets ss.txt, RS126, and CASP9. Experiments 

demonstrate that the combination of character n-gram embedding vector of primary 
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sequences and stacked Bidirectional Long Short Term Memory networks capture 

better features to improve the secondary structure prediction. 

5.2  Protein Sequence Representation Method 

Character n-grams word representations have a long history as features for several 

natural language processing applications. Some prior work has found benefit from 

using character-based compositional models that encode arbitrary character sequences 

into vectors. Examples include recurrent neural networks (RNNs) and convolutional 

neural networks (CNNs) on character sequences, showing improvements for several 

NLP tasks [67–69]. By sharing sub word information across words, character models 

have the potential to better represent rare words and morphological variants. 

Among all the measures, extracting frequencies of character n-grams is a more 

effective approach that is able to capture nuances of higher level and tolerate the 

noises such as grammatical errors or misuse of punctuations. Moreover, the procedure 

of extracting n-grams is language-independent and requires no special tools, 

especially for oriental languages, where the tokenization procedure is not trivial [6]. 

The character n-gram approach has been proven to be quite useful to quantify the 

writing style [7]. Keselj [9] and Stamatatos [10] reported very good results using 

character n-gram information. Moreover, one of the best performing algorithms in an 

authorship attribution competition organized in 2004 was also based on a character n-

gram representation [11]. An early study in this category of character-based models is 

to create corpus based fixed-length distributed semantic representations for text.  [79]. 

To train k-gram embeddings, the top character k-grams are extracted from a corpus 

along with their co-occurrence counts. Then, singular value decomposition (SVD) is 
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used to create low dimensional k-gram embeddings given their co-occurrence matrix. 

To apply them to a piece of text, the k-grams of the text are extracted, and their 

corresponding embeddings are summed. The study evaluates the k-gram embeddings 

in the context of word sense disambiguation. A more recent study trains character n-

gram embeddings in an end-to-end fashion with a neural network [96]. They are 

evaluated on word similarity, sentence similarity, and part-of-speech tagging. 

Training character n-gram embeddings have also been proposed for biological 

sequences [3,4] for various bioinformatics tasks. 

An important issue of the character n-gram approach is the definition of n. A large 

value of n would better capture lexical and contextual information, but it would also 

capture thematic information and increase the dimensionality of the representation, 

while a small n would not be adequate for representing the contextual information. 

The drawbacks of defining a fixed value for n can be avoided by extracting variable-

length n-grams [12]. This chapter is aimed at introducing a variable-length character 

n-gram approach for protein secondary structure prediction. Finally, experiments are 

conducted to evaluate the effectiveness of the proposed approach. 

5.3  Dataset Description  

The proposed architecture was trained on a large dataset ss.txt [42]. The training set 

contains 174,372 protein sequences. In the testing phase of the proposed architecture 

two datasets namely CASP9 [75] and RS126[44] were used. The CASP9 [75] dataset 

have 203 non-redundant proteins, derived from the 2016 CASP meeting. The RS126 

[44] dataset have 126 non-homologous globular sequences. In RS126[44] average 

length of sequences are 185, and sequence similarity is below 31%. The maximum 
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similarity between the two sequences in the training and test sets is 30% to ensure the 

model performance. All the eight types of the secondary structure of Define 

Secondary Structure of Proteins (DSSP) [45] and their three-class categorization. The 

DSSP eight types of secondary structure classes, such as 310-helix (G), alpha-helix 

(H), and pi-helix (I), beta-bridge (B), and beta-strand (E), high curvature loop(S), 

beta-turn (T), and coil(C). These eight classes simplified into three significant types’ 

alpha-helix (H), Beta-strand (E), and coil regions (C) by using standard conversion. 

5.4 Methodology 

5.4.1  Model Details 

The proposed model is described in figure 5.1 by representing primary sequences as 

variable length character n-gram words vectors. These vectors are represented as 

embedded vectors in a low dimensional space.  These vectors are having local 

contextual information pass to bidirectional long short term memory network. The 

bidirectional long short term memory captures the non-local contextual information 

for protein secondary structure prediction. The model learns embeddings of variable 

length character n-gram words, which produce primary sequences embeddings when 

all the variable length character n-gram words are summed. Finally, the softmax 

function is categorized the three class of secondary structure. 
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Figure 5.1: Proposed Model for Protein Secondary Structure Prediction 

5.4.2  Character N-Gram 

We propose a segmentation approach for dividing protein sequences into frequent 

variable-length sub-sequences. The proposed model extracts a set of character n-

grams with variable length instead of fixed length. The collection of n-gram words is 

too large in preprocessing to eliminate insignificant n-gram words. To select the 

valuable n-gram word frequency is an essential criterion. Therefore, all the n-grams 

rank based on their frequency measure and then removes the insignificant ones. Each 

primary sequence is a bag of character n-gram.  The proposed model extracts all the 

n-grams for n greater or equal to 1 and smaller or equal to 4. The set of n-grams 

mapped to unique integers in one to N. The model represents sequence A by GA ⊂ {1. 

. . G} the set of n-grams appearing in sequence A. We associate a vector 
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representation zg to each n-gram g. We represent a sequence by appending the vector 

representations of its n-grams. 

5.4.3 Deep Network: Bidirectional LSTM 

Long Short Term Memory uses memory to learn long-range interactions between 

residues in primary sequences. The BRNN [1] utilizes the past and future residue 

information to predict the current amino acid secondary structure. In this chapter, a 

bidirectional long short term memory (Bi-LSTM) is used to extract in-depth features 

from primary sequences to predict the secondary structure of a protein. 

 ( )xwhwfh thhtxhforward += −1  (5.1) 

 ( )xwhwfh thhtxhbackward += +1  (5.2) 
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Where Wxh, Whh, and Why are weight matrices. xt is current input and ht-1  is 

previous state. 

In the previous section described that the variable-length character n-gram embedding 

capture local contextual information. After obtaining the primary sequences’ deep 

representation using character n-gram, the proposed architecture uses bidirectional 

long short-term memory (Bi-LSTM) to capture non-local interaction. The model uses 

a stacked bidirectional long short-term memory network. The first layer receives input 

as embedding vectors from the embedding layer, and the second layer bidirectional 

long short term memory network produces an output vector. 

5.4.4  Fully Connected Layer 

The model flattened the output vectors obtained from the stacked Bi-LSTM layer to 

pass in a dense layer. The softmax function categorizes four classes alpha-helix, Beta 
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Strand, coil, and no class. Softmax having a total sum of probability for each class is 

one. 
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Where zi is the element of vector z representing the probability of each class, 

k is equal to four showing the classes alpha-helix, beta-sheet, coil and no-

class in vector z. 

5.5  Experimental Details 

Python version 3.6.7  implement the proposed work. At the front end, Keras[31] and 

Tensorflow [32] version 1.9  used as a backend. Keras is an open-source API 

implemented using the Python for machine learning programming. Tensorflow has 

excellent ability in numerical computation. The proposed model chooses a dropout of 

0.1 adopted to avoid overfitting. RmsProp [33] optimization applied with a batch size 

of 64. The categorical cross-entropy used to update the weights and bias, all the 

hyperparameters used in the proposed model listed in Table 5.1.  

Table 5.1: Hyper-parameters Value 

Hyper-parameters Value 

Cell 64 

Dropout 0.1 

Recurrent dropout 0.1 

Batch size 64 

Optimization method RmsProp 

Loss Categorical_crossentropy 

Output activation Softmax 
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5.6 Results and Discussion 

In this work, inspired by unsupervised word segmentation in natural language 

processing, we propose a general-purpose segmentation of protein sequences in 

frequent variable-length sub-sequences, for machine learning tasks. This segmentation 

is trained once over large protein sequences (Swiss-Prot) and then is applied to a 

given set of sequences. In this chapter, we use this representation for developing a 

protein sequence embedding. 

The dataset divided into training and testing in a ratio of 70 to 30 using a statistical 

sampling method. Data are split between training and testing to produce the 

generalized model. The secondary structure prediction model using Q3 accuracy for 

three classes of secondary structure. The model trained on ss.txt with a Q3 value of 

92.57%. The plot of Q3 with epochs for dataset ss.txt is in figure 5.3.The plot of loss 

for training and testing set for ss.txt is in Figure 5.2. The x-axis represents the number 

of epochs, and the y-axis represents the loss of the proposed model. The model 

performance is comparable for both pieces of the training as well testing set. Initially, 

there is a difference between training and testing value, but as the number of epoch 

increases, the difference decreases. The minimum difference value between training 

loss and testing loss shows that the proposed architecture with Bi-LSTM is 

performing well. 

Table 5.2:  Performance Comparison of Bi-RNN, Bi-GRU and Bi-LSTM 

RNN Model F-measure Sensitivity Specificity Accuracy 

Bi-LSTM 0.9182 0.9134 0.9746 91.81% 

Bi-GRU 0.8471 0.8337 0.9595 86.40% 

Bi-RNN 0.7840 0.7778 0.9454 80.45% 
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Figure 5.2: Training and Testing Loss over Epochs for ss.txt 

 

Figure 5.3: Training and Testing Accuracy over Epochs for ss.txt 

 

The proposed architecture implemented and evaluated the three-bidirectional 

recurrent neural networks such as Bi-RNN, Bi-GRU, and Bi-LSTM for protein 

secondary structure prediction. Further, the performance metrics used to compare 

three recurrent neural networks are F-measure, Sensitivity, Specificity, and Accuracy. 

For training purposes, ss.txt data used, whereas for testing purposes CASP9 and 

RS126 were used. The results in Table 5.2 show that Bi-LSTM is giving better results 

in comparison to Bi-RNN, Bi-GRU. Bi-LSTM model has higher sensitivity when 

compared with Bi-RNN and Bi-GRU. 

The F-measure score is the harmonic mean between precision and recall. The model 

shows a high F-measure value of more than 90%. So the precision and recall are 
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equally better for secondary structure classification. The sensitivity and specificity 

greater than 90% imply that secondary structure prediction correctly identifies each 

class. The prediction accuracy is 91.81%. 

The proposed architecture performance for unigram, bigram, and trigram, shown in 

Table 5.3. The model gives a better result for bigram compared with unigram for 

training and testing both. Further increasing the value of n-gram, the Q3 value 

increase for training but decreased for testing. The model also evaluated for 4-gram 

and 5-gram, showing the same result as a trigram. The better result for bigram shows 

that the primary sequences have repeated combinations of two amino acids, which 

better decide their secondary structure. 

Table 5.3:  Q3 accuracy for different value of n-gram 

n-gram size Q3(%) 

Unigram 82.74 

Bigram 88.45 

Trigram 81.96 

 

The model computed secondary structure with a variable-length character n-gram, 

which consisted of unigram, bigram trigram, and four-gram token representations 

(i.e., 1 − 4 grams). The result of experiments with a different combination of n-gram 

value for protein secondary structure prediction is in Table 5.4. 
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Table 5.4: Q3 accuracy for different combination of n-gram 

n-gram combination Q3(%) 

Unigram + bigram 91.86 

Unigram + bigram+ trigram 92.90 

Unigram + bigram+ trigram 

+ four-gram 

93.87 

 

The proposed model has tested for two public datasets CASP9 and RS126. The results 

on both datasets show the effectiveness of the model compared to other state-of-the-

art methods. The methods based on deep neural networks for secondary structure 

prediction methods, such as (SPIDER3)[2], JPred4[3], RaptorX[4], MUFOLD-SS[5], 

and Ensemble LSTM[6] used to compare the model performance on CASP9. As 

shown in Table 5.5, the Q3 value of our approach is 89.66%, which is better than 

SPIDER3, JPred4, MUFOLD-SS, and RaptorX, with Q3 81.9%, 79.3%, 84.82%, and 

81.0%, respectively.  

The model evaluation result for RS126 compared with the secondary structure 

prediction methods such as Psipred[7], PHD[8], Sspro[9], Jpred4[3], and MUFOLD-

SS[5]. The RS126 test data sets secondary structure prediction results of the proposed 

architecture reported in Table 5.6. 
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Table 5.5: Q3 value comparison with other Methods on dataset CASP9. 

 

Methods Q3 (%) 

Proposed Model 89.66 

Ensemble LSTM[79] 83.3 

Spider3[4] 81.9 

Jpred4[14] 79.3 

MUFOLD-SS[78] 84.82 

RaptorX[77] 81.0 

 

Table 5.6: Q3 value comparison with other Methods on dataset RS126. 

Methods Q3 (%) 

Proposed Model 86.49% 

Psipred[50] 81.01 

PHD[53] 76.92 

Sspro[36] 77.01 

Jpred4[14] 73.82 

MUFOLD-SS[78] 74.21 
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5.7 Conclusion 

The segmentation of protein primary sequences in variable length character n-gram 

words, easily capture the local contextual information of amino acid residues. Further, 

these variable length n-gram words input to bidirectional long short term memory 

network, which easily capture complex non-local contextual information. The 

combination of variable length segmentation and long short term memory network 

better predict the protein secondary structure form their primary sequences.  


