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Chapter 4:  Protein Secondary Structure Prediction using 

Character n-gram Embedding and Bi-LSTM 

 

This chapter presents an effective method for predicting protein secondary structure 

using character n-gram embedding and bidirectional long short term memory 

network. For the prediction of protein secondary structure, primary sequences are 

represented as dense embedding vectors, which capture the contextual information for 

each amino acid residues. Further, we examine the most relevant n-gram words in the 

dataset. Finally, the selected n-gram features are input to embedding layers and 

construct dense vectors. These dense vectors for n-gram words of amino acid residues 

combined with bidirectional long short term memory to predict the protein secondary 

structure from their primary sequences. The proposed method shows a significantly 

encouraging prediction performance as compared with other state-of-art methods.  

4.1  Introduction 

Proteins are essential biological molecules for performing biological functions in 

living beings. They play a vital role in the catalysis of biochemical reactions, 

enzymatic activity, cell communication, and many more [54]. Protein primary 

sequences are a combination of twenty types of amino acid residues. The primary 

sequences are varying in length. The amino acid residues far apart from each other in 

the linear chain some time close in three dimensions. So amino acid residues have a 
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dependency on local as well as long-range contexts for protein secondary structure 

prediction. 

Two amino acid residues combine with peptide bonds between the amino and 

carboxyl groups. Protein secondary structure prediction is necessary for its function 

analysis and drug designing. Protein primary structure is a one dimensional amino 

acid sequence, and tertiary structure defines the structure in three dimensions. Protein 

functions are highly related to their tertiary structure [55]. Protein secondary structure 

connects both primary and tertiary structures. The accurate prediction of secondary 

structure is essential because it results in a more precise three dimensional structure 

prediction [56]. Protein secondary structure mainly has three forms, alpha-helix (H), 

Betastrand (E), and coil regions (C). 

The recent protein sequencing technique results in a vast number of protein sequences 

deposited in the protein data bank (PDB). The number of protein sequences is 

comparably more extensive than predicted proteins secondary structure [10]. 

Experimental methods have high precision in protein secondary structure prediction. 

The gap between the number of known sequences and the predicted structure is 

widening. Thus, there is a greater need than ever before for a reliable computational 

method to address the problem of protein structure prediction (PSP) directly from the 

sequence. Since experimental techniques are not efficient, and a large number of 

protein sequences deposited in the protein data bank, the computational methods 

required for protein secondary structure prediction [10]. Therefore, accurately 

predicting protein secondary structure from primary sequences is one of the essential 

problems in the field of biological computing. Several computational methods utilized 
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for protein secondary structure prediction, such as statistical methods based on the 

propensity of individual residues[23,57] could not consider contextual information. 

These methods have Q3 accuracy between 60%-65% approx. Several Machine 

learning methods used for protein secondary structure prediction, such as Support 

Vector Machine [25], Conditional Random Field[13], achieved remarkable 

performances. But machine learning methods depend on local residue statics and 

ignore the long-range contextual information. Machine learning methods feature 

extraction methods are weak because they are handcrafted. So feature extraction is 

essential for a machine learning based predictor. Some feature extraction tools have 

developed to generate features from primary sequences, such as Pse-in-One [58], 

BioSeq-Analysis[59], Pse-Analysis[60], and iFeature [61]. Pse-in-One is a webserver 

using 28 modes to generate feature vectors based on pseudo components. These 

feature vectors are combined with machine learning methods for analyzing biological 

processes. The BioSeqAnalysis uses amino acid composition, autocorrelation, pseudo 

acid composition (PseAAC), profile-based features, and predicted structure features. 

BioSeq-Analysis2.0. uses Residue composition (One-hot, One-hot (6-bit), Binary (5- 

bit), Learn from alignments, Position-specific of two residues), physicochemical 

property, Structure composition, and Evolutionary information. BioSeq-Analysis2.0 

incorporates two classification algorithms (Support Vector Machine (SVM), Random 

Forest (RF), and a sequence labeling algorithm (Conditional Random Fields (CRF). 

PseAnalysis automatically completes feature extraction, optimizing parameter, model 

training, cross-validation, and evaluation according to user-provided benchmark 

dataset for the query sequence. iFeature is a python tool to generate features for 
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protein and peptide sequences. It combines feature clustering, selection, and 

dimensionality reduction algorithms with machine learning models for analysis and 

modeling. Deep neural network methods, mainly convolutional and recurrent neural 

networks, have used in protein secondary structure prediction because of their 

automatic representation of raw sequences and learning of nonlinear hidden patterns. 

Protein secondary structures depend on local contexts as well as long-range contexts 

between amino acid residues. Deep network combined chained conditional neural 

network with next step conditioning with Q8 accuracy 71.4% [62]. Deep convolution 

neural network with multiple layer shifts and snitch for protein secondary structure 

prediction achieves 68.4% Q8 accuracy [63]. Recurrent neural networks combined 

with profiles perform protein secondary structure prediction with 51.1 % Q8 accuracy 

[64]. Protein secondary structure prediction using bidirectional long short term 

memory achieves 67.4% Q8 accuracy [34]. A deep network combines with 2-

dimensional CNN, and a two-way recurrent neural network achieves 70.2% Q8 

accuracy[27]. The supervised generative stochastic network [35] utilized both local 

dependency as well as a long-range dependency for protein secondary structure 

prediction. DCRNN [65]combines cascaded convolution and recurrent neural 

networks for protein secondary structure prediction. DeepCNF [26] performs 

secondary structure prediction using conditional random field and shows 82.3% Q3 

accuracy and 68.3% Q8 accuracy. The primary sequences are varying in length. The 

amino acid residues far apart from each other in the linear chain some time close in 

three dimensions. So amino acid residues have a dependency on local as well as long-

range contexts for protein secondary structure prediction. 
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In recent time the character sequences represented as word embeddings using deep  

functional architecture.  A recursive model used word embeddings which trained over 

unsupervised morphological analysis [66].  A bidirectional long short term memory 

(Bi-LSTM) recurrent neural network on characters for embedding arbitrary word 

types, which showed better performance for language modeling and POS tagging[67]. 

Character level recurrent neural network methods proposed to represent words for 

dependency parsing[68],  for machine translation, and character to character 

translation[66,69,70]. The character level recurrent neural network proposed for 

feature representation and  language modeling[71,72]. The convolutional neural 

network combined with character n-gram have been used for several tasks such as 

language modeling [73], part-of-speech tagging [74], named entity recognition [69]. 

The proposed model uses character n-gram embedding for primary sequence 

representation. 

 The main contribution of this chapter is: (1) Protein primary sequences are 

represented as the character n-gram to extract local contexts between amino acid 

residues. A vector containing counts of character n-grams shows each protein 

sequence. These character n-grams vectors transform into a low dimensional deep 

embedding representation. (2) Stacked bidirectional Long Short Term Memory 

networks used for extracting the non-local context between amino-acid residues. (3) 

The proposed model is evaluated for the three-class secondary structure predictions 

on three publicly available datasets ss.txt, RS126, and CASP9. Experiments 

demonstrate that the combination of character n-gram embedding vector of primary 
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sequences and stacked Bidirectional Long Short Term Memory networks captures 

better features to improve the secondary structure prediction. 

4.2 Dataset Description 

The proposed architecture used a dataset ss.txt[42]  for training. The dataset has 

174,372 protein sequences. Two public datasets, CASP9[75] and RS126[44] , used to 

evaluate the proposed architecture performance. The CASP9 test set was derived from 

the 2016 CASP meeting, containing 203 non-redundant proteins. The RS126 is a set 

of non-homologous 126 globular sequences used as a standard for assessing the model 

performance. The RS126 data set sequences have an average length of 185, and 

similarity is below 31%. To ensure the validity of the test result, no two sequences in 

the training and test sets have a similarity over 30%. 

4.3  Problem Statement: 

We present a simple representation for protein primary sequence as dense embedding 

vector by utilizing amino acid residues contextual information. A single amino acid 

residue is represented as character n-gram count vector to show protein primary 

sequence as dense vector. Protein Secondary Structure prediction from a single 

sequence of amino acid using character n-gram word embedding vector and 

Bidirectional Long Short Term Memory (Bi-LSTM) network. 

4.3.1  Input features 

Protein primary sequence represents the sum of the vector representation of its n-

grams. Firstly, generate a vocabulary of n-gram words of size V for amino acid 

sequences. The aim is to learn a vector representation for each character n-gram word 
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in V. The Keras embedding layer used to represent the sequences as dense embedding 

vector. The Keras embedding layer initially has some random weights, and during 

training, learns to embed for each n-gram in the vocabulary list. 

4.3.2 Outputs: 

All the eight types of the secondary structure of Define Secondary Structure of 

Proteins (DSSP)[45]  and their three-class categorization listed in Table 4.1. The 

DSSP eight types of secondary structure classes, such as 310-helix (G), alpha-helix 

(H), and pi-helix (I), beta-bridge (B), and beta-strand (E), high curvature loop(S), 

beta-turn (T) and coil(C). These eight classes converted into three significant types 

alpha-helix (H), Beta-strand (E), and coil regions (C) by using standard conversion. 

Table 4.1: DSSP 8-class to 3-class conversion 

310-helix (G) H 

alpha-helix (H) H 

pi-helix(I) H 

beta-bridge (B) E 

beta-strand (E) E 

loop(S) C 

beta-turn(T) C 

coil(C) C 
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4.4 Methodology 

4.4.1 Feature Extraction 

The primary sequences generated character n-gram words to extract local contextual 

information. The character n-gram word represents vocabulary set V. Each character 

n-gram word indexed based on their frequency in the dataset. The n-gram word 

representation of sequences captures the morphological pattern. Each n-gram words 

represented as a dense embedding vector. A whole amino acid sequence described 

with a sum of n-gram embedding vector. 

Let A = {a1, a2, a3, a4, a5, ai,……..,an} be a whole set of amino acid sequences, where 

n is the number of sequences in dataset, ai is the ith sequence. ai = c1, c2,c3,…......, cm, 

where m represents the length of the ith sequence, cm indicates the mth character in the 

ith sequence. Each protein sequence described as the summation of character n-grams 

word embedding.   

4.4.2 Deep Network: Bidirectional LSTM 

A Recurrent Neural Network easily captures long-range interactions between amino 

acids in primary sequences. The BRNN[76] combines information from past and 

future to predict the current amino acid secondary structure. In this chapter, a 

bidirectional long short term memory (Bi-LSTM) is used to extract in-depth features 

from primary sequences to predict the secondary structure of a protein. 
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Figure 4.1: Model Architecture of Protein Secondary Structure Prediction 
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Where Wxh, Whh, and Why are weight matrices. xt is current input and ht-1  is previous 

state. 

After obtaining the deep representation of the primary sequences by using character n-

gram embedding as described in the previous section, the proposed architecture uses 

bidirectional recurrent neural networks (Bi-LSTM). The proposed model uses two 

layers of Bidirectional LSTM, including one Bi-LSTM for receiving vectors from the 
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embedding layer and the second Bi-LSTM to generate a new output vector for the one 

obtained from first Bi-LSTM.  

4.4.3 Fully Connected Layer 

We have flattened the output vectors obtained after the Bi-LSTM layer to use a dense 

layer. We pass the deep representation from stacked Bi-LSTM to a fully connected 

dense layer. To map the input to the final classes of secondary structure, we applied 

softmax to get a probability score for each of the four classes of alpha-helix, Beta 

Strand, coil, and no class. Softmax having a total sum of probability for each class is 

one. 
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Where zi is the element of vector z representing the probability of each class, k is 

equal to four showing the classes alpha-helix, beta-sheet, coil and no-class in vector z. 

4.5 Experimental Details 

4.5.1 Experimental Setup  

Python version 3.6.7 software used. Keras is the software used at the front end. Keras 

is an open-source, high-level machine learning API implemented using the Python 

programming language for CPU as well as GPU [47]. Tensorflow[48]  version 1.9  is 

used as a backend due to its excellent ability in numerical computation.   
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4.5.2  Hyper-parameters  

A dropout of 0.1 adopted to avoid overfitting in the proposed model. The large mini-

batch size results in high computation time for each iteration. If a mini-batch size is 

selected to be too small, then the process never converges. The RmsProp[49] 

optimization is used with a mini-batch size of 64 to process the model at a faster rate. 

The categorical cross-entropy used to update the weights and bias. The categorical 

cross-entropy is calculated by the Negative Log-Likelihood loss between the 

supervised training data and the model probability distribution, which shows loss 

between actual and predicted values for the given training data. In Table 4.2, all the 

hyperparameters used in the proposed model listed. 

4.5.3 Training and Test Strategy  

The dataset is divided into a ratio of 70 to 30, using a statistical sampling method for 

training and testing. This splitting of data between training and testing used to ensure 

the accuracy of the result and produce a more generalized model. The bidirectional 

long short term memory network requires a significant amount of processing time for 

large datasets due to complex hidden layers with a lot of processing cells. 

Table 4.2: Configuration of Training Hyper-parameters 

Hyper-parameters Value 

Cell 64 

Dropout 0.1 

Recurrent dropout 0.1 

Batch size 64 

Optimization method RmsProp 

Loss Categorical_Crossentropy 

Output activation Softmax 
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4.6  Results and Discussion 

The performance of the proposed model evaluated with Q3 accuracy for three classes 

of secondary structure. The plot of Q3 with epochs for dataset ss.txt shown in figure 

4.2. The value of Q3 for SS.txt is 88.45%.  

 

 

 

Figure 4.2: Plot for Training and Testing Accuracy over Epochs for ss.txt 

 

Figure 4.3: Plot for Training and Testing Loss over Epochs for ss.txt 
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The loss of the proposed model plotted with epochs for training and testing datasets. 

The plot of loss for training and testing set for ss.txt shown in Figure 4.3. The model 

performance is comparable for both pieces of the training as well testing set. The 

minimum gap between training loss and testing loss shows that the proposed 

architecture with Bi-LSTM is performing well. 

The proposed model evaluated for public datasets CASP9 and RS126. The results on 

both datasets of the model show the effectiveness compared to other state-of-the-art 

methods. The three single sequence-based secondary structure prediction methods, 

such as (SPIDER3)[4], JPred4[14], RaptorX[77], MUFOLD-SS[78] and Ensemble 

LSTM[79] used to compare the model performance on CASP9. These methods based 

on deep neural networks. As shown in Table 4.3, the Q3 value of our approach is 

86.66%, which is higher than SPIDER3, JPred4, MUFOLD-SS, and RaptorX, which 

were 81.9%, 79.3%, 84.82%, and 81.0% respectively.  

 

Table 4.3: Performance Q3 Accuracy comparison with other methods on 

CASp9 dataset 

Methods Q3 (%) 

Chargram-Bi-LSTM (Proposed) 86.66 

Ensemble LSTM[79] 83.3 

Spider3[4] 81.9 

Jpred4[80] 79.3 

MUFOLD-SS[78] 84.82 

RaptorX[77] 81.0 
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Table 4.4: Performance Q3 Accuracy comparison with other methods on 

RS126 dataset. 

Methods Q3 (%) 

Chargram-Bi-LSTM (Proposed) 83.48% 

Psipred[50] 81.01 

PHD[53] 76.92 

Sspro[36] 77.01 

Jpred4[80] 73.82 

MUFOLD-SS[78] 74.21 

 

The proposed architecture evaluated for RS126. The evaluation result compared with 

the existing state-of-the-art methods such as Psipred[50], PHD[53], Sspro[36], 

Jpred4[80], and MUFOLD-SS[78]. The prediction results of the proposed architecture 

on the RS126 test data sets reported in Table 4.4. It is very motivating to note that the 

Q3 accuracy of 83.48% obtained on the RS126 datasets. 

4.7  Conclusion 

The proposed architecture was evaluated for long sequence learning capability of 

character n-gram embedding and stacked Bidirectional Long Short term Memory (Bi-

LSTM). The experimental analysis shows that the prediction accuracy of the proposed 

architecture is better than the existing state-of-the-art single sequence-based methods. 

 


