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Chapter 3: Protein Secondary Structure Prediction using 

Sequence Embedding and Bi-LSTM 

 

In this chapter, design and implementation of a framework for representing protein 

primary sequences as dense embedding vector to predict the secondary structure. This 

chapter presents improved representation of primary sequences as character 

embedding and utilizes the bidirectional long short term memory network to retrieve 

the contextual information for protein secondary structure prediction.  

3.1  Introduction 

Proteins are essential molecules involved in several functions within the human body, 

such as cellular signaling, enzymatic activities, antibodies, and many more[10]. The 

twenty types of amino acids combine to form the primary sequences. Each amino acid 

has a specific experimental and physicochemical property that decides its structure. 

Protein structure prediction is essential for medical researchers in drug design and 

analyzing the effects of mutations on structure and function[11]. Protein is having a 

hierarchical form of primary structure, secondary structure, tertiary structure, and 

quaternary structure[12]. Protein primary structure is a linear combination of amino 

acids. The tertiary structure shows a three dimensional arrangement, which helps in 

finding their function. The secondary structure connects both primary sequences and 

tertiary structures[13]. Primary sequences are the basis of secondary structure 

prediction. The accurate prediction of secondary structure is essential for precise 
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three-dimensional structure prediction, and beneficial for finding relationships within 

protein primary sequence and their function [14]. Protein secondary structure mainly 

has three forms alpha-helix (H), Beta-strand (E), and coil regions (C)[15]. Protein 

secondary structure prediction from its amino acid sequence is an important problem 

in molecular biology. Protein structural information is critical for understanding their 

function, but large number of protein sequences not has their structural information.  

The protein primary sequences have some directive which defines their three 

dimensional arrangement and functionality. We adopt representing primary sequences 

as dense vectors which consider contextual arrangement of each residue. To find the 

contextual information, each amino acid residue in primary sequences represented 

with embedding vectors, which define the three dimensional arrangement and 

functions of protein [16–18]. 

Experimental methods for protein structure prediction are X-ray crystallography [19], 

nuclear magnetic resonance [20], and cryo-electron microscopy[21]. These methods 

have their advantages and disadvantages. The X-ray diffraction pattern required for 

xray crystallography. The knowledge of residue conformation and distance between 

elements that are close to one another used in Nuclear Magnetic Resonance. 

Prediction of protein structure from scratch using experimental methods not possible 

because it also requires additional information for molecular structure [10]. 

Protein secondary structure prediction using experimental techniques is labor-

intensive, time-consuming, and costly [22]. Several computational methods used for 

secondary structure prediction. The statistical techniques based on the propensity of 

individual residues [23,24]. Support Vector Machine can achieve local minima by 
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using the local information of residue [25] and Conditional Random Field [26]. These 

computational methods only depend on local context and ignore non-local context 

information. Their feature extraction methods are weak because they are handcrafted 

[27]. In recent years, deep learning models are performing well in several fields, such 

as speech recognition [28], computer vision[29], and sentiment analysis[30]. Deep 

neural network methods mainly convolution neural network (CNN) and recurrent 

neural network (RNN) are also being used in protein secondary structure prediction 

[6,31,32] because of their automatic representation of raw sequences and learning of 

nonlinear hidden patterns. Protein sequences have local dependencies [33] as well as 

long-distance dependencies [6,15,34] between residues for secondary structure 

prediction. The deep learning-based method applied in protein secondary structure 

prediction classified as local context-based methods, non-local context-based 

methods, and a combination of both. Protein secondary structure prediction by 

utilizing local dependency as well as a long distance dependency used in supervised 

generative stochastic network method[35]. DCRNN[32] combines the deep 

convolution and recurrent neural network (DCRNN). CRRNNs [31] used convolution 

recurrent neural networks (CRRNNs). The CRRNNs combines convolution neural 

networks with both residual networks and bidirectional recurrent neural networks. 

CNHH[13] proposed by combining several convolution neural network and highway 

network. The window-based methods for protein secondary structure prediction 

capture sequence length 10 – 30. So window-based methods never achieve the state of 

the art accuracy[10]. The residues far from each other in primary sequences but close 

to each other in 3-D space. The window based features did not consider long-range 
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interaction due to the small size of the window[6]. Protein secondary structure 

prediction accuracy increases by utilizing the increased protein sequences deposited in 

the protein data bank. A large number of protein sequences and their corresponding 

secondary structure deposited in protein data bank improved the secondary structure 

prediction accuracy [36]. Recurrent Neural Networks (RNNs) can learn the 

sequences. The recurrent neural networks have shortcomings like vanishing and 

exploding gradients with long sequences and challenging to train with Back-

Propagation [37,38]. Recent advancement in the recurrent neural network has resulted 

in a complex structure. The two improvements in recurrent neural networks are Long 

Short Term Memory(LSTM)[39], and Gated Recurrent Unit(GRU)[9] which 

frequently used in prediction and classification in the field of speech and image-

related problems. Long short term memory remembers long-range information for 

time series using a fixed error flow in the network[32]. So the LSTM network 

performs better than the window-based approach in long sequences [30]. 

This chapter discuss about: (1) a stacked Bi-LSTM architecture which combines 

dense embedding vector with bidirectional recurrent neural network for protein 

secondary structure prediction. The recurrent neural network architecture parameters 

are evaluated for protein secondary structure prediction. (2) The proposed architecture 

also compares the performance of Simple Recurrent Neural Network (RNN), Long 

Short Term Memory (LSTM), and Gated Recurrent Unit (GRU) for protein secondary 

structure prediction. (3) The proposed model is evaluated for the three-class 

secondary structure predictions on three publicly available datasets RS126, CullPDB, 

and SS.txt. Experiments demonstrate that the combination of character n-gram 
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embedding vector of primary sequences and stacked Bidirectional Long Short Term 

Memory networks capture better features to improve the secondary structure 

prediction. 

3.2  Protein Sequence Representation  

Deep dense representation of sequences has one of the best performing representation 

for machine learning methods [40,41]. In this representation, each residue is encoded 

to stores its interaction information with neighbors. The deep dense representation is 

motivated by the working structure of human memory, where the information is 

stored in a “content-addressable”. The protein sequences are represented as dense 

vector, as a deep dense representation for sequences has been efficient way to retrieve 

contextual information. In this model, each amino acid residue is embedded in a dense 

n-dimensional vector space. The basic idea behind training such dense vectors is that 

the amino acid characters are characterized by its contextual information, i.e. 

neighboring residue.  

Given a protein primary sequence with L amino acid residues as X = x1, x2, x3 ,… 

, x L , where xi is the m-dimensional dense feature vector of the ith residue, the 

secondary structure prediction for this protein is formulated as 

determining S = s1, s2, s3, ….., sL for X where si is a Q3 secondary structure element. In 

this work, xi is represented by linear sequence features. Sequence features are utilized 

to identify the secondary structure for target residue. In order to get deep dense 

representation of primary sequences, an embedding technique in natural language 

processing is used. This embedding technique maps amino acid residue as vectors of 
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real numbers. Specifically, deep dense vector maps amino acid residue from a space 

with one dimension to a continuous vector space with much lower dimension.  

3.3  Dataset Description 

The proposed architecture is performing training on a large dataset ss.txt[42]. The 

training set contains 174,372 protein sequences. The performance of the proposed 

architecture evaluated using two datasets, CullPDB [43] and RS126[44]. The 

CullPDB [43] is a non-homologous dataset consist of 6128 protein sequences labeled 

with secondary structure. The RS126 contains a total of 126 non-homologous globular 

sequences used as a testing set. The RS126 dataset sequences have an average length 

of 185, and similarity is below 31%. To ensure the validity of the test result, no two 

sequences in the training and test sets have a similarity over 30%. 

The Define Secondary Structure of Proteins (DSSP) [45] eight types of secondary 

structure classes, such as 310-helix (G), alpha-helix (H), and pi-helix (I), beta-bridge (B), 

and beta-strand (E), high curvature loop(S), beta-turn (T) and coil(C). These eight 

classes converted into three significant types’ alpha-helix (H), Beta-strand (E), and coil 

regions (C) by using standard conversion. All the eight types of the secondary structure 

of DSSP and their three-class categorization listed in Table 3.1.  

Table 3.1: DSSP 8-class to 3-class Conversion 

310-helix (G) H 

alpha-helix (H) H 

pi-helix(I) H 

beta-bridge (B) E 

beta-strand (E) E 

loop(S) C 
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beta-turn(T) C 

coil(C) C 

 

3.4  Model Architecture 

The proposed architecture is in Figure. 3.1.  Firstly, we describe the pre-processing of 

amino acid sequences, such as integer encoding, padding, and dense embedding 

representation. Subsequently, a brief description of the Stacked Bi-LSTM layer and 

the dense layer described.  

3.4.1 Feature Extraction  

Protein primary sequences have the vocabulary of 20 amino acid characters that is the 

basis of their encoding. Each amino acid numbered with an integer value in the range 

of 1-20. The character sequences converted to integer sequences. The protein 

sequences are of varying length, but the deep learning model accepts the fixed-length. 

If any sequence exceeds in size, then the remaining character gets discarded. We 

padded with zeros in the shorter sequence. The string of integers passed to the 

embedding layer, which changes these integer values to the dense embedding vectors. 

In the proposed architecture, the Keras embedding layer used that is initialized with 

random weights and gives an embedding vector for each amino acid.  

3.4.2  Deep Network: Bidirectional Long Short Term Memory  

A recurrent neural network easily captures long-range interactions between amino 

acids in protein sequences. The bidirectional recurrent neural network (Bi-RNN) [46] 

combines information from the past (hbackward) and future (hforward) to predict the 

current amino acid secondary structure. In this chapter, a similar concept is adopted to 
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predict the secondary structure of amino acid. The governing equations for Bi-RNN 

are as follows: 

 ( )xwhwfh thhtxhforward += −1  (3.1) 

 ( )xwhwfh thhtxhbackward += +1  (3.2) 
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(3.3) 

Where Wxh, Whh, and Why are weight matrices. xt is current input and ht-1  is 

previous state. 

A deep neural network compressed the dense embedding representation of primary 

sequences obtained from the embedding layer. The compressed description retains all 

the information from the character embedding vector. The bidirectional long short 

term memory(Bi-LSTM)  used to capture information from both sides of the central 

amino acid. In this work, two layers of Bi-LSTM used. First Bi-LSTM, for receiving 

vectors from the embedding layer and the second Bi-LSTM to generate a new output 

vector for the one obtained from the first Bi-LSTM. 
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Figure 3.1: Model Architecture of Protein Secondary Structure Prediction 

 

3.4.3 Fully Connected Layer 

We have flattened the output vectors obtained after the Bi-LSTM layer to use a dense 

layer. We pass the deep representation from stacked Bi-LSTM to a fully connected 

dense layer. To map the input to the final classes of secondary structure, we applied 

softmax to get a probability score for each of the four alpha-helix, Beta Strand, coil, 

and no class classes. Softmax having a total sum of probability for each class is one. 
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 for ki ,......,1= and kzzz ......1=   

Where zi is the element of vector z representing the probability of each class, k is equal 

to four showing the classes alpha-helix, beta-sheet, coil and no-class in vector z. 

3.5  Experimental Analysis 

Three deep networks Bidirectional Recurrent Neural Network (Bi-RNN), 

Bidirectional Gated Recurrent Unit (Bi-GRU), and Bidirectional Long Short Term 

Memory (Bi-LSTM), implemented using Python version 3.6.7. Keras[47] software 

used at the front end. Keras is an open-source, high-level machine learning API 

implemented using the Python programming language for CPU as well as GPU. 

Tensorflow[48] version 1.9 used as back-end due to its excellent numerical 

computation ability. The dataset is divided into a ratio of 70 to 30, using a statistical 

sampling method for training and testing. The splitting of data between training and 

testing is used to ensure the result's accuracy and produce a more generalized model. 

The recurrent neural network model requires a significant amount of processing time 

for large datasets due to complex hidden layers with many processing cells. To avoid 

overfitting, a dropout of 0.1 was adopted in the proposed model. The large mini-batch 

size results in high computation time for each iteration. If a mini-batch size is selected 

too small, then the process never converges. The RmsProp optimization [49] is used 

with a minibatch size of 64 to process the model faster. The categorical cross-entropy 

used to update the weights and bias. The categorical cross-entropy calculated by the 

negative loglikelihood loss between the supervised training data and model 

probability distribution shows a loss between actual and predicted values for the given 
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training data. In Table 3.2, all the hyperparameters used in the proposed model are 

listed. 

Table 3.2: Configuration of Training Hyper-parameters 

Hyper-parameters Value 

Cell 64 

Dropout 0.1 

Recurrent dropout 0.1 

Batch size 64 

Optimization method RmsProp 

Loss Categorical_crossentropy 

Output activation Softmax 

3.6  Results and Discussion 

The proposed architecture implemented the three bidirectional recurrent neural 

networks such as Bi-RNN, Bi-GRU, and Bi-LSTM for protein secondary structure 

prediction. Further, three recurrent neural networks performance was evaluated in 

terms of metrics F-measure, Sensitivity, Specificity, and Accuracy. For training 

purposes, ss.txt data used, whereas for testing purposes CullPDB and RS126 were 

used. The results are shown in Table 3.3. It observed that Bi-LSTM is performing 

better in comparison to others. Bi-LSTM model has higher sensitivity when compared 

with Bi-RNN and Bi-GRU. The F-measure score is the result of the harmonic mean 

between precision and recall. The model shows a high F-measure value of more than 

90%. Therefore, the precision and recall are equally better for secondary structures 
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classification. The amount of sensitivity and specificity greater than 90% implies that 

secondary structure prediction correctly identifies each class. The prediction accuracy 

is 91.81%.The loss of the Bi-LSTM model plotted with 25 epochs for training and 

testing datasets. The plot of accuracy for training and testing set for CullPDB and 

ss.txt is shown in Figures 3.2 and 3.3. The plot of loss shows that the model 

performance is comparable for both the training set and the testing set from Figures 

3.4 and 3.5, The minimum gap between training loss and testing loss shows that the 

proposed architecture with Bi-LSTM performs well. The values of loss decreases with 

an increase in training set size. 

Table 3.3: Performance of Bi-RNN, Bi-GRU and Bi-LSTM on ss.txt dataset 

RNN based Model F-measure Sensitivity Specificity Accuracy 

Bi-LSTM 0.9182 0.9134 0.9746 91.81% 

Bi-GRU 0.8471 0.8337 0.9595 86.40% 

Bi-RNN 0.7840 0.7778 0.9454 80.45% 

  

Figure 3.2: Plot of Training Accuracy and 

testing Accuracy over Epochs for CullPDB 

Figure 3.3: Plot of Training Accuracy and 

testing Accuracy over Epochs for SS.txt 
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Figure 3.4: plot for Training and Testing 

Loss over Epochs for SS.txt 

Figure 3.5: plot for Training and Testing Loss 

over Epochs for CullPDB 

 

The performance of the model was evaluated with Q3 accuracy for three classes of 

secondary structure. The Q3 accuracy plot with epochs for both dataset CullPDB and 

ss.txt is shown in figures 3.2 and 3.3, respectively. The value of Q3 for SS.txt is 

92.60%, and for CullPDB is 79.16%. 

The performance of bidirectional recurrent neural networks (Bi-RNN, Bi-GRU, and 

Bi-LSTM) and single sequence-based method accuracy are compared in Table 3.4. 

The Bi-LSTM model shows the improvement in accuracy over Bi-RNN and Bi-GRU. 

The secondary structure prediction accuracy is significantly higher with the Bi-LSTM 

model, i.e., 79.16% compared to Bi-GRU, 75.12%, followed by Bi-RNN at 70.93% 

on CullPDB data. We find that the performance measure of proposed architecture 

with Bi-LSTM is higher than the other state-of-the-arts methods, i.e., SPIDER3-
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Single[4] and PSIpred-Single[50]. SPIDER3-Single used one hot feature vector with 

Bi-LSTM for secondary structure prediction. 

The proposed architecture evaluated for RS126 and compared with the existing state-

of-the-art methods such as KB-PROSSP[51], SSpro2.0[36], YASPIN[52], and 

PHD[53]. The prediction results of the proposed architecture on the RS126 test data 

sets are reported in Table 3.5. It is very motivating to note that the Q3 accuracy of 

80.53% was obtained on the RS126 datasets.  

The proposed method can utilize local context and non–local context by using dense 

embedding vector and Bi-LSTM recurrent neural network. The proposed recurrent 

architecture's performance evaluated for Bi-LSTM, Bi-GRU, and Bi-RNN to predict 

the secondary structure. The Bi-LSTM layers have a better result in comparison to Bi-

RNN and Bi-GRU during training and testing. We also assess the multilayer Bi-

LSTM and find that two-layer Bi-LSTM performs better, but accuracy decreases 

when using three layers of Bi-LSTM.  

  

Table 3.4: Comparison of the performance of various single 

sequence based methods on CullPDB dataset 

Methods Q3(%) 

Bi-LSTM 79.16 

Bi-GRU 75.12 

Bi-RNN 70.93 

SPIDER3-Single 73.24 

PSIpred-Single 70.21 
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Table 3.5: Performance Accuracy comparison with other 

Methods on Dataset RS126 

Methods Q3(%) 

KB-PROSSP 77 

Sspro2.0 78.13 

YASPIN 77.06 

PHD 71.4 

Our Method 80.53 

 

3.7  Conclusion 

In this chapter, a novel architecture is proposed for protein secondary structure 

prediction. The proposed architecture evaluated for learning capability of 

Bidirectional Recurrent Neural Network (Bi-RNN), Bidirectional Long Short term 

Memory (Bi-LSTM), and Bidirectional Gated Recurrent Unit (Bi-GRU). The 

prediction accuracy of the proposed architecture with Bi-LSTM is better than the 

existing state-of-the-art single sequence-based methods. We are planning to extend 

our experiment in a few directions. First, we are planning to utilize n-gram based 

embedding with stacked bidirectional LSTM. Second, we have the plan to use the 

contextual capability of bidirectional LSTM and Conditional Random Field. 

Reinforcement Learning is an unexplored methodology over protein secondary 

structure prediction, so we are currently conducting experiments by applying Markov 

Decision Process (MDP).  

 

 


