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Chapter 2: Theoretical Background and Literature Review 

 

This chapter presents the theoretical background related to Protein Secondary 

Structure Prediction and Deep Learning and a comprehensive literature review related 

to the thesis's work. 

2.1 Protein Secondary Structure Prediction  

The protein secondary structure prediction began in 1965. Over more than six 

decades, the protein secondary structure prediction accuracy improved because the 

experimental secondary structure determined increased, evolutionary information 

derived of primary sequences using sequence alignment, improved computational 

methods such as deep learning algorithms. The deep learning methods' performance 

improved due to the number of available protein sequences in sequence databases. 

Protein secondary structure prediction techniques are classified into three 

generations[9]. In the first-generation, Protein secondary structures prediction from a 

primary sequence based on each amino acid residues' statistical information in 

determining secondary structure element [10,11]. The Chou–Fasman method[11] is 

the usual first-generation methods, which determine secondary structure using 

propensities value and heuristic information. The second-generation techniques 

mainly focus on neighboring residues information and theoretical algorithms such as 

statistical information [12–14], graph theory [15], neural networks[16,17], logic-based 

machine learning techniques[18], and nearest neighboring methods [19]. The adjacent 
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residues information from available protein sequences for secondary structures 

prediction are data to estimate pairwise, triplet, or longer-segment frequencies. The 

representative techniques are Garnier Osguthorpe-Robson (GOR) method[20] and the 

Lim method [21]. In the third generation, the protein secondary structure prediction is 

determined using evolutionary information such as position-specific scoring matrix 

derived from homologous sequences[3]. The protein secondary structure is predicted 

using evolutionary information combined with computational algorithms such as 

support vector machines[22,23], Bayesian, or hidden semi-Markov network [24,25], 

and conditional random fields[26]. The artificial neural-network-based models are 

having a high value of accuracy [5,27,28]. 

The protein secondary structure prediction performance improves by utilizing better 

features. The early methods of secondary structure prediction mainly used features 

from single-residue properties[10,11]. Single residue-based features are followed by 

the windows based method, which has neighboring residues information [13,14,16], 

and further evolutionary information derived from multiple homogeneous sequence 

alignment[3]. The sequence profile information, such as the position-specific scoring 

matrix, was retrieved using PSI-BLAST [29], derived from homologous sequences. 

The features from homologous sequences such as sequence profiles improve the 

secondary structure prediction for three classes above 70% [30,31]. The neural 

networks achieve better accuracy for large datasets of primary sequences. The profile 

information such as position-specific scoring matrix and physicochemical properties 

of a protein used as input to the neural network. Several methods such as HYPROSP 

[32], PROTEUS[33], DISTILL[34], GOR V [20], SPSSMPred[35], FLOORED [36] , 
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and SSpro [37] improve accuracy by using template-based methods. Some methods 

achieve secondary structure prediction accuracy of more than 90% for proteins by 

utilizing their homologous sequences' secondary structures. However, many protein 

sequences are not having secondary structure information of their homologous 

primary sequences. The SPIDER2[38] method used deep neural networks for 

secondary structure prediction and gave better accuracy. DeepCNF [39] approach 

uses deep convolutional neural fields for protein secondary structure prediction. The 

DeepCNF uses multiple layers of deep convolutional neural networks combined with 

a conditional random field. The protein secondary structure element prediction 

depends on a different combination of amino acid residues, such as Helices 

prediction, which depends on neighbors' hydrogen bonds of primary sequences. The 

beta-sheet prediction depends on the hydrogen bonds between amino acid residues 

necessary sequence neighbors. So helices prediction results in better accuracy than 

sheet residues prediction[9]. The deep learning-based method, such as SPIDER2, 

shown accuracy for the CASP11 public data set is 86.2% for helices, 75.8% for 

sheets, and 78.6% for coils [5]. 

The secondary structure element helices, beta-sheet, and coils have confusion in 

prediction. The confusion between helices and beta-sheets' prediction is less than the 

confusion between helices and coil and between beta-sheet and coils [5,40,41]. 

Several methods are proposed to handle the mess between secondary structure 

elements [42,43]. The protein secondary structure prediction has short chameleon 

sequences that behave randomly, which results in different types of secondary 

structure in other proteins [44, 45]. The chameleon sequences are implicated in 
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amyloid-type diseases [46]. Several methods [47,48] have proposed that the 

chameleon protein sequences can accurately predict selecting a sliding window of 

twenty residues comparably longer than the ten residues window, which is the most 

prolonged length chameleon sequences [45]. The local interactions between amino 

acid residues play an essential role in predicting chameleon sequences' secondary 

structure. 

2.2   Deep Neural Network  

The multiple hidden layers in a neural network help find the complex nonlinear 

relationships among attributes and define the complex functions and learning features 

for classification and prediction problems. The multiple layers enhance the deep 

neural network's computing capabilities, which results in the development of several 

methods. In this thesis, recurrent neural networks and their variants, LSTM and GRU, 

are used to predict the protein secondary structure. The following sections discuss 

brief descriptions and the working of these deep neural networks. 

2.2.1  Recurrent Neural Network  

Recurrent neural networks are feed-forward neural networks that process the time 

series and sequential data with cyclic connections between layers. So, the recurrent 

neural network utilizes previous data history, which improves the accuracy over a 

feed-forward neural network. 
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Figure 2.1: Recurrent Neural Network 

 

In Figure 2.1, the recurrent neural network architecture exhibit. Each node in the 

recurrent neural network shows a time point, the rectangle is a vector, and arrows 

represent functions. The input vectors are defining amino acid character embedding. 

The output vectors offer three classes of protein secondary structure. The vectors 

capture the recurrent neural network state to predict the secondary structure from an 

amino acid. 

The recurrent neural network having an x input vector gives the y output vector. The 

output vector y is not only predicted by the current input x but also included all 

history of input feeds to the network in the past. The governing equations for RNN are 

as follows: 

 ( )1−+= thhtxhht hwxwfh  (2.1) 
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 ( )hytyt whfy =  (2.2) 

Where fh and fy are activation functions. Wxh ,Whh , and Why are weight matrices.  xt is 

current input. ht is current state,  yt  is current output and ht-1  is previous state. 

The recurrent neural network was built to learn the sequences but have the limitations 

of vanishing and exploding gradients. To overcome the gradient issue in the recurrent 

neural network, the long short term memory (LSTM) and gated recurrent neural 

network (GRU) developed. 

2.2.2 Gated Recurrent Unit 

The Gated recurrent unit (GRU)[9] is a simpler variation of a recurrent neural 

network  that avoids the problem of vanishing gradient by using memory cells  in 

figure 2.2. The update gate (zt) decides what it should remember from the previous 

state. The reset gate (rt) sees the importance of information coming from the former 

state. 

 

Figure 2.2: Gated Recurrent Unit 
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The governing equations for the GRU are as follows: 

 ( )ztztzt bhuxwz ++= −1..  
(2.3) 

 ( )rtrtrt bhuxwr ++= −1..  (2.4) 

 
( )( )hhhtttxht buhrxwh ++= −



..tanh 1  
(2.5) 

 
( ) ttttt hzhzh



− +−= .1 1  

(2.6) 

Where Wz , Wr and Wxh are weight matrices for input vector xt.  Uz , Ur and Uhh are 

weight matrices for previous state ht-.  bz, br , and bh are biases terms of zt , rt, and ht. σ is 

the sigmoid function. 

2.2.3  Long Short Term Memory 

Long short term memory (LSTM)[30] uses the operation of selective read, selective 

forget, and selective write by using the capability of input gate (it), forget gate (ft), and 

output gate (ot) for controlling the information. These three gates of LSTM use the 

current input, previous state, and output selectively by discarding the unnecessary 

information.  
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Figure 2.3: Long Short Term Memory Network 

 

The block diagram of LSTM is shown below in Fig. 2.3. The logistic sigmoid 

activation function and the flow of activation depending on the gates used in hidden 

layer memory blocks. 

The governing equations for LSTM are as follows: 

( )athatxat bOutuxwa ++= −1..
 

(2.7) 

( )ithitxit bOutuxwi ++= −1..
 

(2.8) 

( )fthfthft bOutuxwf ++= −1..
 (2.9) 

( )othothot bOutuxwo ++= −1..
 

(2.10) 

tastate = ʘ it + ft ʘ statet-1 
(2.11) 

tstateout =
ʘ to  (2.12) 

where Wxa , Wxi , Whf , Who are weight matrices for input vector xt. Uha , Uhi , Uhf, Uho 

are weight matrices for previous state Outt-., ba , bi , bf , bo are the biases terms for each 

memory gate at, it, ft, ot . ʘ signifies the Hadamard product (element-wise product) 

operation and σ is the sigmoid function. 
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2.3  Research gaps and Findings: 

From the literature review of protein secondary structure prediction following 

observations are made: 

1. The Irregular behavior of Protein Primary Sequences: 

• The secondary structure elements have different amino acid residue 

dependencies, such as helices defined with the hydrogen bond with 

neighbors, while beta-sheet formed with a hydrogen bond between 

residues that do not sequence neighbors. 

• The bizarre behavior of chameleon sequences that have a different 

secondary structure for different primary sequences. 

• The primary sequences are linear but arranged in three-dimensional 

space, so residues far in the linear chain but close in three-dimensional 

space. 

2. Complex Primary - Secondary Structure Mapping 

• The accurate prediction of secondary structure possible with restraints 

derived from correlated mutations located from Multiple Sequence 

Alignments of homologous sequences. The multiple sequence 

alignment needed a large number of homologous sequences. 

• The earlier methods used for secondary structure prediction having 

limitation to learn the long contextual information. 

• Predicting protein secondary structure form primary sequence needed 

complex dense representation. 
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• Protein secondary structure prediction depends on local as well as non-

local contextual information of primary sequence residues. 

2.4  Benchmark Datasets: 

RS126:  RS126 has 126 protein sequences and comprises 26,846 residues, 

which is one of the most frequently-used non-homologous dataset developed 

by Rost and Sandar [33]. The average sequence identity is less than 31% and 

the average sequence length is 185 residues [61]. 

CASP9: CASP9 [27] dataset have 203 non-redundant proteins, derived from 

the 2016 CASP meeting. 

CullPDB: The CullPDB (G. Wang & Dunbrack, 2003) is a non homologous 

dataset consist of 6128 protein sequences labeled with secondary structure. 

ss.txt (RCSB PDB): ss.txt is a large dataset provided by RCSB protein data 

bank. The training set contains 174,372 protein sequences labeled with 

secondary structure.  

2.5  Performance Metrics: 

Q score: The estimated performance of PSSP method is often assessed by 

three-state-per-residue accuracy (Q3) or eight-state-per-residue accuracy (Q8) 

scoring function which are the simplest and most popular measure methods, 

and Q score calculates the percent of residues for each secondary structure is 

correctly predicted. 
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where m=3 and m=8 is referred as Q3 and Q8 accuracy, respectively. Nres is the 

total number of residues, and Mii is correctly predicted number of residues in 

state i . 

The per-state accuracy is the percentage of correctly predicted residues in a 

particular state, as 
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 where obsi  is the number of residues observed in state i. 

Precision: Precision is defined as the proportion of instances classified as 

positive that are really positive. 
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  For Secondary Structure Prediction context this precision can also be defined 

as:  

edictedeElementryStructurrofSecondaTotalNumbe
ecision
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Recall: Recall is defined as the proportion of positive instances that are 

correctly classified as positive. 

        (2.17) 
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F-Measure: This measure is approximately the average of the precision and 

recall when they are close. The two measures are sometimes used together in 

the F1 Score (or f-measure) to provide a single measurement for a system.  

 

 (2.19) 

 

Specificity: The specificity measure the proportion of negative secondary 

structure element that are correctly identified and total secondary structure 

elements. 

        (2.20) 

Sensitivity: The sensitivity measure the proportion of positive secondary 

structure element that is correctly identified from total secondary structure 

element.  

             (2.21) 

 

2.6 Conclusions  

In this chapter, the theoretical backgrounds related to protein secondary structure 

prediction and deep learning methods as well as literature review are presented. At 

first, brief overview of protein secondary structure prediction methods, deep 

learning methods were presented, which provided basis for secondary structure 

prediction as discussed in subsequent chapters of the thesis. Further, in this 

chapter a literature survey of prominent approaches for protein secondary 

structure prediction was discussed and research gaps were identified. 
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