CERTIFICATE

It is certified that the work contained in the thesis titled "Analytical Modeling and Simulation

of Some Engineered Cylindrical-Gate JAM MOSFETs" by "Kamalaksha Baral" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph. D. Degree.

-83:1

(Prof. S Jit) Supervisor Department of Electronics Engineering IIT (BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, Kamalaksha Baral, certify that the work embodied in this Ph. D. thesis is my own bonafide work and carried out by me under the supervision of Prof. S. Jit from "21/07/2015" to "15/01/2021", at the Department of Electronics Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi. The matter embodied in this Ph. D. thesis has not been submitted for the award of any other degree/diploma.

I declare that I have faithfully acknowledged, given credits to and referred to the research workers wherever their works have been cited in the text and the body of the thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 15/01/2021 Place: Varanasi Signature of the Student Kamalaksha Baral

CERTIFICATE BY THE SUPERVISOR

It is certified that the above statement made by the candidate is correct to the best of my knowledge.

(Prof. S. Jit) Supervisor Deptartment of Electronics Engineering IIT (BHU), Varanasi

Signature of Head of Department *"SEAL OF THE DEPARTMENT"*

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Analytical Modeling and Simulation of Some Engineered Cylindrical-Gate JAM MOSFETs

Name of the Student: Kamalaksha Baral

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date: 15/01/2021

Place: Varanasi

Signature of the Student

Kamalaksha Baral

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENT

First of all, I would like to express my sincere love and gratitude towards my parents Sri. Rudhiraksha Baral and Smt. Abha Baral for their constant support, love and encouragement in my educational endeavor. Without their constant support it would not be possible for me to complete this journey.

Next, I would like to thank my supervisor Prof. Satyabrata Jit for his able guidance, appreciation and support. The relentless effort he has put behind is truly commendable. His broad knowledge and enthusiasm for work will always be a source of inspiration for me.

A vote of thanks from the bottom of my heart goes to the Head of Electronics Engineering Department, Indian Institute of Technology (Banaras Hindu University), Varanasi for providing me all the necessary tools and lab facilities to conduct my research work. Besides I would like to thank my REPC members Prof. V. N. Mishra, Dr. P. C. Pandey for valuable assessment of my research work. I would also like to thank all the faculty members, laboratory staff, librarians and office staff for their kind cooperation and encouragement during this journey. I would like to pay my respect towards Late Prof. P. K. Sinha Roy (IIEST-Sibpur) and Late Dr. R. Drivedi with whom I had a sweet association during my student life.

I would like to express my special thanks to my seniors Dr. Kunal Singh, Dr. Sanjay Kumar, Dr. Gopal Rawat, Dr. Sweta Chander (PDF), Dr Hemant Kumar, Dr. Ekta Goel, Dr. Yogesh Kumar, Dr Chandan Kumar, Dr. Subiman Chatterjee, Dr. Lalit Chandra, Dr. Vikram Kumar and Mr. P. K. Sahu for their guidance. A vote of thanks also goes towards my friendly colleagues Mr. Deepak Kumar Jarwal, Mr. Amit Kumar, Mr. Smriti Ratan, Mr. Prince Kumar Singh, Mr. Ashwini Kumar Mishra, Mr. Prabhakar Tripathi, Mr. Arjun Kumar, Mr. Akash Prajapati, Mr. Mumtaz Ali Ansari, Mr. Aman Sikhri, Mr. Rahul Pal and Mr. Rajnish for keeping a rejoiceful environment. I will also like thank my juniors from CRME Lab, Mr. Ashish Kumar Singh. Mr. Abhinav Pratap Singh, Mr. Rishibrind Kumar Upadhyay, Mr. Abhishek Kumar Singh, Mr. Deep Chand Upadhyay, Mr. Ashutosh Dikshit, Mr. Vijay Kumar Devarakonda, Mr. Ankit Kumar Verma, Mr. Joginder Singh Rana and Mrs. Shikha Singh for their friendly suggestions. I would also like to thank Mr. Gautam Kumar (M-Tech) and Mr. A. Samad (M-Tech) for their assistance.

I would like to acknowledge my friends Mr. Partha Pratim Dhar, Dr. Priotosh Saha, Mr. Biswajit Dutta, Mr. Ayan Rakshit, Mr. Koushik Golui and Mr. Amarnath Mukherjee for lifting my sprit in time of despair.

I would also take this opportunity to pay respect to my grand-mothers Smt. Durgarani Baral, Smt. Renu Das. I want to thank all my relatives for their support especially, my uncle and aunt Mr. Pulin Behari Baral and Tanima Baral, my sisters Soma Baral Saha, Aradhita Baral Pandey, my niece Srimoyee Saha and my nephew Aatmaj Pandey.

Finally, I would like thank my pet (Linglingee) for its unconditional love and the eternal superpower for his divine grace on me.

(Kamalaksha Baral)

Date: 15/01/2021

Jedicated Jo Jhe one omnipotent, omnipresent almighty who in the form of my parents, my supervisor and my colleagues have helped me sail through this journey

CONTENTS

List o	f Figur	es	xi-xviii
List o	f Table.	S	xix
List o	f Abbre	viations	xx-xxiv
Prefa	се		xxv-xxviii
Chap	ter 1		Page No.
Intro	ductio	and Organization of the Thesis	01-52
1.1	Introd	uction	01
1.2	MOS	Transistor Scaling	02
	1.2.1	Power Management in CMOS ICs	05
	1.2.2	Short Channel Effects (SCEs) in Classical MOSFETs	07
1.3	Non-C	Classical MOSFETs for Sustaining Scaling	14
	1.3.1	Working of the Junctionless MOSFET	16
	1.3.2	Junctionless Accumulation Mode (JAM) MOSFET: A Modified Junctionless MOSFET Structure	20
1.4	Engin	eered JAM MOSFET Structures	23
	1.4.1	Gate Engineering Technique	23
		1.4.1.1 Use of multiple-gate structure engineering	23
		1.4.1.2 Gate material engineering	24
	1.4.2	Channel doping engineering technique	29
	1.4.3	Gate dielectric engineering technique	31
	1.4.4	Source/drain engineering technique	34
1.5	Review	w of State-of-the-Art Research on JL/JAM MOSFET	35
	1.5.1	Experimental Research on JL/JAM MOSFET	35
	1.5.2	Review of Simulation-based Studies on JL/JAM MOSFET	38
		1.5.1.1 Device Level Simulation Studies on JL/JAM MOSFETs	38
		1.5.2.2 Review of JL/JAM MOSFETs in Memory Circuit Applications	41
	1.5.3	Analytical Modeling of JL/JAM MOSFETs: A Brief Review	42
		1.5.3.1 Review of some 1-D models	42
		1.5.3.2 Review of some 2-D models	44

1.6 Summary of the Literature Review: Motivation behind the Present 47

Thesis

1.7 Scope and Chapter Outline of the Thesis

Chapter 2

2-D Analytical Modeling and Simulation of Gate and Drain Leakage Currents in CG GC-DM-JAM MOSFET 53-79

50

2.1	Introd	uction	53
2.2	Analytical modeling		54
	2.2.1	Modeling of Device Potential	55
	2.2.2	Modeling of the lateral electric field	60
	2.2.3	Modeling of threshold voltage	60
	2.2.4	Modeling of threshold voltage roll-off and DIBL	61
	2.2.5	Drain current modeling	62
	2.2.6	Subthreshold slope modeling	64
	2.2.7	Gate leakage current modeling	65
2.3	Result	and discussion	66
2.4	Conclu	usion	79

Chapter 3

2-D	Analy	tical Mo	deling and Simulation of Electrical Characteristics of	of Ultrathin
Bod	y CG I	ID-GC-J	AM MOSFET	80-112
3.1	Introd	uction		80
3.2	Devic	e fabricat	ion and model formulation	81
	3.2.1	Modelli	ng of Channel Potential	83
		3.2.1.1	Energy band gap correction for quantum effects	84
		3.2.1.2	Modelling of the lateral electric field	88
	3.2.2	Modelli	ng of the threshold voltage	89
		3.2.2.1	Modeling of threshold voltage roll-off and DIBL	91
	3.2.3	Modelli	ng of the Drain Current	91
		3.2.3.1	Modelling transconductance and output conductance	93
		3.2.3.2	Subthreshold slope modelling	94
3.3	Result	ts and dis	cussion	94
3.4	Concl	usion		112

Chapter 4

A 2	-D Co	mpact DC Model for Engineered CG- JAM-MOSFETs V	Valid for All
Ope	erating	Regimes	113-144
4.1	Introd	uction	113
4.2	Analy	tical model formulation	115
	4.2.1	Modeling of device potential	117
		4.2.1.1 Effect of band gap narrowing and device temperature	117
		4.2.1.2 Effect of structural and electrical quantum confinement	118
		4.2.1.3 Solving 1-D Poisson's equation	120
		4.2.1.4 Solving 2-D Laplace's equation	122
		4.2.1.5 Modelling of lateral electric field	124
	4.2.2	Formulation of threshold voltage	124
		4.2.2.1 Modelling of threshold voltage roll-off and DIBL	126
	4.2.3	Total drain current modelling with GIDL	126
		4.2.3.1 Subthreshold Slope modelling	129
4.3	Simul	ation setup	130
4.4	Resul	t and discussion	132
4.5	Concl	usion	144

Chapter 5

A Unified 2-D Compact Quasi-Ballistic Model for CG- JAM and Inversion Mode MOSFET 145-170

5.1	Introd	uction	145
5.2	Formulation of the 2-D analytical model		145
	5.2.1	The solution of 1-D Poisson's equation	148
	5.2.2	The solution of 2-D Laplace's equation	150
	5.2.3	Threshold voltage formulation	152
	5.2.4	Formulation of DIBL	153
	5.2.5	Drain current modeling	153
	5.2.6	Modeling of transconductance (g_m) and output-conductance (g_d)	155
5.3	Simul	ation setup and model validation	155
5.4	Result	s and discussion	158
5.5	Concl	usion	170

Chapter 6

Effect of Gaussian Doping on Vertically Stacked Oxide CG- JAM MOSFET: AnElectrical and Circuit Level Analysis171-196

6.1	Introd	uction	171
6.2	Devic	e structure and simulation procedure	172
	6.2.1	Device structure	173
	6.2.2	Simulation procedure	173
6.3	Result	ts and discussion	177
	6.3.1	DC analysis	177
	6.3.2	RF analysis	181
	6.3.3	Static and transient analysis of CMOS inverter	185
	6.3.4	Static and dynamic analysis of 6T SRAM	189
6.4	Concl	usion	195

Chapter 7

197-204
197
197
203

References	205-227
Author's Relevant Publications	228

LIST OF FIGURES

Fig 1.1:	Evolution of the semiconductor industry as the result of <i>Moore's law</i> (Internet resource, IR1).	3
Fig 1.2:	The ITRS roadmap of transistor development (Internet resource, IR2)	3
Fig 1.3:	Variation of supply voltage and threshold voltage against technology generation (Packan, 2007).	5
Fig 1.4:	Variation of power density against gate length scaling of MOS device (Meyerson, 2004).	6
Fig 1.5:	Variation of drain current against gate-to-source voltage of MOS device (Internet resource, IR3).	7
Fig 1.6:	(a) Variation of DIBL with the drain to source voltage (1 V and 50 mV) (b) energy band diagram representation of DIBL.	10
Fig 1.7:	The process of band to band tunneling (BTBT) in MOSFET giving rise GIDL.	11
Fig 1.8:	The mechanism of direct gate tunneling as gate oxide leakage.	11
Fig 1.9:	The mechanism of ballistic transport in MOSFET.	12
Fig 1.10:	Generation of hot carriers in bulk MOSFET device (Internet resource., IR3).	13
Fig 1.11:	TEM image of five gated nanoribbon and magnified image of a single nanoribbon, (Colinge et al., 2011a).	15
Fig 1.12:	Schematic structure of the basic bulk JL MOSFET structure	16
Fig 1.13:	Working of junctionless MOSFET, (a) when VGS <vth; (b)="" vgs="" when="">Vth; (c) when VGS=VFB>>Vth; (d) when the device acts as a simple resistor.</vth;>	17

List of Figures

Fig 1.14:	Contour plots describing the working of junctionless MOSFET (Colinge et al., 2011a).	18
Fig 1.15:	I_D - V_{GS} (in logarithmic scale) comparison for (a) bulk MOSFET; (b) junctionless MOSFET.	18
Fig 1.16:	Pictorial representation of double gate (a) classical junctionless MOSFET; (b) JAM MOSFET.	21
Fig 1.17:	I_D - V_{GS} (in logarithmic scale) of JAM MOSFET.	22
Fig 1.18:	Planar double gate JAM MOSFET.	25
Fig 1.19:	Fin-FET type double gate JAM MOSFET.	25
Fig 1.20:	Simple Tri-gate JAM MOSFET.	26
Fig 1.21:	Various types of tri-gate devices.	26
Fig 1.22:	Quadruple GAA JAM MOSFET.	27
Fig 1.23:	Cylindrical GAA JAM MOSFET.	27
Fig 1.24:	Cylindrical nanotube JAM MOSFET.	28
Fig 1.25:	Schematic of DMG JAM MOSFET.	29
Fig 1.26:	Schematic of laterally graded channel JAM MOSFET.	30
Fig 1.27:	Schematic of vertically graded channel core-shell JAM MOSFET.	31
Fig 1.28:	Schematic of vertically stacked gate oxide in JAM MOSFET.	32
Fig 1.29:	Schematic of horizontally stacked gate oxide in JAM MOSFET.	33
Fig 1.30:	Schematic of gate underlapped JAM MOSFET.	34

Fig 1.31:	Schematic of dielectric pocket JAM MOSFET.	35
Fig 2.1:	Cross-section view of cylindrical gate GCDM-JAM MOSFET.	55
Fig 2.2:	(a) Simulation model calibration against experimental Id-Vgs data of Junctionless-FET from (Fan et al., 2015). (b) Simulated energy band structure for all three devices. (c) Variation of Carrier temperature with a channel length (simulated). (d) A 3-D view of simulated cylindrical gate GCDMJAM- MOSFET.	69
Fig 2.3:	Central channel potential along the channel length at $V_{DS}=V_{GS}=0.1$ V, R=5 nm, L=40 nm and 20 nm (a) for L ₁ :L ₂ =1:3; (b) L ₁ :L ₂ =3:1.	71
Fig 2.4:	(a) Central channel potential along the channel length at $V_{DS}=V_{GS}=0.1V$, $L_1:L_2=1:1$ and at R=5 nm, 7 nm; (b). Lateral electric field along the channel length at $V_{DS}=1$ V, $V_{GS}=0.1V$ -high field, $L_1:L_2=1:1$ and R=5 nm.	73
Fig 2.5:	Lateral electric field along the channel at $(V_{DS}=V_{GS}=0.1V)$ -low field at (a). L=40 nm, 20 nm and L ₁ :L ₂ =1:1; (b). L=40 nm, L ₁ :L ₂ =1:1 and L ₁ :L ₂ =3:1.	74
Fig 2.6:	(a) Threshold voltage; (b) roll-off, variations with variation of channel length, at (V_{DS} =0.5V) for L ₁ :L ₂ =1:1.	75
Fig 2.7:	(a) Drain current (in log scale) variations with variation of gate voltage at $V_{DS}=1$ V; (b) GIDL current variations against drain voltage; (c) gate current variations with gate voltage at $V_{DS}=1$ V; (d) gate current variation with temperature at $V_{DS}=V_{GS}=1$ V; with $L_1:L_2=1:1$.	77
Fig 2.8:	(a) DIBL; (b) Subthreshold slope, with variation in channel length at $L_1:L_2=1:1$.	78
Fig 3.1:	A schematic of HDGC JAM MOSFET fabrication steps.	82
Fig 3.2:	3-D view of nanowire HDGCJAM- MOSFET.	82
Fig 3.3:	Cross-section view of nanowire HDGCJAM- MOSFET	83

Fig 3.4:	(a) Calibration of the simulation setup with the experimental results obtained in(Fan <i>et al.</i> , 2015); (b) Simulated carrier temperature variations against channel length for all compared devices.	96
Fig 3.5:	Contour plot of carrier temperature against device length for HDGC-JAM and JAM MOSFET.	97
Fig 3.6:	Central channel potential along the channel length (a) for $L=40$ nm, $L=20$ nm at $V_{DS}=V_{GS}=0.1$ V; (b) $L=40$ nm at $V_{GS}=0.1$ V, $V_{DS}=0.5$ V for three different devices structures.	98
Fig 3.7:	Central channel potential along the channel length for different $L_1:L_2$ (a) $L=40$ nm, $L=20$ nm at $V_{DS}=V_{GS}=0.1$ V; (b) $L=40$ nm at $V_{GS}=0.1$ V, $V_{DS}=0.5$ V of GC-JAM MOSFET.	99
Fig 3.8:	Central channel potential along the channel length for $L_1:L_2$ (a) $L=40$ nm, $L=20$ nm at $V_{DS}=V_{GS}=0.1$ V; (b) L=40 nm at $V_{GS}=0.1$ V, $V_{DS}=0.5$ V, of HDGC-JAM MOSFET.	100
Fig 3.9:	Lateral electric field along the channel ($V_{DS}=V_{GS}=0.1$ V) for HDGC-JAM, GC-JAM, and JAM MOSFETs, ($L=20 \text{ nm and } 40 \text{ nm}$) at (a) $V_{DS}=0.1$ V; (b) $V_{DS}=1$ V.	102
Fig 3.10:	Lateral electric field along the channel ($V_{DS}=V_{GS}=0.1$ V) with $L_1:L_2$ ratio (1:3, 1:1 and 3:1) for (a) HDGC-JAM; (b) GC-JAM.	103
Fig 3.11:	(a) Threshold voltage variations with the variation of channel length, $(V_{DS}=0.1 \text{ V}, 0.5 \text{ V} \text{ and } 1 \text{ V})$; (b) roll-off for HDGC-JAM, GC-JAM, and JAM MOSFETs.	104
Fig 3.12:	Threshold voltage variations with variation of channel length, $(V_{DS}=0.1 \text{ V}, 0.5 \text{ V} \text{ and } 1 \text{ V})$ for (a) HDGC-JAM; (b) GC-JAM, with $L_1:L_2$ ratio (1:3, 1:1 and 3:1).	105
Fig 3.13:	Threshold voltage variation with channel length in QM and CL for (a) HDGC-JAM, GC-JAM and JAM MOSFETs (R=3 nm); (b) HDGC-JAM ($L_1:L_2=1:1$) for (R=1 nm, 3 nm, and 5 nm).	106
Fig 3.14:	(a) Simulated energy band diagram for all compared devices; (b) GIDL against drain voltage variations at (at V_{GS} =-1 V) for all devices considered for comparison in Table 3.1.	107

Fig 3.15:	(a) Drain current (logarithmic scale) considering GIDL against gate voltage variations at (V_{DS} =1 V, L=20 nm and V_{DS} =1 V, V_{DS} =0.05 V, L=40 nm); (b) g _m at V_{DS} =1 V; for all compared devices.	108
Fig 3.16:	(a) Drain current against drain voltage at $V_{GS}=1$ V, $V_{GS}=0.8$ V and L=40 nm; (b) g_d at $V_{GS}=1$ V; for all compared devices.	109
Fig 3.17:	(a) DIBL; (b) SS with variation in channel length for HDGC-JAM, GC-JAM and JAM MOSFETs.	110
Fig 4.1:	A 2-D cross-sectional view of CG-SHDGCDM-JAM MOSFET.	116
Fig 4.2:	A schematic of HDGC JAM MOSFET fabrication steps.	116
Fig 4.3:	(a) Calibration of the simulation setup with experimental results in (Choi <i>et al.</i> , 2011) (b) Validity of our model with modeled results of (Li <i>et al.</i> , $2014^{[6]}$; Trivedi, Kumar, Haldar, S. S. Deswal, <i>et al.</i> , $2016^{[4]}$; Banerjee and Sarkar, $2019^{[9]}$).	132
Fig 4.4:	(a) Central potential variation at V_{GS} (0.1, 0.5, 1 V) (b) Lateral electric field variation at V_{GS} (0.1, 1 V); against length of the channel for ($L_1:L_2=1:3, 1:1, 3:1$) at for SHDGCDM-JAM.	133
Fig 4.5:	Central potential variation vs length of the channel (a) $V_{DS}=1$ V (b) $V_{DS}=0.1$ V; for L=20 nm and 40 nm at ($V_{GS}=0.1$, 0.5, 1 V). Lateral electric field vs length of the channel (c) $V_{DS}=0.1$ V, $V_{GS}=0.1$ V (d) $V_{DS}=1$ V, $V_{GS}=1$ V; at L=20 nm and 40 nm for JAM and SHDGCDM-JAM MOSFET.	135
Fig 4.6:	(a) Central potential vs V_{GS} at z= $L/2$ and L =40 nm for JAM and SHDGCDM-JAM MOSFET (b) Central Potential variation vs length of the channel for SHDGCDM-JAM (R=3, 5, 7 nm) at (V_{GS} =0.1, 0.5, 1 V).	136
Fig 4.7:	(a)Threshold voltage (b) Roll-off; vs channel lengths at $V_{DS}=1$ V for SHDGCDM-JAM and JAM MOSFET (R=3, 5, 7 nm).	137
Fig 4.8:	(a) I_D vs V_{GS} (log scale) for JAM and SHDGCDM-JAM at (V_{DS} = 1 and 0.05 V ; L =40 nm); inset –band diagram for devices(b) I_D vs V_{GS} (linear scale) for SHDGCDM-JAM at (V_{DS} =1 V ; R=5 nm L =40 nm)	139

and device temperature (T=200, 300, 400, 500 K) (c) I_D vs V_{DS} for (V_{GS} =1 and 0.8 V) (d) g_m at V_{DS} =1 V.

- **Fig 4.9:** (a) DIBL (b) SS ($V_{DS}=1$ V; R=1 nm); vs channel lengths for JAM and 140 SHDGCDM-JAM.
- Fig 4.10: (a) Central potential vs length of the channel at $(V_{GS}=0.1 \text{ and } 1 V)$ (b) 143 Threshold voltage (c) threshold voltage vs trapped charges density (d) I_D (log scale) vs V_{GS} ; at $V_{DS}=1 V$ for SHDGCDM-JAM and JAM MOSFET with \pm interface trapped charges at R₂.
- Fig 5.1:A cross-sectional view of JAM and inversion mode MOSFET.147
- Fig 5.2: Calibration of TCAD simulation setup with experimental results of, (a) junctionless MOSFET (Choi *et al.*, 2011), (b) IM MOSFET (Song *et al.*, 2006); (c) Validation of our proposed model with other reported 2-D models of junctionless MOSFET (Li *et al.*, 2013)^[8] and IM MOSFET (Liu and Li, 2012)^[29].
- Fig 5.3: (a) Continuity of middle central potential with the variation of V_{GS} for 161 $V_{DS}=0.5$ V and 1 V (L=40 nm), (b) continuity of middle surface potential with the variation of V_{GS} for $V_{DS}=1$ V (L=20 nm); in both JAM and IM MOSFET.
- Fig 5.4: Variation of central channel potential with position along the 162 channel; (a) at $V_{GS}=0$ V and $V_{DS}=1$ V, (b) at $V_{GS}=0.5$ V and $V_{DS}=1$ V; for various channel lengths of L=40 nm, 20 nm and 10 nm for both JAM and IM MOSFET.
- Fig 5.5: (a) Variation of central channel potential with position along the 163 channel at $(V_{GS}=1 \text{ V} \text{ and } V_{DS}=1 \text{ V})$ for various channel lengths of L= 40 nm, 20 nm and 10 nm in both JAM and IM MOSFET, (b) variation of channel surface potential with position along the channel at $(V_{GS}=0 \text{ V}, 0.5 \text{ V}, 1 \text{ V} \text{ and } V_{DS}=1 \text{ V})$ for channel length of L=20 nm in both JAM and IM MOSFET.
- **Fig 5.6:** Variation of central channel potential with position along the channel **164** at $V_{GS}=0$ V and $V_{DS}=1$ with channel length L=20 nm; (a) for radius R=5 nm, 7 nm and 10 nm, (b) for oxide thickness $t_{ox}=1$ nm, 2 nm and 3 nm; (c) for different channel doping concentration [JAM MOSFET $(5 \times 10^{17}-5 \times 10^{18})$ and IM MOSFET $(5 \times 10^{16}-5 \times 10^{17})$]; in both JAM and IM MOSFET.

Fig 5.7:	(a) Variation of threshold voltage with the channel length, (b) variation of roll-off with channel length; at $V_{DS}=1$ V for compared devices.	166
Fig 5.8:	Variation of DIBL with channel length for compared devices.	166
Fig 5.9:	(a) Variation of drain current (I_D) with V_{DS} at $V_{GS}=1$ V, (b) variation of drain current (I_D) with V_{GS} at $V_{DS}=1$ V and 0.5 V (in both linear and logarithmic scale); for compared devices.	167
Fig 5.10:	(a) Variation of transconductance g_m with V_{GS} at $V_{DS}=1$ and 0.5 V, (b) variation of output conductance g_d with V_{DS} at $V_{GS}=1$ V in linear and logarithmic scale.	168
Fig 6.1:	2-D cross-section diagram of Gaussian doped channel in stacked oxide CG-JAM MOSFET.	173
Fig 6.2:	(a) Variation of channel doping against the radius of the channel for different straggle length (b) 2-D view of doping variations along channel radius for straggle length of 3 nm.	173
Fig 6.3:	Calibration of simulation models with experimental results in (Choi et al., 2011).	175
Fig 6.4:	Calibration Verilog-A model with TCAD simulation of complimentary drain current characteristics for stacked oxide CG-JAM p-MOSFET and n-MOSFET to implement COMS inverter at straggle length=1nm and V_{DS} =1 V.	176
Fig 6.5:	The workflow of the circuit level simulation procedure.	176
Fig 6.6:	(a) I_D - V_{GS} at V_{DS} =1 V; (b) I_D - V_{DS} at V_{GS} =1 V at different straggle lengths.	179
Fig 6.7:	(a) Variation of Transconductance (g_m) and drain conductance (g_d) with V_{GS} , $\log(g_d)$ with V_{GS} (inset); (b) variation of intrinsic gain with V_{GS} at different straggle lengths.	180

Fig 6.8:	(a) Variation of capacitances C_{gg} , C_{gs} and C_{gd} with V_{GS} ; (b) Variation of f_T with V_{GS} for different straggle length.	183
Fig 6.9:	(a) Variation of gain bandwidth (<i>GBW</i>) product with V_{GS} ; (b) variation of transconductance frequency product (<i>TFP</i>) with V_{GS} for different straggle length.	184
Fig 6.10:	(a) Variation of transit time (τ) product with V_{GS} ; (b) variation of f_{max} with V_{GS} for different straggle length.	185
Fig 6.11:	(a) Variation of noise margin and gain of the inverter with straggle length; (b) variation of inverter current with straggle length.	187
Fig 6.12:	(a) Variations of transient characteristics of the inverter with straggle length; (b) variation in short circuit transient current with straggle length.	188
Fig 6.13:	Schematic of a 6T SRAM cell.	189
Fig 6.14:	(a) Variation of read noise margin (RNM) of SRAM with straggle length; (b) variation of write noise margin (WNM) with straggle length.	192
Fig 6.15:	(a) Variation in N-curve of SRAM with straggle length; (b) setup for N-curve measurement.	193
Fig 6.16:	(a) Assessment of RAT for different straggle lengths; (b) variation of RAT with straggle length.	194
Fig 6.17:	(a) Assessment of WAT for different straggle lengths; (b) variation of effective WAT with straggle length.	194

LIST OF TABLES

Table. 2.1:	Specifications of different JAM MOSFET structures	67
Table. 3.1:	Specifications of different JAM MOSFET structures	95
Table. 4.1:	Comparison of different 2-D models	114
Table. 4.2:	Specifications of Different Structures	131
Table. 5.1:	List of various extracted parameters for simulation	156
Table. 5.2:	Device physical and geometrical parameters	158
Table. 6.1:	Device specifications	174
Table. 6.2:	Specification of threshold voltage and <i>I_{on}/I_{off}</i> for various straggle lengths of Gaussian doped CG-JAM MOSFET	180
Table. 6.3:	Transient parameters of CMOS Inverter	189

LIST OF ABBREVIATIONS

Abbreviation	Details
JAM	Junctionless Accumulation Mode
JL	Junctionless
BTBT	Band-to-band Tunneling
DG	Double Gate
TFET	Tunnel Field Effect Transistor
1-D	One Dimensional
2-D	Two Dimensional
3-D	Three Dimensional
SCEs	Short Channel Effects
HCEs	Hot Carrier Effects
GAA	Gate All Around
MOS	Metal Oxide Semiconductor
FET	Field Effect Transistor
MOSFET	Metal Oxide Semiconductor Field Effect Transistor
SOI	Silicon-on-Insulator
IC	Integrated Circuit
GIDL	Gate Induced Drain Leakage
SS	Subthreshold Swing
SMG	Single Material Gate
TMG	Triple Material Gate
DMG	Dual/Double Material Gate
CMOS	Complementary Metal Oxide Semiconductor

BJT	Bipolar Junction Transistor
TEM	Tunneling Electron Microscope
BOX	Buried Oxide
DIBL	Drain Induced Barrier Lowering
TCAD	Technology Computer-Aided Design
ITRS	International Technology Roadmap for Semiconductors
EOT	Equivalent Oxide Thickness
DP	Dielectric Pocket
NW	Nanowire
DUV	Deep UV lithography
ALD	Atomic Layer Deposition
L-BTBT	Lateral-Band to Band Tunneling
HS	Hole Sink
DM	Dual Material
JLFET	Junctionless Field Effect Transistor
SNM	Static Noise Margin
RNM	Read Noise Margin
WNM	Write Noise Margin
SRAM	Static Random-Access Memory
6-T	6-Transistor
f_T	Unity Gain Frequency
TFP	Transconductance Frequency Product
GBW	Gain Bandwidth Product
fmax	Maximum Frequency of Oscillation
RAT	Read Access Time
WAT	Write Access Time

CG	Cylindrical Gate
GC	Graded Channel
GC-DM	Graded Channel Dual Material
HD-GC	Hetero-dielectric Graded Channel
SHD-GC-DM	Stacked Hetero-dielectric Graded Channel
RF	Radio Frequency
IM	Inversion Mode
AT	Access Time
BTE	Boltzmann Transport Equation
M-C	Monte-carlo
$E_{ m g}$	Energy Band Gap
Vel_0	Ballistic Velocity
Ec	Conduction Band energy
$E_{ m V}$	Valance Band Energy
q	Electronic Charge
Т	Temperature in Kelvin
KT	Thermal Energy
V_{T}	Thermal Voltage
$V_{ m th}$	Threshold Voltage
ID	Drain Current
N _{S/D}	Source/Drain Doping
N _{ch}	Channel Doping
$g_{ m m}$	Transconductance
g_d	Output-Conductance
I _{ON}	ON Current
$I_{ m OFF}$	OFF Current

I _{leak}	Leakage Current
$V_{ m GS}$	Gate-to-Source Voltage
$V_{\rm DS}$	Drain-to-Source Voltage
t _{si}	Channel Thickness
W _{si}	Width of the Channel
t _{ox}	Oxide Thickness
R	Radius of the Channel
L	Length of the Channel
χ	Electron Affinity
ψ	Potential Function
nm	Nanometer
V	Voltage
L	Channel Length
eV	Electron Volt
mA	Milli Ampere
μm	Micro Meter
V_f	Quasi-fermi Level
ni	Intrinsic Concerntration
<i>m</i> _e	Effective Mass
h	Plank Constant
λ	Wave Function
U	Potential Energy
E	Discreatized Energy
r	Radial Coordinate
Z	z-Coordinate

heta	Radial Coordinate
μ	Mobility
V _{tL}	Long Channel Threshold Voltage
SS	Subthreshold Slope

Preface

As the CMOS technology node is scaled down below 90 nm in accordance with Moore's law, a number of challenges have emerged in the optimized performance of the MOS transistors. The most important of them is the fabrication of sharp p-n junctions in a nanoscale inversion mode (IM) MOSFET. A severe increase in short channel effects (SCEs) and subthreshold power leakage with the decrease in channel length is also a major aspect of scaling. These challenges call for some unconventional MOS device structure. Junctionless (JL) MOSFETs are MOS devices that have no p-n junctions and thus are easier to fabricate in nanoscale. Conventional JL structures are highly doped structures with the same level of doping throughout the source, channel, and drain. These transistors have lower SCEs and subthreshold power leakage than conventional IM MOSFETs. Due to the bulk mode of operation, surface scattering and threshold voltage variability with temperature are also lower for these devices. However, low drive current and random dopant fluctuation (RDF) due to high doping is a drawback of conventional JL transistors. The low drive current is due to increased source/drain resistance and a decrease in mobility due to high doping. Junctionless accumulation mode (JAM) MOSFET, a modified version of conventional JL MOSFETs with higher doping in source/drain than the channel, with the same type of dopant is fast replacing conventional JL structure due to its high drive current. Although the JAM MOSFETs delivers high drive current but it suffers from gate leakage, gate induced drain leakage (GIDL) and hot carrier effects (HCEs) due to high drain /channel interface electric fields. Various device design engineering like multi-gate engineering (i.e., double gate, tri-gate, gate all around, etc.), gate material engineering (i.e., a combination of same or different materials with different work functions in cascade to form the gate electrode), gate oxide engineering (i.e., lateral/vertical stacking of high-k/SiO2), channel engineering (i.e., lateral graded channel, vertical graded channel, vertical Gaussian doping) and source/drain engineering (i.e., elevated source/drain, source/drain underlap) reported enhancing the performance of JL MOSFETs can also be used in JAM MOSFET to enhance its performance and reduce these unwanted effects. In this perspective, the present thesis deals with some theoretical investigations of performance characteristics of some gate-electrode, gate-oxide structure engineered, channel engineered and simple cylindrical gate (CG) JAM MOSFET. Under gate-electrode engineering, the dualmaterial (DM) gate structure has been explored to reduce the gate leakage current and SCEs. DM gate structure consists of cascade connection of gate electrodes with two different/same metal but with different workfunction in a non-overlapped way. The gate electrode near the source side is of a higher workfunction called control gate whereas the gate electrode near the drain side is of a lower workfunction called screen gate. The sum of the control and screen gate is the total length of the gate. Under gate-oxide engineering, we have explored the lateral and vertical stacking of high-k/SiO₂. Instead of using a single layer of SiO2 a vertical stacking with high-k increases the physical thickness of the gate dielectric which effectively reduces leakage current and interface states. Horizontal stacking of high-k/SiO₂ in a non-overlapped manner (with high-k in the source side and SiO₂ in the drain side) increases the on-state current and reduces the HCEs. Under channel engineering, we have explored the effectiveness of lateral graded doping and vertical gaussian doping. Lateral graded doping consists of lower doping at the source end of the channel and higher doping at the drain end of the channel. Vertical Gaussian doping consists of higher doping at the surface which progressively decreases as it reaches the center of the channel. Lateral graded doping suppresses SCEs, GIDL and DIBL whereas vertical Gaussian doping decreases subthreshold current, DIBL and enhances RF parameters. Quantum confinement effects along the width of the channel, effect of temperature and operation of the device in both depletion and accumulation region have been explored in this present thesis. Quasi-ballistic transport in simple JAM MOSFET has also been studied in the present thesis. Further, a compact DC model for doped IM MOSFET has also been formulated using the DC-compact model for JAM MOSFET. The overall chapter-wise layout of the thesis is presented below:

Chapter-1 presents a brief introduction of JL and JAM MOSFETs and their working mechanism. Various reported techniques applied for enhancing the performance of JAM MOSFETs have also been discussed. A brief review of various state-of-the-art fabrication-based simulation-based and analytical modeling-based literatures on JL/JAM MOSFET has been presented. Finally, based on the literature survey, the scopes of the present thesis have been outlined at the end of this chapter.

Chapter-2 presents 2-D analytical modeling of device potential, electric field, threshold voltage, roll-off, DIBL and SS of CG GC-DM JAM MOSFET. 2-D Poisson's equation in depletion approximation has been solved using the superposition principle by applying appropriate boundary conditions and the threshold voltage has been obtained using the

minimum central potential method. Further total drain current including GIDL and gate leakage current have also been modeled. Furthermore, the performance metrics of CG GC-DM JAM MOSFET have been compared with CG GC JAM and CG DM-JAM MOSFET based on electrical characteristics, for various control and screen gate length. The modeled results were corroborated with numerical simulation results from COGENDATM

Chapter-3 reports the 2-D analytical modeling of device potential, electric field and threshold voltage, roll-off, DIBL and SS of CG HD-GC JAM. The superposition principle has been used to solve 2-D Poisson's equation in depletion approximation in the same way as discussed in chapter-2. Threshold voltage has also been modeled similarly as in chapter-2. The effect of quantum confinement along the width of the cylindrical channel on threshold voltage has been implemented using quantum well approximation. The drain current has been modeled at negative gate bias considering GIDL. Further transconductance and output-conductance have also been modeled utilizing the drain current model. The performance metrics based on various electrical characteristics of CG HD-GC JAM MOSFET has been compared with CG GC JAM and CG JAM MOSFET for various control and screen gate length. Hence, the accuracy of the model was verified with numerical simulation data from COGENDATM

Chapter-4 presents a 2-D DC compact model for device potential, electric field, threshold voltage, roll-off, DIBL, SS, complete drain current including GIDL, transconductance and output conductance engineered JAM MOSFET. A device considering various reported device engineering is named CG-SHD-GC-DM JAM MOSFET. 2-D Poisson's equation considering both depletion and accumulation charges has been solved by the superposition principle using appropriate boundary conditions. The model thus formulated is continuous across various operating regimes (both depletion and accumulation). Effects of quantum and electrical confinements have been implemented in the proposed model. The effects of device temperature and interface trapped charges have also been applied in the formulated. Threshold voltage has been formulated by taking depletion approximation of the original potential equation by utilizing the minimum central channel potential principle. Drain current has been formulated in the same way as chapter-3. The performance metrics based on various electrical characteristics of engineered CG SHD-GC-DM JAM MOSFET have been compared with CG JAM MOSFET. Finally, the modeled results have been matched with numerical simulation data from COGENDATM to verify the accuracy of the model.

Chapter-5 presents a unified 2-D model for device potential, threshold voltage, roll-off, DIBL, drain current, transconductance and output conductance CG JAM and IM MOSFET. The 2-D Poisson's equation considering both depletion and accumulation charges has been solved by the superposition principle using appropriate boundary conditions. The potential thus formulated is continuous across all operating regimes (depletion and accumulation regimes). The 1-D potential equation considered here is simpler and consists of a single equation as compared to the three components used in chapter-4. Threshold voltage has been formulated using the minimum central potential principle. The quasi-ballistic drain current has been modeled by utilizing Lundstrom's theory. The mean free carrier path and ballistic velocity have been extracted from the simulation to obtain the ballistic coefficient. The drain current formulation in chapters 2-4. Finally, the modeled results have been verified with numerical simulation data from COGENDATM

Chapter-6 presents DC and RF analysis of vertically stacked high- k/SiO_2 CG JAM MOSFET with vertical Gaussian doping. DC analysis consists of threshold voltage, I_{ON}/I_{OFF} ratio, transconductance, output-conductance and intrinsic gain whereas RF analysis consists of capacitances, GBW, f_T , f_{max} , TFP and transit time. Further, a lookup table-based Verilog-A model has been created using the DC and RF analysis results from COGENDATM. The Verilog-A model is then used to simulate a CMOS inverter and a 6-T SRAM cell in CADENCETM platform. Thereafter various parameters such as SNM, gain, delay, short circuit power dissapation, RNM, WNM, N-curve analysis, RAT and WAT have been extracted from the simulated results.

Chapter-7 includes the summary and conclusions of this thesis. Some possible future scopes of research in the related area of the present thesis are also presented at the end of this chapter.