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Preface 
 

As the CMOS technology node is scaled down below 90 nm in accordance with Moore’s law, 

a number of challenges have emerged in the optimized performance of the MOS transistors. 

The most important of them is the fabrication of sharp p-n junctions in a nanoscale inversion 

mode (IM) MOSFET. A severe increase in short channel effects (SCEs) and subthreshold 

power leakage with the decrease in channel length is also a major aspect of scaling. These 

challenges call for some unconventional MOS device structure. Junctionless (JL) MOSFETs 

are MOS devices that have no p-n junctions and thus are easier to fabricate in nanoscale. 

Conventional JL structures are highly doped structures with the same level of doping 

throughout the source, channel, and drain. These transistors have lower SCEs and subthreshold 

power leakage than conventional IM MOSFETs. Due to the bulk mode of operation, surface 

scattering and threshold voltage variability with temperature are also lower for these devices. 

However, low drive current and random dopant fluctuation (RDF) due to high doping is a 

drawback of conventional JL transistors. The low drive current is due to increased source/drain 

resistance and a decrease in mobility due to high doping. Junctionless accumulation mode 

(JAM) MOSFET, a modified version of conventional JL MOSFETs with higher doping in 

source/drain than the channel, with the same type of dopant is fast replacing conventional JL 

structure due to its high drive current. Although the JAM MOSFETs delivers high drive current 

but it suffers from gate leakage, gate induced drain leakage (GIDL) and hot carrier effects 

(HCEs) due to high drain /channel interface electric fields. Various device design engineering 

like multi-gate engineering (i.e., double gate, tri-gate, gate all around, etc.), gate material 

engineering (i.e., a combination of same or different materials with different work functions in 

cascade to form the gate electrode), gate oxide engineering (i.e., lateral/vertical stacking of 

high-k/SiO2), channel engineering (i.e., lateral graded channel, vertical graded channel, 

vertical Gaussian doping) and source/drain engineering (i.e., elevated source/drain, 

source/drain underlap) reported enhancing the performance of JL MOSFETs can also be used 

in JAM MOSFET to enhance its performance and reduce these unwanted effects. In this 

perspective, the present thesis deals with some theoretical investigations of performance 

characteristics of some gate-electrode, gate-oxide structure engineered, channel engineered and 

simple cylindrical gate (CG) JAM MOSFET. Under gate-electrode engineering, the dual-
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material (DM) gate structure has been explored to reduce the gate leakage current and SCEs. 

DM gate structure consists of cascade connection of gate electrodes with two different/same 

metal but with different workfunction in a non-overlapped way. The gate electrode near the 

source side is of a higher workfunction called control gate whereas the gate electrode near the 

drain side is of a lower workfunction called screen gate. The sum of the control and screen gate 

is the total length of the gate. Under gate-oxide engineering, we have explored the lateral and 

vertical stacking of high-k/SiO2. Instead of using a single layer of SiO2 a vertical stacking with 

high-k increases the physical thickness of the gate dielectric which effectively reduces leakage 

current and interface states. Horizontal stacking of high-k/SiO2 in a non-overlapped manner 

(with high-k in the source side and SiO2 in the drain side) increases the on-state current and 

reduces the HCEs. Under channel engineering, we have explored the effectiveness of lateral 

graded doping and vertical gaussian doping. Lateral graded doping consists of lower doping at 

the source end of the channel and higher doping at the drain end of the channel. Vertical 

Gaussian doping consists of higher doping at the surface which progressively decreases as it 

reaches the center of the channel. Lateral graded doping suppresses SCEs, GIDL and DIBL 

whereas vertical Gaussian doping decreases subthreshold current, DIBL and enhances RF 

parameters. Quantum confinement effects along the width of the channel, effect of temperature 

and operation of the device in both depletion and accumulation region have been explored in 

this present thesis. Quasi-ballistic transport in simple JAM MOSFET has also been studied in 

the present thesis. Further, a compact DC model for doped IM MOSFET has also been 

formulated using the DC-compact model for JAM MOSFET. The overall chapter-wise layout 

of the thesis is presented below: 

Chapter-1 presents a brief introduction of JL and JAM MOSFETs and their working 

mechanism. Various reported techniques applied for enhancing the performance of JAM 

MOSFETs have also been discussed. A brief review of various state-of-the-art fabrication-

based simulation-based and analytical modeling-based literatures on JL/JAM MOSFET has 

been presented. Finally, based on the literature survey, the scopes of the present thesis have 

been outlined at the end of this chapter.   

Chapter-2 presents 2-D analytical modeling of device potential, electric field, threshold 

voltage, roll-off, DIBL and SS of CG GC-DM JAM MOSFET. 2-D Poisson’s equation in 

depletion approximation has been solved using the superposition principle by applying 

appropriate boundary conditions and the threshold voltage has been obtained using the 
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minimum central potential method. Further total drain current including GIDL and gate leakage 

current have also been modeled. Furthermore, the performance metrics of CG GC-DM JAM 

MOSFET have been compared with CG GC JAM and CG DM-JAM MOSFET based on 

electrical characteristics, for various control and screen gate length. The modeled results were 

corroborated with numerical simulation results from COGENDATM 

Chapter-3 reports the 2-D analytical modeling of device potential, electric field and threshold 

voltage, roll-off, DIBL and SS of CG HD-GC JAM. The superposition principle has been used 

to solve 2-D Poisson’s equation in depletion approximation in the same way as discussed in 

chapter-2. Threshold voltage has also been modeled similarly as in chapter-2. The effect of 

quantum confinement along the width of the cylindrical channel on threshold voltage has been 

implemented using quantum well approximation. The drain current has been modeled at 

negative gate bias considering GIDL. Further transconductance and output-conductance have 

also been modeled utilizing the drain current model. The performance metrics based on various 

electrical characteristics of CG HD-GC JAM MOSFET has been compared with CG GC JAM 

and CG JAM MOSFET for various control and screen gate length. Hence, the accuracy of the 

model was verified with numerical simulation data from COGENDATM 

Chapter-4 presents a 2-D DC compact model for device potential, electric field, threshold 

voltage, roll-off, DIBL, SS, complete drain current including GIDL, transconductance and 

output conductance engineered JAM MOSFET. A device considering various reported device 

engineering is named CG-SHD-GC-DM JAM MOSFET. 2-D Poisson’s equation considering 

both depletion and accumulation charges has been solved by the superposition principle using 

appropriate boundary conditions. The model thus formulated is continuous across various 

operating regimes (both depletion and accumulation). Effects of quantum and electrical 

confinements have been implemented in the proposed model. The effects of device temperature 

and interface trapped charges have also been applied in the formulated. Threshold voltage has 

been formulated by taking depletion approximation of the original potential equation by 

utilizing the minimum central channel potential principle. Drain current has been formulated 

in the same way as chapter-3. The performance metrics based on various electrical 

characteristics of engineered CG SHD-GC-DM JAM MOSFET have been compared with CG 

JAM MOSFET. Finally, the modeled results have been matched with numerical simulation 

data from COGENDATM to verify the accuracy of the model. 
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Chapter-5 presents a unified 2-D model for device potential, threshold voltage, roll-off, DIBL, 

drain current, transconductance and output conductance CG JAM and IM MOSFET. The 2-D 

Poisson’s equation considering both depletion and accumulation charges has been solved by 

the superposition principle using appropriate boundary conditions. The potential thus 

formulated is continuous across all operating regimes (depletion and accumulation regimes). 

The 1-D potential equation considered here is simpler and consists of a single equation as 

compared to the three components used in chapter-4. Threshold voltage has been formulated 

using the minimum central potential principle. The quasi-ballistic drain current has been 

modeled by utilizing Lundstrom’s theory. The mean free carrier path and ballistic velocity have 

been extracted from the simulation to obtain the ballistic coefficient. The drain current 

considered here is continuous across all operating regimes as compared to drain current 

formulation in chapters 2-4. Finally, the modeled results have been verified with numerical 

simulation data from COGENDATM  

Chapter-6 presents DC and RF analysis of vertically stacked high-k/SiO2 CG JAM MOSFET 

with vertical Gaussian doping. DC analysis consists of threshold voltage, ION/IOFF ratio, 

transconductance, output-conductance and intrinsic gain whereas RF analysis consists of 

capacitances, GBW, fT, fmax, TFP and transit time. Further, a lookup table-based Verilog-A 

model has been created using the DC and RF analysis results from COGENDATM. The Verilog-

A model is then used to simulate a CMOS inverter and a 6-T SRAM cell in CADENCETM 

platform. Thereafter various parameters such as SNM, gain, delay, short circuit power 

dissapation, RNM, WNM, N-curve analysis, RAT and WAT have been extracted from the 

simulated results. 

Chapter-7 includes the summary and conclusions of this thesis. Some possible future scopes 

of research in the related area of the present thesis are also presented at the end of this chapter. 

 

 

 

 

 


