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2.1. Introduction 

This chapter discusses the solution of Maxwell‘s equations to study the wave 

propagation in the uniform and periodic lossy dielectric loaded waveguide. The basic 

theory of lossy dielectric loaded cylindrical waveguide is studied first to address the 

dispersion relation in the gyro-TWT operation. Since, the lossy waveguide interaction 

system has been proved effective to suppress various instabilities; the full-wave 

interaction analysis of lossy dielectric loaded waveguide structure for gyro-TWT using 

linear and nonlinear theories have been reviewed [Du and Liu (2010), (2010)]. 

Nonlinear analyses of gyro-TWT reported so far have considered only single waveguide 

mode interaction with the electron beam [Sprangle and Drobot (1977), Chu (2004), 

Wang et al. (1992)]. The single-mode theory of the distributed lossy waveguide was 

introduced by Chu et al. [Chu et al. (1999)]. Using the single-mode theory, one can 

preliminarily select the structural and electrical parameters of the system to analyze the 

growth of the operating mode. However, to analyze the backward wave oscillation and 

their effect on the growth of the operating as well as competing modes, one must 

consider multiple modes interaction with the beam at the same time. In this chapter, a 

multimode steady-state nonlinear analysis of gyro-TWT is presented to analyze the 

mutual effects among more than one waveguide modes, including the operating mode 

and backward wave oscillation modes for a uniform dielectric-loaded (UDL) waveguide 

and the periodic dielectric loaded (PDL) waveguide. The motion of electrons is affected 

by both the operating mode and backward wave oscillation modes. With the help of 

multimode analysis, one can discuss the effect of backward wave oscillation modes on 

the operating mode, which cannot be performed through the single-mode theory. This 

section reviews the theory of dielectric-loaded waveguide which provides theoretical 

foundation for studying the waveguide propagation characteristics. 
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2.2. Theory of Dielectric Waveguides 

The development of gyro-TWT amplifier including various types of interaction 

waveguide structures such as dielectric loading, photonic band gap structures, confocal 

waveguide, helically corrugated waveguide, etc. have been experimentally and 

theoretically reported. While employing a certain kind of structure as RF interaction 

circuit, the primary motive is generally remained to suppress the various oscillations 

and get the zero-drive stability [Du and Liu (2014)]. Among various kind of interaction 

waveguide structure, the lossy dielectric loaded interaction circuit has been proved as 

operation mode control method that effectively suppresses these oscillations by 

providing the heavy attenuation to the oscillating modes. The lossy dielectric controls 

the propagation characteristic of the operating as well as competing modes that directly 

influence the beam-particle interaction. This chapter reviews the theory of dielectric-

loaded waveguide which provides theoretical foundation of the propagation 

characteristic of the RF beam in the lossy dielectric waveguides. 

2.2.1. Theory of Uniform Dielectric Waveguide 

Figure 2.1 depicts the longitudinal and transverse view of uniform dielectric 

loaded cylindrical waveguide. The dielectric loaded waveguide is divided into two 

regions, Region I, is the empty waveguide region filled with vacuum and Region 2, is 

the lossy region filled with the lossy dielectric layer. According to the solution of 

Maxwell‘s equations, the electric and magnetic field component in the vacuum filled 

and dielectric filled regions of a dielectric loaded cylindrical waveguide system can be 

separately expressed as [Harrington (2001)], 

Vacuum Region 

( )

1( ) ( ) j t m

z mE jA z J k r e   

                                        (2.1a) 

( )

1( ) ( ) j t m

z mH A z J k r e  
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where, A(z) is the axial field amplitude and  ,  ,  ,   are arbitrary constants. The 

permittivity and permeability constants of vacuum and dielectric regions are 1 0  , 

1 0  , 2 0 r   , and 2 0 r    respectively. The functions Jn and Nn are the Bessel 

functions of first and second kind. The boundary conditions for the fields are continuous 
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tangential field components at the interface r = rw and vanishing tangential electric field 

at the perfect conductor r = rw + r ,: 

At the surface r = rw,  

I IIE E 
 
and I II

z zH H ;         for 0 ≤ z < L1, 

  
0IE  ;                               for L1 ≤ z < L1+L2. 

At the surface r = rw + r , 

0IIE  ;                                     for 0 < z < L1 

With these boundary conditions, the system of equations (2.1a - 2.1f) and (2.2a - 2.2f) 

can be recast into the dispersion relation [Du et al. (2014)]   
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For m = 0 and kz = 0, the equation (2.3) splits into TE and TM modes fields and can be 

expressed as,  
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For 0zk   and 0m , the solution of equation (2.3) has complex field distribution 

i.e., hybrid ,m nHE  or ,m nEH  modes. The transcendental equation (2.3) is solved along    



Fundamental Theory and Multimode Analysis of Dielectric Loaded Gyro-TWT 

41 

 

with the following dispersion relations, 

2 2 2 2

1 1 1zk k k       ,   (Region I)                                         (2.7) 

2 2 2 2

2 2 2zk k k       ,   (Region II)                                       (2.8) 

The solution of the dispersion equation for real ω is having a complex wave number (kr 

+ jki) with |ki| >> kr near the cut-off region. Therefore, the dispersion curve of modes is 

discontinuous near the cut-off region due to high attenuation by the lossy dielectric. 

 

Figure 2.1.  Schematic of UDL RF interaction structure for W-band gyro-TWT (a) 

transverse view and (b) longitudinal view. 

2.2.2. Theory of Periodic Dielectric Loaded (PDL) Waveguide 

The cross-section of PDL waveguide is divided into two regions namely: (i) 

vacuum region (R1), and (ii) dielectric region (R2). In region R1, the wave is propagating 

one, and according to the Floquet‘s theorem, the axial magnetic field in R1 is expressed 

as a sum of Bloch harmonics [Tigelis et al. (1998), Kesari et al. (2011)].  

   1 1 1 e n
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In the periodic system, the propagation constant is ( 2 / )nk k n L  , where m and n 

indicate the order numbers of the Bessel Function and the Bloch harmonic, respectively.  

1

nA  and 2

nB  are the unknown coefficients of field‘s amplitude and    
2 21 2/ ,n nh c k   
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represent the inverse characteristic length in region R1. The axial component of 

magnetic field in dielectric region R2 corresponds to standing eigenwaves, which are 

represented by Fourier series [Tigelis et al. (1998)], 
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where,      
2 2 22 / /n rh c l b     represent the inverse characteristic length in region 

R2.          2 2 2 2 2

0 0m l m l l w m l l wZ h r J h r Y h r J h r Y h r    is combined function of modified 

Bessel and Neumann functions. In order to characterize the transverse field equation for 

the present periodic dielectric waveguide, relevant boundary conditions are needed to be 

incorporated. The tangential electric and magnetic fields must be continuous at the 

interface between region (R1) and region (R2) at r = rw,  

1 2E E 
,  

and 
1 2
z zH H         for 0 ≤ z < b                                          (2.13) 

The tangential electric field should vanish at the interface between vacuum and perfect 

conductor at r = rw, 

1 0E                     for   b+ nL ≤ z < (n+ 1) L                               (2.14) 

The tangential electric field should also vanish for the interface between dielectric and 

perfect conductor at r = rw + d, 

2 0E                           for       0 ≤ z < b                                                           (2.15) 

As each period of periodic dielectric-loaded waveguide contains two sections, namely, a 

dielectric section and a copper region. The modes will have complex field distribution. 

The transverse field distribution of TE11, TE21, TE01, and TE02 mode in the dielectric 

section, maps to the modes that in the uniform DL waveguide i.e., 12

dHE , 22

dHE , 02

dTE , 
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and 04

dTE . While in the copper region, modes are similar to that in the conventional 

copper waveguide. Due to such a mapping relationship, four modes namely, ∼TE11, 

∼TE21, ∼TE01, and ∼TE02, are used for the mode‘s nomenclature in the periodic 

dielectric waveguide [Du et al. (2009)].  

2.3. Theory of CRM interaction in lossy Dielectric loaded Gyro-TWT 

The theoretical modal for CRM interaction in gyro-TWT system developed in 

this section is valid with limitations. It is only valid for ECM system of longitudinal 

uniformity and considering only TE mode or TE mode-like hybrid mode. Three basic 

assumptions are made [Chu (2004), Wang et al. (1992)]: 

 Single Mode Interaction: The electron beam interacts with a single mode and 

reaches a steady state in frequency domain. 

 Undisturbed Mode Distribution: The wave mode in the interaction circuit maintains 

the same transverse distribution as it is in an electron-free waveguide. The beam-

wave interaction influences the wave amplitude only.  

 Omitting the Space Charge Effect: The space charge from the electron beam 

imposes no influence on the beam-wave interaction. 

A transverse cross sectional of a general CRM interaction waveguide system is shown 

in Figure 1. The waveguide system is parted into two regions. The region 1 is the 

vacuum region containing electron beam, while remaining complicate region is region 

2. The region 2 contains the disturbance structure (e.g., lossy layer) introduce to control 

the waveguide mode. For a waveguide system, the major field components for a TE 

mode or a hybrid HE mode, most energy of which is carried by TE mode components 

[Calame et al., (2002), Du et al. (2009)]. 

Using the Maxwell‘s equation and considering the distributed current density source J , 
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the wave equation can be expressed as, 
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The above equation is the field exciting equations for linear and self-consistent 

nonlinear theories, where, R1 and R2 indicate the transverse areas of Region 1 and 

Region 2, respectively, and G is the geometry factor. 

2.3.1. Linear theory of lossy Dielectric Loaded Gyro-TWT 

In general, the modes in a uniform dielectric-loaded waveguide are hybrid ones 

HEmn or EHmn. In a gyro-TWT application, properly designed dielectric-loaded 

waveguide conveys an operation mode with a TE mode like energy distribution, and 

this hybrid mode is quite similar to a pure TE mode in a cylindrical waveguide [Garven 

et al. (2002), Lee et al. (1986), Du (2009)]. According to research experience, an CRM 

system only considers TE mode components could evaluate the interaction performance 

with reasonable accuracy [Du and Liu (2009)]. Substituting the field expressions of the 

TE component of a hybrid mode in dielectric waveguide into Eq. (2.17) 
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where, J  is the disturbing current, E  
is field expression in the guiding center 

coordinate of the electron beam, the geometry factor is Gmn = G1 + G2, and the constants 

G1 and G2 are given as, 
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when the dielectric layer is eliminated, the geometry factor becomes Gmn = G1, and 

returns to a beam-wave interaction equation of a cylindrical waveguide-based CRM 

system [Chu et al. (1999)]. Linearizing the relativistic Vlasov‘s equation and after 

Laplace transformed, the dispersion relation and field amplitude of the dielectric-loaded 

CRM system can be expressed as [Du and Liu (2010), Kou et al. (1992)] , 
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where, kzc is the cold propagating constant of the waveguide, and constants 1( )zS k and 

0
ˆ ( )ziS k  are respectively. 
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 where, 
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other variables are 1 Lx k r  and 1 cy k r . The linear theory takes into consideration 

the influence of the dielectric layer loaded to the propagation characteristics and field 

distribution and is capable of efficiently analyzing the CRM interaction.  

2.3.2. Nonlinear theory of lossy Dielectric Loaded Gyro-TWT 

Similar to the linear theory, the nonlinear theory of the dielectric-loaded 

waveguide considers a pure TE mode or the TE mode component of a hybrid mode. 

Substituting the field components into (2.30), it is obtained as follows: 

*
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where, the beam current density is assumed to be 

0
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( ) ( ) ( )
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i i i i

i i zi
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J W r r t t
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 
    

 

                                (2.29) 

where, the phase distribution is ( )i i i cit s m s        and the weight factor of 

macro particle follows 
1

1
N

ii
W


 .  

2.4. Nonlinear Multimode Theory of Dielectric Loaded Gyro-TWT 

The steady state nonlinear multimode theory discussed here for the two types of 

distributed loss-loaded waveguide modes, (1) UDL waveguide and (2) PDL waveguide. 

The beam wave interaction circuit of gyro-TWT mainly divided into two sections (i) 

loaded linear section and (ii) unloaded nonlinear section. In the UDL waveguide model, 
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the linear section of the interaction circuit is uniform loaded waveguide with lossy 

material. For the PDL waveguide model, the linear section has periodic arrangement of 

alternate lossy materials and metal rings. For both the structures, the radius of the 

waveguide is rw, and the thickness of the lossy material is  r. The PDL structure has a 

period length of L and a lossy material length of b within each period. Considering that 

more than one mode simultaneously interacts with the electrons in the cylindrical 

waveguide, N field-evolving equations (N is the number considered the modes in the 

waveguide) and six electron-evolving equations are deduced from Maxwell‘s equations 

and Lorentz‘s equation for the multimode steady state theory. Various assumptions are 

used in the abovementioned discussion, which typically appear as follows in the classic 

single-mode theory [Du and Liu (2010)]; (i) the transverse field distribution of 

electromagnetic modes is not affected by the electrons in the cylindrical waveguide, and 

the variation of the field amplitude only takes place in the axial direction and (ii) space 

charge force among electrons is not considered. 

2.4.1. Wave Dynamics in UDL Waveguide Linear Section 

The loss is uniformly distributed along the entire length (L1) of the linear 

section. Assuming that only transverse electric (TE) modes (Ez = 0) are propagating in 

the RF interaction circuit. The magnetic and electric field distributions [Tang et al. 

(2017)] of the p
th

 TE mode in R1 and R2 are expressed as, respectively,  

 
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                   (2.31)   

where, ( )pA z  is the axial field distribution, 2 2

1_ 1 1p pk    , and 2 2

2_ 2 2p pk     are the 
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axial wave numbers of the p
th

 mode in R1 and R2, respectively. The angular frequency of 

the p
th

 mode is ωp. The function 
1_ 1_( , ) ( ) p

p

im

p m pr J k r e


 
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 and 
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p m p m pr J k r N k r e
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 
  
 

are the transverse field distribution 

function in R1 and R2, respectively, where, 1_ pk  and 2 _ pk  are the transverse wave 

number of the p
th

 mode, m is the order of Bessel function, 
2_( )

pm pJ k r
 and 

2_( )
pm pN k r

are the Bessel functions of 1
st
 and 2

nd
 kind, respectively, 

2_ 2_ 2_( ) ( ) / ( )
p pm p m p p wJ k r N k r P k r   

 , and 
2_ 2_ 2_( ) ( ) / ( )

p pm p m p p wJ k r J k r P k r   
   are  

constants. Assuming that more than one mode exists simultaneously, the total axial 

magnetic field component is expressed based on the superposition of various modes, 

1 z1_pz
p

H H              and            
2 2_pz z

p

H H                               (2.32)  

Considering that the electron beam is modeled by N macro particles, the current density 

distribution J
is assumed to be  
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where, 
iW  is the weight factor [20], which can be defined as 1

N

ii
W   and N 

represents the total number of electrons.  

The wave equation in the presence of an electron beam can be expressed as,  

   2 2

_ _ ,z p z z p z
p

H k H J                                            (2.34)       

Using identity 2 2 2 2/ z       and 2 2

_ ,p p pk      wave equation can be given as, 
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after multiplying by * li t
l e

   in both sides of equation (2.35), and following the integral 
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,

l wr
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    the real part of left side of equation (2.35) is given as,     

( )*2 2
2

2

_2 ( )0 0 0 * * *

( )1

2 ( )

p l

w
l

p l

i t

r p p l

z p i t
p

p p l

A z ed
k d r dr dt

dz A z e

 





 

 


 

 

 

    
     
     

                       (2.36)  

Using the orthogonal property of 
p  and 

l , the term,  
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for p = l, geometry factor is defined as [4] _ 1 2mn pG G G  ,  
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where, G1 and G2 represent geometry factors for region R1 and R2, respectively. Using 

equations (2.37) and (2.38) into equation (2.35), field equation can be written as,  
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where, (m s )* ( ) ( ) e l l c li i s

l sl l L ml sl l cJ k r J k r
   

    . 

2.4.2. Wave Dynamics in Nonlinear (Unloaded) Section        

The unloaded section of the waveguide is a simple metal waveguide, where the 

loss is negligible. Hence, the geometry factor reduces to G = G1 and can be expressed as                  
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    (2.40)  

where, = ( )i l i l l ci l it m s s       is the phase distribution.  

2.4.3.    Electron Beam Dynamics in Interaction Waveguide 

The self-consistent electron beam-wave interaction can be specified by the 

equation of electron motion. In the presence of three forces: (i) axial DC magnetic field, 

(ii) influence of high-frequency field, and (iii) transverse DC magnetic field, 

respectively, the equation of electron momentum can be expressed by [Du and Liu 

(2014), Tang et al. (2017)], 

0 0( ) ( )
dp

ev B e E v B eB g v r
dt

                                       (2.41) 

where,   0 0g 1/ 2 /B dB dz , E  and B  are the electric and magnetic fields, 

respectively, p and v are the momentum and velocity of electrons, respectively, and 

 is the relativistic factor. Based on this, the equation of electron motion describing the 

axial momentum (pz), transverse momentum (pt), rotation angle (θ), guiding center 

radius (rc), and guiding center angle (ϕc) are expressed through (2.42a) — (2.42e), 

respectively [Tang et al. (2017)]. 
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2.5. Benchmarking with Experimental Gyro-TWT 

The steady-state multimode nonlinear code for the lossy dielectric loaded gyro-

TWT has been benchmarked with the experimental gyro-TWT reported by Song et al. 

[Song et al. (2004)]. The initial 12 cm length (linear section) of RF interaction 

waveguide circuit is heavily loaded with a lossy dielectric with resistivity of 70,000 

times copper resistivity to suppress the gyro-BWOs. The final 2.5cm (nonlinear section) 

is unloaded to avoid the damping of the operating wave. A total loss of ~90dB loss in 

lossy linear section is predicted by the cold test simulation. The electron beam 

parameter used for the nonlinear simulation is 100kV and 5A with an axial velocity 

spread of 5%. The detailed parameter list is shown in the Table 2.1. The multimode 

wave particle interaction behavior of the gyro-TWT is analyzed using the multimode 

nonlinear code. Figure 2 shows the growth of the operating TE01 mode along with 
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Figure. 2.2 Growth of operating TE01 mode along with competing modes (inset) in both 

linear and non-linear sections. 

Table 2.1: Parameters List For W-Band Gyro-TWT [Song et al. (2004)] 

        Parameters Values 

Operating Mode TE01 

Lossy wall resistivity 70,000ρCu 

Beam Voltage (V) 100 kV 

Beam Current (I) 5 A 

Guiding Center radius (rg) 0.9648 mm 

Larmor radius (rL) 0.22 mm 

Velocity ratio (α) 5 % 

DC Magnetic Field, B0 3.56 T 

Total Lossy section length (L1) 12.0 cm 

Copper circuit length (L2) 2.5 cm 

competing modes in the interaction circuit. The figure shows that strength of the wave is 

weakened in the lossy section due to the attenuation and it gets maximum amplification 

in the unloaded section. The lossy linear section provides heavy attenuation to 

competing modes, including ~6.5 dB / cm TE11 mode (at ~67 GHz), ~11.30 dB /cm to 

TE21 mode (77 GHz), and ~18.50 dB /cm to TE02 mode (at 166.5 GHz), as compared to 

~7.5 dB /cm (~90dB / 12cm) to the operating TE01 mode at 92 GHz. The RF power 

developed in the desired operating TE01 mode is ~145 kW as shown in Figure 2.2, the 

power in all other competing modes including TE11, TE21, and TE02 modes is ~100W, 
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~1W, and ~100W, respectively. The obtained simulation results are also compared 

using 3D PIC simulation code, which will be discussed in Chapter 3. 

2.6. Concluding Remarks 

In this chapter the fundamental theory of dielectric loaded waveguide interaction 

structure for gyro-TWT amplifier has been revisited and understood. The linear and 

single mode nonlinear theory for gyro-TWT with dielectric waveguide interaction 

circuit has been studied. Since the single mode analysis fails to give the mutual effect of 

operating and oscillating mode, a multimode nonlinear analysis has been presented and 

benchmarked with an experimental W-band gyro-TWT [Song et al. (2004)]. In the next 

chapter, 3D PIC simulation investigation of uniform dielectric loaded interaction 

structure for W-band gyro-TWT amplifier will be discuss along with design and 

simulation of various subassemblies of gyro-TWT amplifier.  

 

 

 

 

 

 

 

 

 

 

 

 


