CERTIFICATE

It is certified that the work contained in the thesis titled "Design and Simulation Investigations of Millimeter Wave Gyrotron Travelling Wave Tube Amplifiers" by "Akash" has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of Comprehensive Examination, Candidacy and SOTA for the award of Ph. D. Degree.

> (Dr. M. Thottappan) Supervisor Department of Electronics Engineering IIT (BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, Akash, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Dr. M. Thottappan from "21/07/2015" to "15/10/2020", at the Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports, dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Kash

Date: Place: Signature of the Student (Akash)

CERTIFICATE BY THE SUPERVISORS

It is certified that the above statement made by the student is correct to the best of our knowledge.

(Dr. M. Thottappan) Supervisor Department of Electronics Engineering IIT (BHU), Varanasi

Signature of Head of Department

"SEAL OF THE DEPARTMENT"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:Design and Simulation Investigations of Millimeter Wave
Gyrotron Travelling Wave Tube Amplifiers

Name of the Student: Akash

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date:

Place:

Kash

Signature of the Student

(Akash)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

Foremost, I thank The Almighty for giving me the strength and showering his blessings to bring my research investigations to a logical end successfully. I would like to express my immense gratitude to my supervisor Dr. M. Thottappan for his excellent guidance and motivation. The completion of this research work is truly an outcome of their constant untiring support, valuable ideas and suggestions during my research work. The insightful discussions with them always provided me great enthusiasm. I could not have imagined having better advisors and mentors for my research work.

I wish to extend my sincere gratitude towards my research performance evaluation committee (RPEC) members, Dr. Smrity Dwivedi and Dr. B. Biswas for their encouragement and insightful comments. I also thank Prof. B. N. Basu, Dr. Somak Bhattacharyya, and other faculty members for their kind cooperation and encouragement during this journey. I am indebted to Prof. M. V. Kartikeyan, and Dr. Anirban Bera for their constant help during my one-week visit to Ceeri Pilani, Rajasthan and IIT Roorkee, Uttarakhand respectively.

My special thanks to Dr. M. S. Chauhan, Dr. M. V. Swati, Dr. Anshu Sharan Singh, Dr. Rajan Agrahari, Dr. Vikram Kumar, and Dr. A. P. Singh for their valuable assistance from personal to the technical level. I am very much thankful to many research scholars of the CRMT laboratory for providing a stimulating and friendly environment. My thanks go to Mr. Prabhakar Tripathi, Mr. R. K. Singh, Mr. Arjun Kumar, Mr. M. A. Ansari, Mr. Vineet Singh, Mr. S. G. Yadav, Mr. Sambit, Mr. Diptiranjan, Mr. Nilotpal, Mr. Soumjit, Mr. V. V. Reddy, Mr. V. Veera Babu, Mr. G. Venkatesh, Mrs. Kritika, and Ms. Pratibha. I also thank my colleagues, Mr. Amit Kumar Singh, Mr. Deepak Jarwal, Dr. Aman Sikri, and Mr. Smriti Ratan, for providing a funfilled environment.

My most profound appreciation towards my wife (Roma Rani), my sisters (Akansha Rani and Ayushi) and brother (Paras Kumar) for their continuous support and encouragement. They are the source of strength for me and remain an invaluable asset to me. Finally, last but not the least I owe my special gratitude to my father Shri Sunil Kumar, and mother Smt. Ram Dulari for their love, prayers, blessings, and sacrifices to educate and prepare me for my future.

Date:

(Akash)

Dedicated To My Family

List of Figure	es	xvii-xxi
List of Table	s	xxiii
List of Abbre	eviations	XXV
List of Symbo	vlsxxv	ii-xxviii
Preface	x	xix-xxx
CHAPTER 1	Introduction and Literature Review	1-35
1.1.	Motivation for the Thesis	3
1.2.	Physics of Microwave Radiation	7
	1.2.1. Cherenkov Radiation	7
	1.2.2. Transition Radiation	8
	1.2.3 Bremsstrahlung Radiation	9
1.3.	Cyclotron Resonance Maser Principle	10
1.4.	Classifications and Applications of Gyrotron Devices	12
	1.4.1. Gyrotron Oscillators	14
	1.4.2. Gyrotron Amplifiers	15
	1.4.3. Applications of Gyro-Devices	17
1.5.	The Development of Gyro-TWTs	19
	1.5.1. Operation Mode Control Methods	20
	1.5.2. Mode Filter Technology	21
	1.5.3. Dispersion Relation Control Technology	22
	1.5.4. Higher-Order Mode Interaction Structure	23
	1.5.5. Higher-Order Harmonic Operation	24
1.6.	Gyro-TWT Amplifier: A Detailed Literature Review	25
1.7.	Research Objective	30
1.8.	Organization of the Thesis	32
CHAPTER 2	Fundamental Theory and Multimode Analysis of Dielect Loaded Gyro-TWT	ric 35-53
2.1.	Introduction	37
2.2.	Theory of Dielectric Waveguides	38
	2.2.1. Theory of Uniform Dielectric Loaded Waveguides	38
	2.3.2. Theory of Periodic Dielectric Loaded Waveguides	41

CONTENTS

2.3.	Theory of CRM Interaction in Lossy Dielectric Loaded Gyro-	ΓWT
	2.3.1. Linear Theory of Dielectric Loaded Gyro-TWT	43 44
	2.3.2. Nonlinear Theory of Dielectric Loaded Gyro-TWT	46
2.4.	Nonlinear Multimode Theory of Dielectric Loaded Gyro-TWT	⁻ 46
	2.4.1. Wave Dynamics in UDL Waveguide Linear Section	47
	2.4.2. Wave Dynamics in Nonlinear (Unloaded) Section	49
	2.4.3. Electron Beam Dynamics in Interaction Waveguide	50
2.5.	Benchmarking with Experimental Gyro-TWT	51
2.6.	Concluding Remarks	53
CHAPTER 3	Simulation Investigations of Uniform Dielectric Loaded Fundamental Harmonic Gyro-TWT	55-70
3.1.	Introduction	57
3.2.	Design of Input System of TE_{01} Mode W-band Gyro-TWT	57
	3.2.1. Single Anode Magnetron Injection Gun	58
	3.2.2. Y-shape TE_{01} Mode Input Coupler	59
3.3	Design of Beam-Wave Interaction structure	61
	3.3.1. Dispersion and Beam-Wave Coupling Impedance	61
	3.3.2. Backward-Wave Oscillations and Stability Analysis	62
3.4.	PIC Simulation Results and Validation with Multimode Code	65
3.5.	Design of Output System of W-Band Gyro-TWT	68
	3.5.1. Design of Undepressed Collector	68
	3.5.2. Design of Single Disc Output Window	69
3.5.	Conclusion	70
CHAPTER 4	Design, Simulation and Efficiency Enhancement of Period Dielectric Loaded Fundamental Harmonic Gyro-TWT	lic 71-95
4.1.	Introduction	73
4.2.	Design of Triode Type Magnetron Injection Gun	74
4.3.	Design of Beam-Wave Interaction Structure	77
	4.3.1. Mode Mapping and Dispersion of PDL waveguide	78
	4.3.2. Beam-wave Coupling Impedance	80
	4.3.3. BWOs Study and Stability Analysis	82
4.4.	PIC Simulation and Validation	84
4.5.	Design of Output System	87
	4.5.1. Depressed Collector for Gyrotron Devices	87

	4.5.2. Design of 3-Stage Depressed Collector Using 'MAGIC	C 3D'
		90
	4.5.3. Triple Disc Output Window	93
4.6.	Conclusion	95
CHAPTER 5	Design, Simulation Investigation of Periodic Dielectric Loaded Second Harmonic Gyro-TWT	97-118
5.1.	Introduction	99
5.2.	Input System of Second Harmonic Gyro-TWT	100
	5.2.1. Double Anode Magnetron Injection Gun	100
	5.2.2. Design of TE_{02} Mode Input Coupler	103
5.3.	Design of Beam-Wave Interaction Structure	106
	5.3.1. Analytical Model of Interaction Waveguide	107
	5.3.1. Dispersion and Beam-wave Coupling Analysis	107
	5.3.2. Study of BWOs and Stability Analysis	109
5.4.	PIC Simulation and Validation	110
5.5.	Output System of Second Harmonic Gyro-TWT	113
	5.5.1. Design of Curved Collector	113
	5.5.2. Double Disc Output Window	116
5.6.	Conclusion	118
CHAPTER 6	Design and Simulation Study of Second Harmonic Gyro- with 3-Fold Helically Corrugated Interaction Waveguide	TWT
	1	19-138
6.1.	Introduction	121
6.2.	Helically Corrugated Waveguide	122
6.3.	Dispersion Characteristic of Helically Corrugated Waveguide	e 124
	6.3.1. Analytical Method	124
	6.3.2. Numerical Method	127
6.4.	Design of Circular TE ₁₁ Mode Input Coupler	129
6.5.	PIC Simulation of Gyro-TWT with Helically Corrugated Waveguide	132
	6.5.1. Modeling of the Interaction Circuit	132
	6.5.2. Simulation Results and Parametric Study	135
	6.5.3. Double Disc Output Window	137
6.6.	Conclusion	138

CHAPTER 7	Summary, Conclusion and Future Scope	141-147
7.1.	Summary of the Research Work	143
7.2.	Limitation of the Present Work and Future Scope	146
References		149-158
Author's Relevan	t Publications	159

LIST OF FIGURES

Figure 1.1:	The basic schematics of (a) TWT and (b) BWO.	8
Figure 1.2:	The basic schematic of Klystron.	9
Figure 1.3:	Schematic diagram of a cyclotron resonance maser configuration.	10
Figure 1.4:	(a) Schematic plot of TE_{0n} waveguide mode and electron beamlets in the metallic waveguide and (b) phase space bunching in gyro-devices.	11
Figure 1.5:	(a) Family tree diagram of gyrodevices, (b) dispersion diagram of gyro-devices.	14
Figure 2.1:	Schematic of UDL RF interaction structure for W-band gyro- TWT (a) transverse view and (b) longitudinal view.	41
Figure 2.2:	Fig. 12 Growth of operating TE_{01} mode along with competing modes (inset) in both linear and non-linear sections.	52
Figure 3.1:	Electron beam trajectory, B-field profile and equipotential lines for W-band Magnetron injection Gun simulated using EGUN.	58
Figure 3.2:	Velocity ratio and axial velocity spread for different value of (a) anode voltage and (b) beam current.	59
Figure 3.3:	(a) CST model of Y-shape input coupler along with E-field contour plot (b) S-parameter results for input coupler.	60
Figure 3.4:	(a) Dispersion of UDL gyro-TWT operating at 92 GHz for 100kV, 5 A, and (b) coupling impedance Vs normalized guiding center radius for operating and competing modes.	61
Figure 3.5:	(a) Thickness factor Vs relative thickness of the lossy layer for ρ/ρ_{Cu} =70,000, and (b) attenuation Vs frequency for different resistivity.	63
Figure 3.6:	(a) Attenuation constant and (b) phase constant as a function of frequency for TE ₀₁ mode ($\rho / \rho_{Cu} = 70,000$).	63
Figure 3.7:	(a) Critical length Vs SOC of unloaded section and (b) start oscillation length of competing modes Vs resistivity.	63
Figure 3.8:	(a) SOC for operating and competing modes Vs velocity ratio (α) and (b) SOC of operating mode Vs grazing magnetic field for various α .	64
Figure 3.9:	(a) Temporal response of the E-field of TE_{01} , TE_{11} , TE_{21} , and TE_{02} mode using CST simulation (b) FFT magnitude and contour plot of the operating TE_{01} mode at the output port.	67

Figure 3.10:	The RF output power growth rate of output power for operating.	67
Figure 3.11:	(a) Power and bandwidth Vs resistivity and (b) comparison of peak power and efficiency Vs Frequency ($V_0 = 100 \text{ kV}$, $I_0 = 5\text{A}$).	67
Figure 3.12:	(a) Comparison of power gain Vs frequency ($V_0 = 100 \text{ kV}$, $I_0 = 5A$) and (b) transfer characteristic of W-band UDL gyro-TWT ($V_0 = 70 \text{ kV}$, $I_0 = 5.3 \text{ A}$).	68
Figure 3.13:	Beam trajectory in the 2D model of collector design using EGUN-code.	69
Figure 3.14:	(a) CST model of RF output window for 92 GHz TE_{01} mode Gyro-TWT and (b) S-parameter results of the output window.	70
Figure 4.1:	Compression ratio ($F_{\rm m}$) and magnetic field at the cathode ($B_{\rm c}$) Vs cathode radius ($r_{\rm c}$).	76
Figure 4.2:	The CST model of the geometry of triode type MIG with equipotential lines.	76
Figure 4.3:	(a) Magnetic field profile of triode MIG for W-band gyro-TWT operating at 70 kV, 10 A and, (b) trajectory of the emitted beam along the axial length of MIG.	77
Figure 4.4:	Contour plots of various mode in lossy dielectric loaded waveguide	79
Figure 4.5:	(a) Dispersion diagram of operating TE_{01} (for both lossy and lossless waveguide) along with the nearby competing modes, and (b) attenuation of operating and competing modes by the lossy dielectric.	80
Figure 4.6:	(a) Coupling impedance (K_0) of operating and spurious modes as a function of normalized guiding center radius, and (b) K_0 and growth rate of operating mode in lossy and lossless waveguide.	81
Figure 4.7:	(a) Transverse and (b) axial schematic view of a periodically loaded RF interaction structure for W-band gyro-TWT	83
Figure 4.8:	SOL Vs SOC of competing modes in (a) loss-free unloaded section, and (b) lossy dielectric-loaded linear section.	83
Figure 4.9:	(a) Temporal growth of TE_{11} , TE_{21} , TE_{01} and TE_{02} modes at the output port, (b) Frequency spectrum of the output signal	86
Figure 4.10:	(a) Temporal growth of instantaneous output power (red) and averaged power (black) in TE_{01} mode using CST, (b) spatial growth of output power in various modes using multimode theory.	86
Figure 4.11:	Output power Vs frequency (a) for 0%, 2%, and 4% axial velocity spread and (b) for different values RF circuit length at 2	87

% axial velocity spread.

Figure 4.12:	Schematic of gyro device with undepressed collector.	87
Figure 4.13:	Schematic of gyro device with 3-stage depressed collector.	88
Figure 4.14:	Relation between the total efficiency and electronic efficiency of gyro-TWT as a function of collector efficiency	89
Figure 4.15:	Electron beam trajectory along the axial length of the interaction structure.	92
Figure 4.16:	(a) Energy phase space plot of particles, and (b) DC beam power along the axial length of RF interaction structure.	92
Figure 4.17:	Trajectory of the spent electron beam in the collector region.	92
Figure 4.18:	(a) CST model and (b) transmission (S_{21}) and reflection (S_{11}) coefficient for the TE_{01} mode window.	94
Figure 4.19:	(a) Mesh view of the output window in ANSYS 17.2 and (b) temperature distribution on the window disc.	95
Figure 5.1:	(a) Magnetic compression ratio and magnetic field at the cathode as a function of cathode radius r_c (b) slant length of the emitter strip as a function of emitter radius r_c .	102
Figure 5.2:	The triode MIG geometry, beam trajectory and magnetic field profile along the axial length using EGUN code.	102
Figure 5.3:	Axial velocity spread and velocity ratio as a function of (a) mod- anode voltage, V_a (kV), (b) cathode magnetic field B_c (Gauss).	102
Figure 5.4:	(a) Schematic of TE_{02} mode input coupler and (b) cross-sectional view at different axial positions.	104
Figure 5.5:	(a) CST model of TE_{02} mode convertor modeled as vacuum, (b) axial view of electric field distribution inside mode convertor.	104
Figure 5.6:	The S-parameter results of TE_{02} mode input coupler.	105
Figure 5.7:	The Axial and transverse schematic view of periodic dielectric loaded waveguide.	106
Figure 5.8:	Coupling coefficient, H_{sm} of the TE_{02} mode at (a) fundamental and (b) second Harmonic operation.	108
Figure 5.9:	Coupling impedance Vs normalized guiding center radius.	108
Figure 5.10:	(a) Dispersion diagram of operating and competing modes for W-band gyro-TWT. (b) Attenuation loss to the operation TE_{02} mode and potential BWOs in the dielectric waveguide.	108
Figure 5.11:	(a) SOC Vs SOL of operating mode and potential BWO modes in unloaded section (b) SOC of operating and BWO modes as a	109

function of loss in dB /cm.

Figure 5.12:	CST model of periodically dielectric loaded waveguide for second harmonic TE_{02} mode W-band gyro-TWT.	112
Figure 5.13:	(a) Amplified electric field and (b) output power of TE_{02} mode at the output port.	112
Figure 5.14:	(a) Comparison of PIC simulation results with nonlinear theory.(a) Transfer characteristic of present gyro-TWT for 0% and 4% axial velocity spread.	113
Figure 5.15:	2D schematic, beam trajectory and magnetic field profile of (a) conventional type and (b) curved collector.	116
Figure 5.16:	(a) The contour plot of TE_{02} mode electric field pattern and (b) S-parameter results for conventional collector, (c) the contour plot of TE_{02} mode electric field pattern and (d) S-parameter results for curved collector.	116
Figure 5.17:	(a) Dependence of the R_p on the window disk thickness (<i>d</i>) for TE_{02} mode, (b) R_p Vs frequency for double disk window.	118
Figure 6.1:	Schematic of 3-folded helically corrugated waveguide.	123
Figure 6.2:	Dispersion diagram of 3-folded helically corrugated waveguide using coupled mode theory in MATLAB code ($V_0 = 55kV$, $I_0 = 1.5$ A, $B_0 = 1.82$ T).	126
Figure 6.3:	Modeling of 3-folded helically corrugated waveguide using VBA macro program in CST ($r_0 = 1.47$ mm, $r_1 = 0.23$ mm, $d = 3.2$ mm) (a) outline of the 3-fold face (b) extruded model (c) 120^0 twisted model.	128
Figure 6.4:	Modeling of 3-folded helically corrugated waveguide using analytical modeling in CST ($r_0 = 1.47$ mm, $r_1 = 0.23$ mm, $d = 3.2$ mm) (a) 2D thin surface of 3 folded corrugated waveguide (b) 3D model after covering up the faces.	128
Figure 6.5:	Dispersion diagram using CST Microwave Studio with the dotted line indicating the operating eigenwave.	129
Figure 6.6:	Comparison of dispersion diagram using 'CST Microwave Studio' eigenmode data and coupled mode theory.	129
Figure 6.7:	(a) Side wall coupling stage to convert the fundamental rectangular TE_{10} mode into linearly polarized circular waveguide TE_{11} mode (b) circular TE_{11} mode polarizer with corrugated rectangular waveguide.	131
Figure 6.8:	Distribution of electric field at each stage of the input coupler.	131
Figure 6.9:	S-parameter results of circular TE_{11} mode input coupler.	131

Figure 6.10:	The 3D electrodynamic model for the PIC simulation of gyro- TWT with 3-fold helically corrugated structure (a) modeled in vacuum (b) after cutting the vacuum model from a rectangular cuboid.	134
Figure 6.11:	An axis encircling beam from a particle source of hollow ring with artificial magnetic cusp.	134
Figure 6.12:	Temporal growth of amplified (a) E-field and (b) power at the output port (Pin = 0.52 W).	136
Figure 6.13:	(a) FFT plot of the amplified signal and (b) power and gain plot as function of frequency.	136
Figure 6.14:	Comparison of (a) transfer characteristic and (b) gain Vs input power between experiment and PIC simulation.	136
Figure 6.15:	The cold simulation result of double disk BN window along with CST model and E-field contour (inset).	138

LIST OF TABLES

Table 1.1:	Classification of electromagnetic radiation	7
Table 1.2:	Classification of Gyrodevices	13
Table 2.1:	Parameters List For W-Band Gyro-TWT.	49
Table 3.1:	Design parameters for diode MIG.	57
Table 3.2:	Design Parameters for Input Coupler.	57
Table 3.3:	Optimized Parameters List For W-Band Gyro-TWT.	65
Table 4.1:	Design goal of the various component of Gyro-TWT	72
Table 4.2:	Triode MIG optimized parameters and simulated results	74
Table 4.3:	The mode mapping between smooth cylindrical waveguide, uniform DL waveguide and periodic DL waveguide.	78
Table 4.4:	Design parameters of W-band PDL Gyro-TWT	84
Table 4.5:	Collection Efficiency for Different Electrodes.	94
Table 5.1:	Optimzed Design and Simulated Parameters of Triode MIG.	103
Table 5.2:	Design Parameters of W-band 2 nd Harmonic gyro-TWT	114
Table 6.1:	Design Parameters of 3-folded Helically corrugated Waveguide.	127
Table 6.2:	Design and Electrical Parameters of Gyro-TWT.	137

LIST OF ABBREVIATIONS

ABBREVIATION	FULL FORM
BWO	Backward Wave Oscillator
BeO-SiC	Beryllium Oxide-Silicon Carbide
CRM	Cyclotron Resonance Maser
ТWТ	Travelling Wave Tube
EM	Electromagnetic
FIT	Finite Integration Technique
FDTD	Finite-difference Time-domain
GHz	Giga-hertz
Gyro-TWT	Gyrotron Travelling Wave Tube
Gyro-BWO	Gyrotron Backward Wave Oscillator
TM	Transverse Magnetic
TE	Transverse Electric
ESR	Electron Spin Resonance
NMR	Nuclear Magnetic Resonance
PIC	Particle-In-Cell
PDL	Periodic Dielectric Loading
UDL	Uniform Dielectric Loading
MIG	Magnetron Injection gun
OFHC	Oxygen Free High Conductivity
VEDs	Vacuum Electron Devices
CST	Computer Simulation Technologies

LIST OF SYMBOLS

Symbol	Details
α	Velocity ratio
r_w	Radius of the interaction waveguide
r_b	Electron beam radius
r_g	Guiding center radius
r_L	Larmor radius
v_t	Transverse electron velocity
Vz	Longitudinal electron velocity
${\cal E}_0$	Permittivity of free space
Δr	Lossy layer thickness
${\cal E}_r$	Relative permittivity of the dielectric material
δ	Skin depth
$ ho_{\scriptscriptstyle Cu}$	Resistivity of copper
μ_0	Permeability of free space
$\mathcal{O}_{_{c}}$	Cutoff angular frequency of the waveguide
Ω	Cyclotron frequency
f	Frequency
K_0	Beam-wave coupling impedance
H_{sm}	Beam-wave coupling coefficient
G_{mn}	Geometry factor
m_e	Mass of an electron
S	Cyclotron harmonic number
B_0	Static magnetic field
v_p	Phase velocity of RF wave
v_g	Group velocity of RF wave
$oldsymbol{eta}_{\scriptscriptstyle t}$	Transverse normalized velocity
$oldsymbol{eta}_{z}$	Longitudinal normalized velocity
Ε	Electric field

Н	Magnetic Field
φ, r, z	Azimuthal, radial, and axial cylindrical coordinates
С	Speed of light
L_{dB}	Total loss of the circuit in <i>dB</i>
V_{0}	Beam voltage
I_O	Beam current
$\eta_{_{e}}$	Electronic efficiency of gyro-TWT amplifier
$\eta_{_0}$	Efficiency of gyro-TWT with RF losses
$\eta_{_{col}}$	Collector efficiency
$\eta_{\scriptscriptstyle Total}$	Total efficiency of gyro-TWT after recovery of spent beam energy
P_{RF}	Generated output power
$P_{\rm DC}$	DC electron beam power
$k_{ m z}$	Axial wavenumber
k_c	Cut-off wavenumber
m	Azimuthal wavenumber
n	Radial wavenumber
$\chi'_{\scriptscriptstyle mn}$	The n^{th} zero of Bessel function
$J_{_{m}}ig(\chi'_{_{mn}}ig)$	m th order ordinary Bessel function of first kind
$\lambda_{_g}$	Wavelength inside the disk medium
F_m	Compression ratio
l_s	Slant length
r_c	Emitter radius
$\Delta v_z / v_z$	Axial velocity spread
$\Delta v_t / v_t$	Transverse velocity spread
m_B	Number of folds
k_B	Bragg's periodicity vector
r_1	Corrugation amplitude
d	Corrugation period

PREFACE

The gyrotron traveling wave tube (gyro-TWT) amplifiers offers a unique opportunity to fill a long-standing gap in the generation of high-power coherent millimeter and sub millimeter wave radiation with its promise of broadband amplification. The gyro-TWT amplifier has emerged out as an efficient and stable high power, wide band amplifier which develops CW as well as pulse power that could not be done by the conventional microwave tubes or quantum mechanical devices. In recent years, there is renewed interest toward research and development of the gyro-TWT amplifier due to its requirement in the systems for the applications, such as high-resolution radar, high information density communication, satellite communication, material processing, weaponry, remote sensing, industrial heating, hyperthermia, linear accelerators, waste remediation, *etc.* Another major area of development is the possibility of exploiting the world leading gyro-TWT amplifier to be used in Electron Paramagnetic Resonance (EPR) and Dynamic Nuclear Polarization (DNP) spectroscopy which is currently hampered by the lack of high-power sources and especially broadband amplifiers of terahertz radiation.

Author is fascinated by various applications of high-frequency high-power gyrotron amplifiers. However, the inherent instability problem of gyro-TWT due to various source of oscillations limits the output power gain and efficiency. The existing single mode analysis fails to give the mutual effect of operating and oscillating modes on the performance of the device. These issues have motivated the author to investigate the multimode nonlinear beam-wave interaction of lossy dielectric loaded gyro-TWT using nonlinear analytical equation and numerical simulation tool by considering more than one mode in the operation. The lossy dielectric loading effectively suppresses the potential oscillations by providing them attenuation.

The other issues such as sensitivity to beam velocity spread, high-magnetic field requirement are also limiting the performance of the gyro-TWT to meet the practical application requirement. The author has also studied the design and simulation of low velocity spread diode and triode magnetron injection gun to improve the electronic efficiency. The design and simulation study of other subassemblies of gyro-TWT such as input coupler, output window and beam collector has been described. The author has investigated the second harmonic higher order mode operation to reduce the requirement of high magnetic field by a factor of 2.

The author has reported the present work in different parts at national and international conferences as well as in referred journals, namely, IEEE Transaction on Electronic Devices and IEEE transaction on Plasma Science.

The author will consider his modest effort as a success if it would be useful to the community of microwave tube designers and researchers.