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5.1. Overview 

In this chapter, the electromagnetic behavior of the azimuthally partitioned axially 

periodic metal disc loaded coaxial structure in the presence of an electron beam using an 

equivalent circuit approach have been studied. In the analysis, the linearized maxwell’s 

fluid equation (also known as Vlasov-Maxwell’s equation) has been used in the electron 

beam-present region. The effect of all the harmonics presents within the structure has 

been considered to obtain the expression for the equivalent series inductance per unit 

length and the equivalent shunt capacitance per unit length for the equivalent 

transmission line in the presence and absence of an electron beam. The expression for the 

dispersion relation and the temporal growth rate has been obtained with the help of the 

calculated equivalent series inductance and equivalent shunt capacitance. The estimation 

for output RF power and energy has been calculated analytically and the result has been 

validated through the PIC simulation. The comparison of obtained average power has 

been compared with the results given in the literature. The relative error between them is 

below 5% which shows a good agreement. Furthermore, the effect of the different beam 

parameters on the temporal growth rate behavior has been analyzed.     

5.2. Introduction  

In recent years, it is noticed that the research activity in the high power microwave 

(HPM) sources which is capable to generate multi-frequency is drastically increased due 

to its potential application in the field of defense application, plasma heating, and linear 

particle accelerator [Benford et al. (2007)]. Various HPM sources, such as magnetically 

insulated line oscillator (MILO), relativistic backward wave oscillator (RBWO), and 

transit time oscillator (TTO) have been developed to generate bi-frequency RF signals 
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[Wang et al. (2010), Tang et al. (2012) and He et al. (2011)]. These HPM sources can 

generate RF power in two or more than two frequencies, either in single-band or dual-

band. The single-band bi/tri-frequency devices generate RF power in two/three different 

frequencies that lie in the same band, while in the case of dual-band devices, the RF 

power is generated at the two or more frequencies which lie in the different band of 

frequency. The single-band bi-frequency devices are designed with the help of the 

azimuthally varying beam wave interaction structure or by using axially varying beam-

wave interaction structure [Wang et al. (2010) and Tang et al. (2012)]. In general, the 

dual-band devices are designed by integrating the two same/different devices (i.e. 

operated in a different band) within the single device such as MILO and coaxial TTO, 

MILO and Vircator, and MILO and MILO [Xiao et al. (2009), Zhang et al. (2015) and Ju 

et al. (2014)].  

The azimuthally partitioned axially periodic metal disc loaded coaxial waveguide 

structure type beam wave interaction has the potential to generate two or more stable 

frequencies within a single-band device [Chen et al. (2008)]. The HPM source MILO 

attracts the researcher due to its self-magnetic insulating property which makes the 

system lighter and compact [Lemke et al. (1997)]. The device also has the potential to 

generate several GW microwave power at multiple frequencies [Benford et al. (2007)]. 

The azimuthally partitioned bi-frequency magnetically insulated line oscillator 

(BFMILO) have strategic applications, therefore it is necessary to analyze the RF 

behavior (i.e. electromagnetic (EM) behavior in the presence of electron beam) of the 

structure so that the proper energy transfer between the electron beam and  EM waves 

takes place [Chen et al. (2008)]. A dispersion relation is an excellent tool for analyzing 

the RF behavior of the structure because the dispersion relation provides information 
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about the resonance frequency of the RF interaction structure and also very helpful to 

understand the effect of various structural parameters of the structure on the dispersion 

behavior. 

There are many kinds of literature available to analyze the beam-wave interaction 

structure which is based on different techniques; such as Lemke et al. uses a linear theory 

with the thin beam approximation for the coaxial structure having square wave type 

periodic anode but the main constraint associated with this analysis is limited for only 

symmetric TM0n mode [Lemke et al. (1987)]. Zhang et al. had used the modified 

Rayleigh-Fourier technique to analyze the periodic disc loaded cylindrical waveguide 

structure with axial and azimuthal corrugations in the absence of electron beam [Zhang et 

al. (2005)]. Sagor et al. has used a linear analysis for circular-edge disk-loaded 

cylindrical waveguide structure which is driven by an annular electron beam [Sagor and 

Amin (2017)]. Dwivedi et al. used a modal matching technique for disc-loaded coaxial 

structure in the presence of an electron beam and find its temporal growth rate for 

symmetric TM01 mode [Dwivedi and Jain (2012)]. The equivalent circuit analysis was 

used to analyze the disc-loaded coaxial structure in the absence of an electron beam for 

the azimuthally symmetric TM0n modes by Dixit et al. [Dixit and Jain (2016)].  Most of 

the beam-wave interaction analysis available in the literature are mainly focused on the 

symmetric modes (i.e. TM modes) and the technique used to analyze the structure 

involved higher-order matrices which are comparatively difficult to solve and takes a lot 

of computational time [Lemke et al. (1987), Zhang et al. (2005), Sagor and Amin (2017) 

and Dwivedi and Jain (2012)]. In this analysis, the equivalent circuit technique has been 

selected to analyze the RF behavior of the structure which is found much simpler to 

handle and is less involved and cumbersome compared with other techniques. In the 
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azimuthally partitioned axially periodic discs loaded coaxial waveguide structure the EM 

field distributions generated within the structure exhibit both axial and azimuthal 

harmonics, so individual TE or TM mode does not exists and therefore hybrid modes 

(HEM modes) are obtained. Since the EM eigenmodes within the device having all the 

six components of EM fields, thereby in this analysis we have considers both types of 

modes (i.e. symmetric and asymmetric mode) for beam-wave interaction. 

This research work is arranged in this chapter in this way that Section-5.3 

includes the analysis of the beam wave interaction structure (i.e. azimuthally partitioned 

periodic discs loaded coaxial structure) in the presence of electron beam with the help of 

equivalent circuit approach. The effect of different structural parameters on the 

dispersion behavior, temporal growth rate (TGR), RF power, and energy also studied in 

this section. In the Section-5.4, the computed results obtained using the developed 

analysis is compared with the simulation for the validation of the developed analysis. The 

effect of different beam parameters on its TGR associated with the different modes is 

also presented in this section.  Finally, the conclusion of this study is presented in 

Section-5.5. 

5.3. Analysis 

The beam-wave interaction analysis for bi-frequency generation inside a MILO device 

has been performed using an equivalent circuit approach. For this, an azimuthally 

partitioned axially periodic metal disc loaded coaxial structure (in the presence of 

electron beam), which is shown in Fig. 5.1, has been used as an interaction structure. 

Figs. 5.1(a) and 5.1(b) shows the sectional view and front view of the interaction 

structure, respectively. The geometry of the interaction structure consists of a cylindrical 
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metal conductor at the center (i.e. used as a cathode), and the two half-cylindrical 

waveguides have different wall radius (i.e. one half of the cylinder continuous from 

0 180   with wall radius (i.e. 2wr ), while other from180 360   with wall radius 

(i.e. 1wr )). The parameters associated with the structure are rc, re, rd, rw1, rw2, L, and T, 

which indicates the cathode radius, beam radius, inner disc radius, wall radius of 

azimuthal section-1, wall radius of azimuthal section-2, periodicity and thickness of the 

disc, respectively. The interaction structure is divided into four regions i.e. region-I (i.e. 

between the cathode to the beam radius, c er r r  ), region-II (between the beam radius 

to the tip of the metal disc, e dr r r  ), region-III (between the tip of the metal disc to 

wall radius, 1wdr r r  , 180 360  ), and region-IV ( 1 2 ,w wr r r  0 180  ). The 

superscript I, II, III, and IV, associated with the different parameter indicates that the 

parameter belongs to the regions I, II, III, and IV, respectively. 

 

Figure 5.1: Schematic of an azimuthally partitioned axially periodic metal disc loaded 

coaxial structure with beam-present in red color: (a) sectional view (b) front view. 

The beam-wave interaction analysis of the device mainly focuses on determining 

the dispersion relation (in presence of electron beam) and temporal growth rate along 

with the estimation of RF output power and energy [Lemke et al. (1997), Lemke et al. 
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(1987), and Dwivedi and Jain (2012)]. The dispersion relation and temporal growth rate 

are determined with the assumption that a para potential flow equilibrium establishes in 

region-I resulting in the generation of the space-charge waves [Lemke and Clark (1987)].  

The space charge wave near the anode section (i.e. near the tip of the periodically loaded 

disc (rd)) mainly takes part in the beam-wave interaction and induces RF. It is further 

assumed that region-II supports the traveling wave which is influenced by the space 

charge wave generated in region-I while region-III and region-IV support the standing 

waves. In order to obtain the field components in region-I, Maxwell’s fluid equation also 

known as Vlasov-Maxwell’s equation is used. In region-I and II, the space harmonics 

effect of the traveling wave is present due to the axial periodicity of the structure (i.e. 

Floquet’s theorem) while the modal harmonics of the standing wave are present in the 

regions-III and IV due to the reflections of EM waves from the metallic surfaces. Since 

the structure is periodic in the axial (z) direction as well as periodic in the azimuthal () 

direction, the pure TE or TM mode does not exist in the structure. In place of 

symmetrical TE and TM modes, the structure supports the asymmetrical modes (i.e. 

HEM mode). The field components in the different structure regions can be derived as 

following [Lemke and Clark (1987)]: 

5.3.1. EM Field Expression in the Presence of Electron Beam 

The Vlasov-Maxwell’s equation for TM mode (i.e. 0zH = ) is given as [Dwivedi and Jain 

(2012) and Lemke (1989)]: 

,z z zv P eE
t z

  
+ = − 

  
                                                (5.1) 
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( )
1

4 ,z
r e

E
rE en

r r z



+ = −

 
                                         (5.2) 

1
,r z BE E

z r c t

 
− = −

  
                                                   (5.3) 

1
,rB E

z c t

 
− =

 
                                                             (5.4) 

( )1 4 1
.z

z

rB E
J

r z c c t

  
= +

 
                                           (5.5) 

Here, z zP mv= is the axial momentum, 2 2 1/21/ (1 / )zv c = − is the relativistic factor, 

( )z e z eJ en v r r = − − is the axial current density, en  is the charge number density, zv  is 

the axial drift velocity, ( )er r −  is the delta function, and re is the electron beam radius. 

The parameter   is the normalized factor determined by, / (2 )e e zI er nv = . Solving 

the above equation, the electric and magnetic field components for TM modes is derived 

as: 

,

, 2
,

z nn
r n

n

dE
E i

dr




=                                                           (5.6) 

 ,

, 2

/
,

z n

n

n

dEc
B i

dr





=                                                       (5.7) 

22
,2

, 2

1
( ).

( / 2) ( )

n z n

n z n e

e z n

Ed d c
r E r r

r dr dr r v


 

  

 
+ = − 

− 
                      (5.8) 

Here, 2 2 2 2/n nc  = −  is the radial propagation constant, and 
2/ ( )e n AI I  =  with 

17.1 /A zI v c= kA is the Alfven current.  
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Similar to the TM mode derived above, Maxwell’s fluid equation for the TE mode is 

derived as: 

,v P eE
t

  


  
+ = − 

  
                                               (5.9) 

1
4 e

E
en

r

 



= −


                                                          (5.10) 

1
,rE B

z c t

 
=

 
                                                              (5.11) 

1 1
( ) zB
rE

r r c t



= −

 
                                                   (5.12) 

4 1r z EB B
J

z r c c t




  
− = +

  
  ,                                      (5.13) 

here, P mv =  is the azimuthal momentum, ( )e eJ en v r r  = − −  is the azimuthal 

current density, v  is the azimuthal drift velocity. For the charge equilibrium 

condition, / 0edn dt = , which can be expressed as:  

( )
0

nvn

t






+ =

 
       .                                                   (5.14) 

By putting i
t




= −


 and, il



=


, where l  is the azimuthal harmonic number, the above 

Eqs. (5.9) to (5.14) can be expressed as: 

n
rB E




= −                                                                (5.15) 
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2

4z

n

B
E J

j r c
 

 



 
= + 

 
                                            (5.16) 

2

0

3 2

0

( )
( )

e

z n

e n E
J i r r

m v





 

  
= −

−
                                (5.17) 

22
,2

, 2

1
( ).

( / 2) ( )

n z n

n z n e

e z n

Hd d c
r H r r

r dr dr r v

 
 

  

 
+ = − 

− 
                  (5.18) 

With the calculation of axial electric ( zE ) and axial magnetic field ( zH ), the four 

transverse field components can be written using Maxwell’s equation as: 

 
2

z z
r n

n

E Hj
E

r r




 

 
    −

= +  
   

                                  (5.19) 

2

n z z

n

E Hj
E

r r





 

 
    −

= −  
   

                                   (5.20) 

2

z z
r n

n

E Hj
H

r r




 

 
    

= −  
   

                                   (5.21) 

2

nz z

n

E Hj
H

r r





 

 
    −

= −  
   

         .                         (5.22) 

Here, superscript  stands for region-I, II, III, and IV for corresponding regions. The 

electric and magnetic field components in different regions are given as: 

(i). Region-I (i.e. c er r r   )  

2 2 * * * *

,( ( ) ){ ( ) ( ) ( ) ( )} exp( ( ))I

z n n n c n n c n n

n

E k J r Y r Y r J r A i z    


      
 



=− =−

= − −  − + 
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(5.23) 

2 2 * * * *

,( ( ) ){ ( ) ( ) ( ) ( )} exp( ( ))I

z n n n c n n c n n

n

H k J r Y r Y r J r B i z    


      
 



=− =−

 = − −  − + 
. 

(5.24) 

Here, 0 2 /n n L  = +  is the axial propagation constant; 
*

n  is the radial propagation 

constant in presence of electron beam i.e. 

2
* 2 2

2
( ) 1 ( )

( / 2) ( )
n n e

e z n

c
r r

r v


  

  

 
= − − 

− 
 

and 
2 2 2(( ) ( ) )n nk = − ,  , ,nA


 ,nB


 is the undetermined coefficient; 0, 1, 2, 3,...,n =     

0, 1, 2, 3,... =    , J  and Y  is the Bessel function of 1st and 2nd kind of order  .  

(ii). Region-II (i.e. e dr r r   )   

The field component in this region is obtained by applying the boundary condition 

between an electron beam and vacuum region similar to the literature [Lemke (1989)] 

and expressed as:  

2 2

, ,( ( ) ) ( ) exp( ( ))II I

z n n n n

n

E k U r A i z 


  
 

 

=− =−

= −  − +                   (5.25)                                                                              

2 2

, ,( ( ) ) ( ) exp( ( ))II

z n n n n

n

H k V r B i z 


  
 

 

=− =−

= −  − +      ,             (5.26)                                                                               

here, , ( ),nU r


 and , ( ),nV r


 are represented by the Bessel function as, 

,

2 2 2

( ) ( ) ( ) ( ) ( )

[ / ( ) ] [ ( ) ( ) ( ) ( )]

n n c n n c n

n n n z n e n n e n

U r Y r J r J r Y r

c v Y r J r J r Y r

    

   

   

        

 = −

− −  −
         (5.27)   
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,

2 2 2 2

( ) ( ) ( ) ( ) ( )

[ / ( ) ] [ ( ) ( ) ( ) ( )]

n n c n n c n

n n n n e n n e n

V r Y r J r J r Y r

c v Y r J r J r Y r

    

    

   

         

  = −

 − −  −
    . (5.28)  

(iii). Region-III (i.e. 1wdr r r  )   

Similar to the field expression for the disc occupied regions explained in the literature 

[Wang et al. (2016)], the axial electric and axial magnetic field can be express as:   

2 2

, ,

1

( ( ) )[ ( ) ( ) ] sin( )exp( )III III III

z m m m m m m

m

E k J r A Y r B z i   



    
 

=− =

= − +  −                         (5.29)                                                                

2 2

, ,

1

( ( ) )[ ( ) ( ) ] cos( )exp( )III III III

z m m m m m m

m

H k J r C Y r D z i   



    
 

=− =

= − +  −     .                  (5.30)                                                               

Here, /m m d = , is the propagation phase constant in region-III,   
2 2 2( ) ( )m mk = −  

is the radial propagation constant in region-III; 1,2,3,...;m =  
,

III

mA
, 

,

III

mB
, 

,

III

mC
 ,

,

III

mD
 are 

the unknown coefficients.  

(iv). Region-IV (i.e. 1 2 ,w wr r r  180 360  )    

( )2 2

, ,

1 1

( ) ( ) sin( )sin( )IV IV

z m s m s m m

s m

E k U r A z s  
 

= =

= −                                               (5.31)                                                                                      

( )2 2

, ,

1 1

( ) ( ) cos( )cos( )IV IV

z m s m s m m

s m

H k V r B z s  
 

= =

= −        .                                   (5.32)                                                                                    

Here , ,IV

s mA  ,

IV

s mB  is the undetermined coefficient; ,s mU  and ,s mV  represented by a Bessel 

function as: 

, 2 2( ) ( ) ( ) ( ) ( )s m s m w s m s m w s mU r Y r J r J r Y r   = −                                      (5.33)  
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, 2 2( ) ( ) ( ) ( ) ( )s m s m w s m s m w s mV r Y r J r J r Y r    = −      .                                (5.34) 

5.3.2 Boundary condition 

The boundary condition of the electromagnetic field satisfies the boundary condition 

between the region-II and the region-III (i.e. at, dr r= ) are: 

0

III

z
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z

E

E




= 

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(0 ( )),

(( ) | | ),

d

d

z L T r r
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−                       =

                          (5.35)                                                           

0

III

II

E

E








= 


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(( ) | | ),
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z L T r r

L T z L r r
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                          (5.36)                                                           

II III

z zH H=        (0 ( )),z L T  −                                                         (5.37)                                                                                         

/ 2II III

z dH H I r  − =    (0 ( )),z L T  −                                                        (5.38)                                                                                        

/III II

r r sE E  − =                (0 ( )),z L T  −                                                       (5.39)                                                                                         

here, zI  is the axial current flowing near the tip of the disc and s  is the surface charge 

density at the discontinuity interface of region II and region III. 

The boundary condition of the electromagnetic field satisfies the boundary 

condition between region III, and region IV (i.e. at, 1wr r=  and 
0 00 180    are: 

(0 180 ),

0 (180 360 ),

IV

z

III

z

E

E





  


= 


 

                                                             (5.40)                                                                          
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(0 180 ),

0 (180 360 ),

IV

III

E

E









  


= 


 

                                                             (5.41)                                                                                        

III IV

z zH H=                    (0 180 ),                                                                  (5.42)                                                                                          

III IVH H =         (0 180 ) .                                                                  (5.43)                                                                                           

After applying the above boundary conditions between region-III and IV, we can 

represent the coefficient of region-IV in terms of the coefficient of region-III, similarly, 

the boundary condition between region-III and region-II helps to express the coefficient 

of region-III in the form of the coefficient of region-II (i.e. in terms of
*

nA ) as described in 

the previous chapter (i.e. chapter 4). Thus, 
*

, , ,

III III

m B A mB G A = ,
*

, , ,

III II

m C A mC G A = , 

*

, , ,

III III

m D A mD G A = and ,

III

mA  can be express as: 

, , ,

III

m n m n

n

A M A 


 

=−

=     ,                                                  (5.44) 

here, 
*

,B AG , 
*

,C AG  and 
*

,C AG  is the transformation expression as explained in the previous 

chapter 4, and 
2 2

, 1
, 2 2

,

( ( ) ) ( )

( ( ) ){ ( ) ( )}

n n d

n m

m m d B A m d

k U r S
M

k J r G Y r L



 



  







−  
=  

− +  
, with 

1

0

sin( ) n

L T

i z

mS z e dz


−

−
=  . 

5.3.3 Dispersion Relation 

Using the current telegraphist’s equation, the capacitance per unit length defined for 

azimuthal partition disc loaded coaxial structure in the presence of an electron beam and 

can be express as:   
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2

,

( ) 1
( ) n

e

nm

j
C

P











=         ,                                                      (5.45) 

here, 

2 2

, , 1

,

( ( ) ) ( )

2

nm n n d

nm

n d

R k U r S
P

r

 







 


=−

−
=   and,  

,

, , ,

1

2 2
, , , 11

2 2

( )
[ ( ) { ( ) ( )}

2

( ( ) ( ) ) ( ) ( ( ) )
{ }]

2 2( ( ) )

m m n m

nm n n d m d B A m d

m

n m m d C A m d D A m n m

d n

i L T M
R i U r J r G Y r

i M J r G Y r G L T i k S

r k

   

 

 
  

     




  

=

  

−

−
  = − +

+ − −
                     − −

−


  

Similarly, using voltage telegraphist’s equation, the inductance per unit length defined for 

azimuthal partition disc loaded coaxial structure in the presence of an electron beam and 

can be express as:  

2

,

1 1
( ) n

e

n nm

L
j W







 





 
=  

 
          ,                                                 (5.46) 

here, 
, , 1

,

( )

2

nm n d

nm

n d

Q U r S
W

r

 




 


=−

=    and, 

( )2 2

2 , , 1

, , 2 2
1

( ( ) ) ( ) ( )
[ ( ) ]

( )( ( ) )

m m d C A m d D A

nm n n n d

m d n

k S J r G Y r G
Q i U r

r L T k

 

 

   
  



 


  −

=

− +
= −  

− −
  

The dispersion relation in the presence of electron beam for different modes can be 

obtained in the form of structure parameters using the equivalent shunt capacitance per 

unit length ( ( )eC 


) and equivalent series inductance per unit length ( ( )eL 


) and express 

as: 

2 2 ( ) ( ) 0e eL C    − =          .                                      (5.47)                                                                                                                                         
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After rearranging the above expression (i.e. Eqs. (5.47)), the dispersion relation in 

presence of an electron beam can be express as:  

( )

( )

* 2 2 *

0 , , , ,

2 2 * 2 2 2 *
1 1 0 , , 0 0 , ,

2

2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

sin ( ) / 2( )
0

( ) / 2

n n d s m d n n d s m d

n s m n n d s m d n d n n d s m d

n

n

U r U r V r U r

U r U r r V r U r

L TL T

L L T

 

  

   

     





   

=− =− = =

 
−  

  − −  

−−
 =

−

  

 

(5.48) 

5.3.4 Temporal growth rate 

In the presence of an electron beam, the roots of dispersion relation explained in the 

above section (i.e. Eq. (5.48)) results in complex roots of frequency for a range of 

wavenumber. This range of wavenumber is mainly called the instability region and is 

considered as the region between the cutting point of beam-line (i.e. defined as 0 ev = ) 

and slow space charge wave (slow SCW) line on dispersion curve [Dwivedi and Jain 

(2012) and Lemke (1989)]. The beam-line is defined by 0 ev = , here, ev is the 

maximum electron velocity. The slow SCW is defined by [Lemke (1989)], 0 slow_scv = , 

here, ( )1.5

slow_s 01 / ( )c e p cv v   = − . In the instability region, the slow SCW interacts with 

the RF wave supported by the structure and produce real as well as imaginary roots of 

frequency. The real root of frequency (i.e. rf ) gives the oscillation frequency of RF wave 

whereas the imaginary root of frequency (i.e. if ) gives the temporal growth rate (i.e. rate 

at which the oscillation frequency grows with time in the instability region). To find the 

magnitude of the temporal growth rate, the imaginary value of frequency (i.e. if ) is 

calculated using Eq. (5.48). This imaginary frequency causes the exponential grow of RF 
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(i.e. 
2 ( )

e r ii f i f t− +
) with the increase in time [Sagor and Amin (2017)]. 

5.3.5. RF energy and Power 

In this section, the estimated RF output power and stored RF energy associated with two 

different fundamental frequencies for bi-frequency MILO is calculated using an 

equivalent circuit approach. To eliminate the complication, the estimated RF energy 

stored inside the azimuthal partition disc-loaded coaxial structure is calculated for two 

different fundamental frequencies associated with the different azimuthal cavity. The 

equivalent admittance for cavity formed with disc loaded coaxial structure can be 

calculated as [Dixit (2016)]: 

0
int

0

1
( ) 1Y jQ

R




 

  
= + −  

   

          .                                     (5.49) 

Here,
0int

Q RC=   represents an internal quality factor of a cavity, due to dissipative 

losses in the walls and
0 0 00 /extQ Z L Z C = =  is the external quality factor with 0Z  

represents the output impedance of the signal source [Cousin (2005)]. The imaginary part 

of admittance represents energy stored or released from the cavity. In MILO, energy 

stored inside the cavity is coupled with the load through a coaxial line with the output 

opening axially [Cousin (2005)]. Interaction cavities coupling with the load may be either 

over coupling or under coupling depends upon the external and internal Q-factor. The 

coupling coefficient of the cavity is defined as [Dixit (2016)]: 

0

int

extQ Z

Q R
= =      .                                                  (5.50) 

The coupling coefficient for fundamental mode frequency of the cavity can also be 
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calculated by the ratio of coupling capacitance of the RF cavities and the cavity 

capacitance and given as: 

e

C

C



=       ,                                                           (5.51) 

Where, C  and eC  defined as the coupling capacitance and fundamental mode 

capacitance of the cavity given as [Fan et al. (2008)]: 

0
0

2 2( ) ( ) 2( )
8 ( ) ln

ln( / ) 2( )

d c d c
d

d c d c

T r r L T r r
C L T r

r r r r

 




  − − + − 
 = + − + −   

−    

 

and, 

( )3 3 20
0

2( ) / 2
2 ln 2 3

( ) / 2 3( )( )
e d w d w d

w d

L T T
C r r r r r

L T L T r r




 − +
= + + − 

− − −  .

 

Now, stored RF energy inside the cavity for two different frequencies can be defined as 

[Cousin (2005) and Dixit (2016)]: 

0,

0,

0,

2

0( ) 1 exp ( )
2

a

a

a

aW t W t t
Q

  
= − − −   

   

     ,                              (5.52) 

here, the subscript a  is either 1 or 2 considered for two different modes, 0t  is the initial 

time,  0,aW (
2

0 0, 0, ,4 /
a a ext aPQ Q= ) is the stored energy in different frequencies, and 0P  

,max 0( 0.32( ))sI V=  is the estimated RF output power defined in the literature [Lemke et al. 

(1997)]. The RF output power distributed among the two frequencies can be calculated as 

[Dixit (2016)]:  
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0 0, 0,

, ,

4
a aa a

a

ext a ext a

P W W
P

Q Q

 
= −                .                                (5.53) 

5.4. Results and discussion 

An azimuthally partitioned axially periodic metal disc loaded coaxial structure has been 

analyzed in the presence of an electron beam using an equivalent circuit approach 

considering Vlasov-Maxwell’s equation. Through the analysis, the potential of the 

structure to generate two stable and separate frequencies within a single MILO device has 

been estimated by deriving dispersion relation and temporal growth rate. The dispersion 

relation is considered as a basic tool to estimate the potential of RF generation and 

propagation through any slow-wave structure whereas the temporal growth rate is used to 

estimate the growth of a generation of RF with time. To validate the derived dispersion 

relation and temporal growth rate, first, the dispersion and temporal growth rate for 

MILO structure described in the literature [Dwivedi and Jain (2012)] has been calculated 

and found in perfect match with the reported results. 

The dispersion relation derived in Eqs. (5.48) is used for numerical calculation of 

the dispersion curve of two different modes supported by the different azimuthal section 

of azimuthally partitioned axially periodic metal disc loaded coaxial structure. Fig. 5.2 

shows the dispersion curve for the structure with beam parameters: beam voltage (V=420 

kV), beam current (Ia=38 kA) and beam radius ( 0.85e dr r=  ), and design parameters: 

different wall radii (rw1= 140 mm and rw2=129 mm), cathode radius (rc=53 mm), disc 

inner radius (rd=86 mm), disc periodicity (L=27 mm) and disc thickness (T=5 mm). The 

different modes considered here describe as fundamental modes which are responsible 

for the generation of frequency associated with one part of the azimuthal section (i.e. rw1 
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=140 mm and azimuthal range 1800-3600 (blue color)) and other is responsible for the 

generation of frequency associated with another part of the azimuthal section (i.e. rw2 

=129 mm and azimuthal range 00-1800 (brown color)).  

 

Figure 5.2: Dispersion curve for azimuthally partitioned axially periodic metal disc 

loaded coaxial structure in presence of beam at voltage V=420 kV, current Ia=38 kA, 

with different wall radii, rw1= 140 mm and rw2=129 mm (with, rc=53 mm, rd=86 mm, 

L=27 mm and T=7 mm). 

The fundamental modes in azimuthally partitioned axially periodic metal disc 

loaded coaxial structure associated with a different azimuthal section is TM00 modes. As 

the dispersion curve is below the light line, the structure is considered a slow-wave 

structure. The region between beam-line and slow SCW line is considered as instability 

region and the temporal growth rate is calculated in this region. Fig. 5.3 shows the 

temporal growth rate (fi) at different phases ( 0 * L ) in radian for different modes. It can 

be seen from Fig. 5.3 that the maximum value of temporal growth rate for TM00 mode of 

section-1 (i.e. of rw1) is ~0.046 per ns and for TM00 mode of section-2 (i.e. rw2) is ~0.06 
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per ns which indicate that frequency associated with f2 grows faster than that of f1. 

 

Figure 5.3: Temporal growth rate (fi) at different phase ( 0 * L ) in radian for two 

operating modes supported by the structure for two different azimuthal sections (i.e. 

TM00 mode for rw1 and TM00 mode for rw2).  

 

Figure 5.4: Equivalent shunt capacitance and equivalent series inductance of the 

transmission line in the presence and absence of electron beam: (a) Shunt capacitance per 

unit length (b) Series inductance per unit length. 
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The equivalent shunt capacitance and series inductance per unit length of the 

equivalent transmission line in the presence and absence of electron beam for the two 

modes associated with the azimuthally partitioned structure are numerically calculated 

and shown in Fig. 5.4. The shunt capacitance per unit length is shown in Fig. 5.4(a) and it 

can be seen from the figure that the shunt capacitance per unit length for two resonating 

modes in the presence of electron beam shifted slightly left representing beam loading 

effect. Fig. 5.4(b) shows series inductance per unit length.  A similar effect is also 

observed for the series inductance per unit length which is shown in Fig. 5.4(b). 

 

Figure 5.5: (a) RF output peak and average powers obtained through simulation and 

comparison with reported results [Chen et al. (2008)] (b) FFT of generated RF signal of 

the designed bi-frequency MILO considering azimuthally partitioned axially periodic 

metal disc loaded coaxial structure as interaction structure.  

The estimation of RF power generated through the beam-wave interaction in 

azimuthally partitioned axially periodic metal disc loaded coaxial structure is expressed 

in Eqs. (5.53). To validate the RF generation at two frequencies in a single MILO device, 
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the azimuthally partitioned axially periodic metal disc loaded coaxial structure which is 

used as an interaction structure has been simulated in the presence of an electron beam 

through commercially available software ‘CST studio suite’. The output RF peak and 

average power generated through the device and the FFT of the RF signal is shown in 

Fig. 5.5 along with the comparison of results given in the literature [Chen et al. (2008)]. 

It can be seen from Fig. 5.5(a) that almost 1.3 GW of average RF power is obtained 

through simulation and the FFT of the obtained RF signal given in Fig. 5.5(b) shows that  

signal oscillates at two frequencies (i.e. f1=1.27 GHz and f2=1.49 GHz).  It can also be 

seen from Fig. 5.5(b) that, the magnitude of frequency (f1) is smaller than the magnitude 

of frequency (f2) which validates the above discussed temporal growth rate where f1 has a 

slower growth rate than that of f2.  Furthermore, to validate the above describe analysis, 

the obtained results (i.e. RF output power and associated energy) through analysis are 

compared with simulation results and shown in Fig. 5.6. It is observed that the obtained 

results (i.e. through analysis) are in close agreement (i.e. error within ~5%) with the 

simulation results. Fig. 5.6(a) shows the average RF output power obtained through 

analysis and simulation. The maximum energy stored inside the cavity associated with 

the RF signal calculated with the time integration of average power (i.e. shown in Fig. 

5.6(a)) and found ~50 J. To investigate the temporal behavior of energy distribution 

inside the cavity, the above describe Eqs. (5.52) is used. In the analytical calculated RF 

power and energy, the consideration of magnetic insulation is taken as ideal, therefore, 

the RF power generation starts early as compare to the simulation. Fig. 5.6(b) shows the 

normalized energy associated with RF signal at different time instant obtained through 

analysis and simulation. 
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Figure 5.6: Comparison of obtained analytical results with simulation results (a) Average 

RF output power with time, (b) Normalized energy store in the cavity with time. 

5.4.1 Effect of variation of beam parameters 

The effect of beam parameter variation on the temporal growth rate for two different 

modes associated with the azimuthal partitioned axially periodic disc loaded coaxial 

structure in the presence of an electron beam is shown in Fig. 5.7. Figs. 5.7(a) and 5.7(b) 

depict the sensitivity of the variation of input beam voltage (V) and beam radius (re) on 

the operating modes. Fig. 5.7(a) shows that with the increase in input beam voltage (V), 

the temporal growth rate shifted slightly left because of the shifting of the effective 

beamline. The shifting of beam-line towards left also decreases the effective beam-wave 

interaction with an increase of input beam voltage thus resulting decrease in the 

maximum value of temporal growth rate. Fig. 5.7(b) shows that with the decrease of 

beam radius (re), the temporal growth rate decrease as the maximum beam-wave 

interaction takes place at the tip of the loaded disc. 
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Figure 5.7: Effect of beam parameters on the temporal growth rate of the azimuthally 

partitioned axially periodic disc loaded coaxial structure in the presence of electron 

beam: (a) different input beam voltage (V), (b) different beam radius (re).  

5.5 Conclusion 

In this chapter, we have performed the electron beam present analysis for an azimuthally 

partitioned axially periodic metal disc loaded coaxial structure which can be used as the 

MILO RF interaction structure for the bi-frequency HPM generation. The structure is 

analyzed using the equivalent circuit approach which is found much simpler, less 

cumbersome. The expression for equivalent capacitance per unit length and equivalent 

inductance per unit length in the presence of an electron beam for the structure has been 

obtained considering the loss-free condition. These series inductance and shunt 

capacitance expressions are used for deriving the structure dispersion relation, and the 

temporal growth rate along with the estimation of RF output power and energy. Since the 

structure is azimuthally asymmetric, the symmetric TE and TM modes do not exist 

independently, thus, the two different modes excited in the azimuthally partitioned 
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structure are studied. The temporal growth rate associated with the two different modes 

has been calculated numerically. Further, to confirm the structure capable of generating 

bi-frequency; the simulation study has been performed in the presence of an electron 

beam. The obtained result through analysis and simulation is compared with results given 

in the literature. The relative error between them is below 5% which shows a good 

agreement. Furthermore, the effect of beam parameter variation on the temporal growth 

rate for two different modes associated with the different azimuthal sections has been 

appreciated computationally. 

 

 

 

 

 

 

 

 

 

 


