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2.1. Introduction 

Magnetically insulated line oscillator (MILO) is a crossed field high power microwave 

(HPM) device closely similar to the linear magnetron and designed specifically to 

generate giga-watt (GW) level of microwave power in GHz frequency range [Lemke et 

al. (1997), Benford et al. (2007)]. The main feature of the MILO is that the DC 

magnetic field which is required to generate magnetic insulation inside the device is 

self-induced by the intrinsic electrons flows in the device [Lemke et al. (1997), 

Eastwood et al. (1998)].  There is no external circuit required to generate the DC 

magnetic field, which makes the device compact, lightweight, and highly effective 

HPM source. The MILO device uses a periodic disk-loaded coaxial structure as a slow-

wave structure (SWS) required for beam-wave interactions. To modify the 

characteristics of the propagating or resonating structures used in the electron beam 

devices, periodic disc loading or applying corrugation with waveguides has been 

considered as a well-known practice [Swegle et al. (1985), Gilmour (1986)], Lemke et 

al. (1989), Basu (1996), Banna et al. (2000), Zhang (2004), Keshri et al. (2005), Wang 

et al. (2007), Fan et al. (2008), Dwivedi et al. (2012), and Dixit et al. (2016)]. A 

cylindrical waveguide with a corrugated inner surface is used as a slow-wave structure 

for a backward wave oscillator [Swegle et al. (1985)]. Azimuthally periodic disc 

loading can be used as a slow-wave structure for magnetron [Gilmour (1986)]. A 

coaxial structure with sinusoidal corrugation at the inner surface of the anode is used as 

an interaction structure or SWS [Lemke et al. (1989)].  Azimuthally periodic vanes 

projecting radially inward from the metal envelope of a helix TWT control the 

dispersion of the helix and hence widen the bandwidth of the TWT [Jain and Basu 

(2000)]. Similarly, a circular waveguide with periodic metal disc loading is used as an 
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interaction structure for gyro-TWT as well as high-power amplifier [Banna et al. 

(2000), Zhang (2004), and Keshri et al. (2005)]. The coaxial waveguide structure 

loaded with axially periodic metal annular discs, and excited in a transverse 

magnetic (TM) mode, is used as a ‘slow-wave’ structure of MILO device [Wang 

et al. (2007), Fan et al. (2008), Dwivedi et al. (2012), and Dixit et al. (2016)].  

Optimization of the disc parameters provides control over the dispersion relation for 

further controlling the phase velocity at the desired frequency of RF wave such that 

maximum beam-wave interaction takes place inside the device. 

 In the present chapter, an equivalent circuit approach that is followed to study 

beam wave interaction analysis for the periodic disc loaded coaxial structure used in the 

MILO device has been revisited.  In Section 2.2, various analytical approaches that have 

been used in analyzing such structures so far have been reviewed. The equivalent circuit 

analysis for MILO in the beam absent case has been described in section 2.3. The 

various characteristics of periodic disc loaded coaxial structure such as dispersion 

relation, phase velocity, and characteristic impedance have been derived using 

equivalent line parameters in this section. In Section 2.4, the equivalent circuit analysis 

for MILO in the beam present case has also been presented.  

2.2. Reported Analytical Approaches 

Any rectangular, circular, or coaxial waveguide periodically loaded with discs may 

form beam-wave interaction structure periodic in either axial or azimuthal or both 

directions [Gandhi (1981), Wagner et al. (1999), Zhang et al. (2003), Wang et al. 

(2010) and Dwivedi et al. (2012)]. The electromagnetic analysis of such disc-loaded 

slow-wave structure can be carried out using field matching theory [Lemke et al. 
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(1989), Zhang et al. (2004), and Wang et al. (2007)], mode-matching technique [Hahn 

(1978), Keshri et al. (2005) and, Dwivedi et al. (2012)] and equivalent circuit approach 

[Basu (1996), Gandhi (1981), Fan et al. (2008), and Dixit et al. (2016)].  

(i). Field matching theory: The field matching technique has been used by a number 

of researchers to analyze the characteristics of various associated modes inside the 

different disc-loaded waveguide structure.  For instance, symmetric TM01 mode 

(i.e. transverse magnetic mode) and asymmetric HEM11 mode for disc loaded 

cylindrical structure was analyzed using field matching technique [Wang et al. 

(2005)]. The dispersion function for coaxial disc-loaded SWS has been 

investigated using field matching theory by Lemke et al. (1987) and Zhang et al. 

(2004) but was limited to TM modes only. This technique was also carried out to 

investigate the dispersion characteristic for both symmetric and asymmetric 

modes [Wang et al. (2007)]. In this technique, the Borgnis function [Zhang and Li 

(1998)] can be used to express the electromagnetic fields in a different region of 

the structure (i.e. region I as disc free region having space harmonics and region II 

as disc occupied region having standing wave). 

(ii). Mode matching technique: The modal matching technique can be used to analyze 

the characteristics of different disc-loaded and corrugated waveguide structure. 

For instance, hybrid modes, such as HE11 mode was studied using the mode-

matching approach for corrugated waveguide structure [Esteban and Rebollar 

(1991)]. Similarly, the hybrid modes associated with disc-loaded cylindrical 

waveguide structure was analyzed using this approach [Zhang et al. (2003)]. This 

approach was also used in the analysis of a plasma-filled waveguide excited in the 

TM mode [Zhang et al. (2003)]. Further, this technique was used to analyze the 
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thick as well as thin metal disc-loaded structure operating in the TE mode [Kesari 

et al. (2004), Kesari et al. (2005)]. The metal disc-loaded coaxial waveguide 

structure excited in fundamental TM mode for MILO was also analyzed using the 

mode-matching technique [Dwivedi and Jain (2012)]. The mode matching 

technique considers all the space harmonics in the disc-free region with the 

structure having axial periodicity and all stationary mode harmonics which is 

caused by the reflection from disc-walls in the disc occupied region. After 

applying boundary conditions considering the continuity of fields at the interface 

of the two regions the dispersion relation is obtained. Further, the relevant field 

expressions for TM modes in two regions of the structure in a cylindrical 

coordinate system can be written for non-azimuthally varying modes and under 

slow-wave consideration. 

(iii). Equivalent Circuit Approach: Any disc-loaded waveguide structure can be 

analyzed by modelling it through its circuit equivalent [Gandhi (1981), Basu 

(1996), Fan et al. (2008), and Dixit et al. (2016)]. In the equivalent circuit 

approach, a period of the structure is treated as a two-terminal circuit network 

(considering lossless condition) to analyze the characteristics of various slow-

wave structures such as helix structure, disc-loaded circular, and coaxial structure, 

etc. [Watkins (1958), Basu (1996)]. A transmission-line equivalent circuit model 

was developed to study the effect of periodic disc loading on the structural 

characteristics of a disc-loaded circular waveguide, which was typically excited in 

TM01 mode [Gallagher (1985)]. Fan et al. had used the equivalent circuit approach 

to analyze the periodic disc-loaded coaxial structure for fundamental modes only 

[Fan et al. (2008)]. They had considered coupling capacitance to find coupling 
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between corresponding cavities. Furthermore, Dixit and Jain (2016) used 

equivalent circuit analysis to analyze the symmetric TM0n mode of the coaxial 

disc-loaded waveguide structure used as an interaction structure for MILO. Thus, 

the equivalent circuit approach is an alternative approach to characterize the 

different slow-wave structures (SWS) [Basu (1996)]. This approach treats the 

SWS as a transmission line which is characterized by a set of four distributed line 

parameters as shown in Fig. 2.1. The four distributed line parameters are mainly 

equivalent series inductance per unit length (Le), equivalent shunt capacitance per 

unit length (Ce), equivalent series resistance per unit length (Re), and equivalent 

shunt conductance per unit length (Ge) of the equivalent transmission line. The 

propagation characteristics, which are mainly concern with dispersion relation 

associated with the SWS, can be expressed using these four distributed line 

parameters. These line parameters include the structure parameters of SWS which 

resolve whole problems expressed in terms of structural parameters of the SWS. 

For the sake of simplicity in solving the problem, the losses associated with the 

structure here are ignored (i.e. considering Re= 0). To use this approach, the 

circuit current of nth-section can be written in terms of the circuit voltages of nth -

section and n+1th -section.  Similarly, the circuit current of the next section (i.e. 

n+1th – section) can also be written in terms of the same two circuit voltages. At a 

reference section, these two equations interpret two separate equations relating the 

circuit current and the circuit voltage. Further, the circuit current and the voltage 

corresponding to the nth- section which involving the propagation constant of the 

circuit, can be represented in terms of the corresponding quantity at a reference 

section with the help of Floquet’s theorem. Subsequently, the dispersion relation 
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of the structure in terms of the line parameters can be derived using the condition 

for the non-trivial solution of these two equations.  

 

Figure 2.1: The equivalent circuit of transmission line representing the periodic disc 

loaded coaxial structure for an infinitesimal length dz.  

2.3. Equivalent Circuit Analysis of the Coaxial Disc loaded RF 

Interaction Structure for MILO 

Equivalent circuit analysis of the MILO device is analyzed here in two cases, the first 

one is for beam absent case and the second is for beam present case. In the beam absent 

case, an interaction structure that can be constructed using a disc-loaded coaxial 

waveguide structure that also forms a slow-wave structure has been analyzed to estimate 

the potential of RF generation without introducing the actual electron beam at the 

desired frequency. Whereas, in the beam present case, the estimation of temporal 

growth rate, RF power, and energy associated with the RF signal at the desired 

frequency can be evaluated. MILO device uses a metal disc-loaded coaxial structure 

which is treated as a transmission line and characterized by equivalent line parameters. 

These line parameters can be derived with the help of the current and voltage 

telegraphist’s equations. Further, these line parameters are expressed in terms of the 

structure parameters.  Finally, the different characteristics like dispersion relation, phase 
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velocity, and characteristic impedances associated with metal disc-loaded coaxial 

structure can be derived and represented in terms of the structure parameters. The 

advantage of the use of the equivalent circuit approach here is that it required only half 

of the boundary condition at a time and does not require solving a very complex 

dispersion relation involving m n  determinants just like required in the field matching 

approach. 

The periodic disc-loaded coaxial structure used in the MILO device is shown in 

Fig. 2.2. The central cylindrical conductor which having radius rc is used as a cathode. 

The outer cylinder is periodically loaded with a metal disc of thickness T and 

periodicity L, having outer wall radius (rw) and inner disc radius (rd) used as an anode. 

The whole waveguide structure is divided into two regions (i.e. region I and region II). 

Region I can be called a disc-free region (i.e. region between c dr r r   ) and support 

traveling waves whereas region II (i.e. region between d wr r r   ) is termed as disc 

occupied region and support standing waves.   

 

Figure 2.2: The typical schematic view of a periodic disc loaded coaxial structure used 

as an RF interaction structure for MILO.   
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2.3.1. EM Field Expressions and Boundary Conditions  

As far as exploring RF interaction structures for MILO is concerned, Dixit and Jain 

(2016) found it worth trying out the equivalent circuit approach (Section 2.2) to study 

the behavior of a periodic disc-loaded coaxial waveguide with respect to its dispersion 

characteristics and hence predict the optimum structure parameters for efficient beam-

wave interaction at the desired frequency. The same approach is also adapted in the 

work presented in this thesis, however, with due care to include the rigor of considering 

the effect of azimuthal partitioning (i.e. two-dimensional periodicity) in the analysis for 

the possibility of bi-frequency generation through a single MILO device. The present 

section is dedicated to presenting the basic field expressions and electromagnetic 

boundary conditions to be used in the Chapters of the thesis to follow, for the analysis 

of an azimuthally partitioned axially periodic metal disc-loaded coaxial waveguide 

structure. 

2.3.1.1. Field Expression in the disc-free region (i.e. region I:  
c d

r r r ) 

The electric and magnetic field component for periodic disc loaded coaxial structure in 

the disc-free region as shown in Fig. 2.2 for symmetric TM mode can be written in the 

cylindrical coordinate system as [Dwivedi and Jain (2012), Dixit and Jain (2016)]: 

0 0[ { } { }]exp ( )I I I I I I

z n n n n n
n

E A J r B Y r j t z   


=−

= + −                      (2.1) 

1 1[ { } { }]exp ( )
I

I I I I I In
r n n n n nI

n n

j
E A J r B Y r j t z


   





=−

= + −                 (2.2) 

1 1

1
[ { } { }]exp ( )I I I I I I

n n n n nI
n n

H j A J r B Y r j t z     




=−

= + −    .        (2.3) 
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Here, Superscript (I) is used to refer to the region I, the disc-free region, and  

0 2 /I I

n n L  =   is the axial propagation constant which utilizing Floquet’s theorem 

because of the periodicity in the structure. The radial propagation constant is 

represented by 
22 1 2( ( ) )I I

n nk = −  and 1 2

0 0( ( ) )k   =  representing free space 

propagation constant. In region-I, the space harmonics is presented by whole number n 

(i.e. n = 0, 1, 2, 3, …) I

nA  and I

nB  are the unknown constants to be determined for 

deriving dispersion relation. 0J  and 1J  represents the Bessel functions of 1st  kind and 

0Y , 1Y  as Bessel functions of 2nd  kind for zeroth and first order, respectively having an 

argument as radial propagation constant as I
n r . 

2.3.1.2. Field Expression in disc occupied region (i.e. region II:  
d w

r r r ) 

The region between two consecutive discs (i.e. region II) which is shown in Fig. 2.2, 

supports stationary waves due to reflection at discs in this region. The supported 

stationary waves in the disc-occupied region creates modal harmonics, represented by 

natural numbers m (i.e. m = 1, 2, 3,…).  The axial electric and azimuthal magnetic field 

expression for symmetric TM mode supported in this region, which define the 

stationary wave, is written as [Dwivedi and Jain (2012), Dixit and Jain (2016)]: 

0
1

{ }exp( ) sin ( )II II II II

z m m m
m

E A X r j t z  


=

=                                        (2.4) 

0
1

{ }exp( )sin ( )
II

II II II IIm
r m m mII

m m

j
E A X r j t z


  





=

=                                (2.5) 

0
1

{ }exp( )sin ( )II II II II

m m mII
m m

j
H A X r j t z


  





=

=                               (2.6) 
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Here, II

mA  is the unknown constant of EM field component, superscript (II) used to refer 

to the disc occupied region, / ( )II

m m L T = −  is the axial propagation constant, and 

22 1 2( ( ) )II I

m mk = −  is the radial propagation constant for this region. The component 

0X  and it's derivative which is represented by the prime or 0X   are the functions of 

Bessel’s function defined as: 

0 0 0 0 0{ } { } { } { } { }II II II II II

m m w m m w mX r Y r J r J r Y r    = −  

0 0 1 0 1{ } { } { } { } { }II II II II II

m m w m m w mX r Y r J r J r Y r     = −         

2.3.1.3. Boundary Conditions 

In order to characterize a periodic disc-loaded coaxial waveguide, the field expressions 

for the waveguide, excited in azimuthally symmetric TM modes ( 0zH = ), developed in 

previous sections (Section 2.3.1.1 and Section 2.3.1.2), need to be combined with the 

relevant electromagnetic boundary conditions. The electromagnetic boundary conditions 

stating the continuity of the tangential components of electric and magnetic field 

intensities at the interface, dr r= , between the free-space disc-free region (i.e. region I) 

and disc-occupied free-space region (i.e. region II) (Fig. 2.2) as well as the vanishing of 

the axial component of electric field intensity at the metal inner circumferential edge of 

the discs, dr r= , may be written as: 

0 ( )

0 ( )

II
zI

z

E z L T
E

L T z L

   −
= 

 −  

            ( dr r= )                     (2.7) 

0 0I
zE z=                        ( cr r= )                     (2.8) 
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0 ( )I IIH H z L T =   −              ( )dr r=     .                (2.9) 

The discontinuity at the interface of the two regions causes the discontinuation of the 

tangent (i.e. azimuthal) component of the magnetic field intensity ( H ), which is equal 

to the surface current density ( zJ ) and is written as [Dixit and Jain (2016)]: 

0 ( )II I

zH H J z L T − =   −          ( )dr r=       .           (2.10) 

Similar to the azimuthal magnetic field intensity, the radial components of electric field 

intensity are discontinuous at the interface between two regions. This discontinuity 

amount can be evaluated by equating it with the ratio of surface charge density to the 

dielectric constant (i.e. /s  ) and is written as [Dixit and Jain (2016)]: 

/ 0 ( )II I

r r sE E z L T − =   −         ( )dr r=    .           (2.11) 

2.3.2. Equivalent Line Parameters  

The EM field expressions for the two regions (i.e. region I and region II) and the 

boundary conditions which have been explained in the previous sections used to obtain 

the equivalent line parameters (i.e. shunt capacitance per unit length ( eC ) and series 

inductance per unit length ( eL )).  To derive the expression for these line parameters, the 

unknowns present in the expressions (i.e. I
nA , I

nB , and II
mA ) have to be eliminated using 

the boundary conditions. Further, the phase velocity, dispersion relation, and the 

characteristic impedance of the structure are evaluated using these equivalent circuit 

line parameters that are handy and easy to process throughout. 
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2.3.2.1. Equivalent shunt capacitance per unit length 

The current Telegraphist’s equation of the equivalent transmission line here can be used 

to find the equivalent shunt capacitance per unit length for the interaction structure 

[Kartikeyan et al. (1992), Basu (1996), Dixit and Jain (2016)]: 

0z
e

I V
C

z t

 
+ =

 
          .                                          (2.12)  

Replacing / z   with I
nj−  and / t   with j  and rearranging the above equation (i.e. 

Eqs. (2.12)) can be written as: 

I

n z
e

I
C

V




=          .                                                   (2.13)  

Here, zI  is the axial current which can be evaluated by the axial current density for a 

unit length of structure such as [Dixit and Jain (2016)]: 

/ 2z z dJ I r=                                                    (2.14) 

To find the relation between field constants presents in the EM field components of the 

region I, (i.e. I
nA  and I

nB ), the above boundary condition (2.8) is applied and the 

relation can be expressed as: 

0

0

{ }

{ }

I
I In c
n nI

n c

J r
B A

Y r




= −             .                                    (2.15) 

Similarly, the relationship between field constants I
nA

 
and II

mA can be obtained by 

substituting the EM field expression given in Eqs. (2.1) and (2.4) in the first boundary 

condition given in Eqs. (2.7) and the relation is given as: 



Chapter 2                                               Equivalent Circuit Analysis of MILO--Reviewed 

 

 

 

 

55 

 

0 0
1

[ { }]exp ( ) { }exp( ) sin ( )I I II II II

n n m m m
n m

V r j t z A X r j t z     
 

=− =

− =    ,          (2.16) 

here,                               0 0 0{ } { } { }I I I I I

n n n n nV r A J r B Y r  = +  . 

For the sake of simplicity of the calculation, the time effect has been eliminated from 

the above equation.  Further, to remove the axial distance z from the above Eqs. (2.16), 

sin( )II

m z  has been multiplied on both sides of the expression and the resultant is 

integrated within the limit 0 z L T  − , which finally give the expression [Dwivedi 

and Jain (2012) and Dixit and Jain (2016)]: 

,

II I

m n m nA U A

n


= 

= −

                                               (2.17) 

with,                         
2 2

0
,

0

2 ( 1) exp ( ( )) 1 { }

{ }

II m I II

m n m
n m III I

nm n

j L T X r
U

L T Z r

  

 

    − − −
=     − −    

    and,  

                                 0 0 0 0 0{ } { } { } { } { }I I I I I

n n c n n c nZ r Y r J r J r Y r    = −
  .

 

Similarly, multiplying sin( )II

m z  on both sides of boundary condition (2.10) and 

integrating the expression on both sides within the limit 0 z L T  − , the field constant 

I
nA  can be represented in terms of circuit current which can be expressed as: 

{ }I I

n nm n zA R r I=                      ,                          (2.18) 

here,       

             0 0

0 0 0 1 0

{ } { }cos ( ( )) exp( )
{ }

2 [ { ) { } { } { } { }]

I II I I II
I n m n c n m

nm n
II II II I II I I

d m m d m d n c m n d n

Y r Z r L T j t
R r

j r X r X r Y r J r Z r S

     


       

− −
=

 −
  

and,                                    
2 2

2 ( 1) exp( ( )) 1

( ) ( )

II m I

m n

II I

m n

j L T
S

L T

 

 

   − − −
=   

− −  
   . 
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By substituting I

nB  and I

nA  given in the above expression (2.15) and (2.18) 

respectively, into the expression (2.1), the axial electric field intensity ( I

zE ) can be 

expressed in terms of axial current such as: 

I

z nm z
n

E P I


=−

=                  ,                                         (2.19)    

here,                              
0{ } { }I I

nm nm n n d
n

P R r Z r 


=−

=  . 

The axial electric field intensity zE  can be represented in the form of the scalar and 

vector circuit potential [Basu (1996)] as: 

z

z

V A
E

z t

 
= − −

 
           .                                         (2.20) 

By substituting / z   with I
nj−  and / t   with j  in the above Eqs. (2.20) can be 

rewritten as: 

z n z
E j V j A = −          .                                         (2.21) 

The relation between vector potential zA and scalar potential V in the cylindrical 

coordinate system can be given as: 

0zA V

z t


 
+ =

 
             ,                                           (2.22) 

which can be further rewritten just like Eqs. (2.21) as: 

0
n zj A j V − + =       .                                          (2.23) 

Substituting the Eq. (2.23) into Eq. (2.21), the axial electric field intensity zE  can be 

expressed in term of scalar potential V and expressed as: 

2( )I
I n
z I

n

E j V




 
=  

 
          .                                               (2.24) 



Chapter 2                                               Equivalent Circuit Analysis of MILO--Reviewed 

 

 

 

 

57 

 

Finally, the axial current to voltage ratio (i.e. /zI V ) can be obtained using the above 

Eqs. (2.19) and (2.24) which is further substituted in the Eq. (2.13) to calculate the 

equivalent capacitance per unit length and expressed as:  

2( ) 1
I

n
e

nm

j
C

P




=         .                                               (2.25) 

2.3.2.2. Equivalent series inductance per unit length 

Similar to the equivalent shunt capacitance, the voltage Telegraphist’s equation of the 

equivalent transmission line can be used to find the equivalent series inductance per unit 

length for this RF interaction structure [Basu (1996), Dixit and Jain (2016)]: 

0e

IV
L

z t


+ =

 
         .                                          (2.26) 

According to the similar explanation given in the previous subsection, the expression 

(2.26) can be rewritten as:   

n
e

V
L

I





 
=  

 
          .                                        (2.27) 

The ratio of circuit potential to the circuit current as given in expression (2.27) can be 

derived following a similar process as explained in the previous subsection (i.e. 

subsection 2.3.2.1).  For this, the EM field expression used in the Eqs. (2.3) and (2.6) 

are substituted in boundary condition (2.9) and multiplied sin( )II

m z on both sides 

followed by integration of the expression within the limit 0 ( )z L T  − . The final 

expression shows the relation between field constant 
II

mA  and 
I

nA which is expressed as: 

,

II I

m n m n

n

A X A



=−

=         ,                                   (2.28) 

here, 
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2 2

0
,

0 0

2 ( 1) exp( j (L T)) 1 { }

{ } { }

II m I I II

m n n m
n m III I II I

nm n m n c

Z r
X

L T X r Y r

   

   

  − − −
=      − −   .

 

To find the relation between field constant I

nA  and the azimuthal circuit current I , the 

boundary condition (2.11) multiplied sin( )II

m z  on both sides and integrated within the 

limit  0 ( )z L T  −  expressed as: 

( ) ( ) ( )

0 0 0

( )sin ( ) sin ( ) sin ( )
(2 )

L T L T L T

II I II II IIs
r r m m m

d

I
E E z dz z dz z dz

r


  

  

− − −

− = =        .   (2.29) 

Substituting the radial electric field components from Eqs. (2.2) and (2.5) into Eq. 

(2.29) and after rearranging the above expression the relation between field constant I

nA  

and azimuthal current I  can be obtained, which can be given as: 

I

n nm
n

A Q I



=−

=               ,                                       (2.30) 

where,  

0

0 0

{ }cos ( ( ))

2 [ { } { }] exp( )

I II I II

n m n c m
nm II I I I II I

d m n n d n m n

Q
Y r L T

j r Z r Z r S j t

   

       
=

−

 − −
    .

 

Further, the field constant value obtained from Eq. (2.30) substituted in Eq. (2.1) to 

obtain the relation between electric field intensity and the azimuthal current which can 

be written as: 

    
I

z nmE W I=                                                       (2.31) 

here,     

0

0 0

{ }cos( ( ))

2 [ { } { }]

I II

n m

I II
n md

nm
II I I I II I
m n n n m nd d

Z r L T
W

j r Z r Z r S

   

      

−
=

 −
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Finally, after equating the Eq. (2.24) with Eq. (2.31), the ratio of circuit potential to the 

azimuthal circuit current can be obtained which is further substituted into the Eq. (2.27) 

to find the equivalent series inductance per unit length which can be expressed as: 

2

1 n

nmI

n

L W
e j



 

 
=  

 
         .                                 (2.32) 

2.3.3. Dispersion Relation: 

The dispersion relation of the axially periodic disc-loaded coaxial waveguide structure 

used in MILO device in the absence of an electron beam or the ‘cold’ dispersion 

relation can be used to obtain the axial phase propagation constant of the structure hence 

the  −  characteristics of the structure and the effect of the disc parameters on the 

shape of such characteristics. The dispersion relation can be obtained using the above 

derived equivalent line parameters (i.e. equivalent shunt capacitance per unit length and 

equivalent series inductance per unit length) and the expression given as [Basu (1996), 

Dixit and Jain (2016)]: 

2 2 0e eL C − =         .                                      (2.33) 

After substituting the expressions (2.25) and (2.32) into the expression (2.33), the 

dispersion relation can be expressed in terms of structure parameters which after 

rearranging become similar to the dispersion relation expression obtained using the field 

matching technique. The dispersion relation obtained using the field matching technique 

can be written as [Dwivedi and Jain (2012)]: 

0 0

0 0 0

{ } { }
0 ( 1, 2,3,........)

{ } { } { }

II II I

m m n

I II

n m

I I

n n c

X r Z r
S S m

Z r Y r X rn

  

   

      
− = =     

     = −
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2.3.4. Characteristic Impedance  

The characteristic impedance of the periodic disc-loaded coaxial structure can help in 

matching the impedance of the structure at the different subsections which will explain 

in detail in the next chapter (i.e. Chapter 3). This is also an important tool to obtain the 

optimum design parameters of the structures. The expression for the characteristic 

impedance of the structure can be obtained by substituting the equivalent line 

parameters in the expression given as [Basu (1996), Dixit and Jain (2016)]: 

1 2

0 ( / )e eZ L C=                                             (2.34) 

2.3.5. Phase Velocity 

The phase velocity of normal modes along the waveguide is always greater than the 

velocity of light. To reduce this phase velocity for efficient beam-wave interaction 

inside the slow-wave devices, like MILO, the corrugation inside the waveguide is 

designed or periodic disc loading is performed in the coaxial waveguide structure. Thus, 

the phase velocity is a very important parameter to design any slow-wave structure. The 

expression for phase velocity for periodic structure can be obtained in the form of 

equivalent line parameters and written as [Basu (1996), Dixit and Jain (2016)]: 

1/21/ ( )p e ev L C=                                       (2.35) 

2.4. Equivalent Circuit Analysis in Presence of the Electron Beam  

In the previous section, the RF interaction section of the MILO device which is formed 

with the periodic disc loading inside the coaxial waveguide structure has been analyzed 

in the absence of an electron beam using an equivalent circuit approach. The analysis 
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mainly derives the dispersion relation, phase velocity, and characteristic impedance 

using equivalent line parameters which involve the device design parameters to 

perfectly characterize the interaction structure. Further, to analyze the process of beam-

wave interaction and estimate the RF energy stored in the interaction structure can be 

performed using the equivalent circuit approach in this section. The application of this 

approach starts with consideration of relativistic Brillouin flow of the electron beam 

which helps in finding the space charge equilibrium involve with the electron beam 

presence in the structure [Dixit (2017)].  

 

r
b

r
d

r
w

T
(I)

(II)

(III)

r
c

Electron

Sheath

 

Figure 2.3: The typical schematic view of periodic disc-loaded coaxial waveguide 

structure with an electron beam. 

The electromagnetic (EM) field associated with the beam presence region inside 

the device can be calculated using the linearized Vlasov-Maxwell’s equation [Dwivedi 

and Jain (2012) and Lemke (1989)].  The relevant EM field associated with other 

regions of the device is derived considering the effect of beam presence region which is 

further substituted in the boundary condition to obtain a set of simultaneous equations. 

The dispersion relation in the presence of the electron beam can be obtained by solving 

these simultaneous equations. Further, the temporal growth rate, RF energy stored, and 



Chapter 2                                               Equivalent Circuit Analysis of MILO--Reviewed 

 

 

 

 

62 

 

transfer through the slow-wave structure is calculated using an equivalent circuit 

approach [Dixit (2017)]. These parameters are evaluated to investigate the oscillation 

condition inside the RF structure. For further rigorous and simplicity, here equivalent 

circuit approach is preferred. 

2.4.1. Analysis 

In this section, the analysis of periodic disc-loaded coaxial waveguide structure shown 

in Fig. 2.3 is extended, by taking into account the presence of beam due to explosive 

emission from the cathode surface. The whole structure is divided into three regions, 

considering region I as beam presence section, region II as disc-free traveling wave 

supporting section, and region III as disc occupied standing wave supporting section. A 

high voltage applied between anode and cathode resulting strong electric field at the 

cathode which forms plasma on the cathode surface due to the surface flashover 

mechanism. The enhanced electric field then extracts a space-charge limited electron 

flow from this plasma [Miller (1998)]. The present work is extended considering the 

perturbation effect due to axial periodicity of discs, to estimate the mechanism of energy 

exchange between an electron beam and RF. During analysis consider a region of 

plasma (electron sheath) in equilibrium, but when this region is perturbed, space charge 

waves are formed due to periodicity of discs and results in space charge instability.  The 

axial periodic metal boundary of the anode structure will affect the outer radius of the 

electron sheath due to the presence of radial field components. Axial field component 

perturbs space charge equilibrium. Here, considering that coaxial discs oscillate at TM 

mode. Corresponding to this mode, three nonzero field components are radial electric 

field Er , axial electric field Ez , and azimuthal magnetic field Bθ . Taking into account 
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space-charge waves, the correlation between particles and different field components 

can be described using a linearized Vlasov-Maxwell equation as: 

                                      

11 1

1 1

1
1 1

1

1

1 4 1

r z

r

z
z

BE E

z r c t

B E

z c t

E
rB J

r z c c t









  
− = −   


  

− = 
  

 
− = +   

                         .                   (2.36) 

Here Jz1 represents the perturbed (RF) axial current density, 

                                               1 1{ , } { , , }z bJ x t e v f x p t dp= −  . 

The above equation 1{ , , }f x p t
 
represents RF distribution function and can be expressed 

using floquet’s theorem and Vlasov equation as [Lemke et al. (1997)]: 

  ( ),0
1 , , exp

z n

n

nz n

Ef
f x p t ie i z t

p
 





=−


= −  

 , 

where 
n b nv  = −  represents velocity shifted frequency. Different relevant EM field 

intensities components can be expressed by substituting Maxwell-Vlasov equations into 

the Vlasov equation in conjunction with Floquet theorem [Lemke (1989)]: 

 The different components of EM field intensities, Er,n, Ez,n, and HƟ,n, can be 

expressed  as  [Lemke(1989)]: 

              *2
,

1
0n z n

d d
r E

r dr dr

 
+  = 

 
 ,                                         (2.37)                                           

                                                          
,

, 2

z nn
r n

n

dE
E j

dr




= ,                                            (2.38) 

        
,

, 2

z n
n

n

dEk
H j

dr



=  ,                                           (2.39) 
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where 2 2 2 3 2

0/ [1 ( / )]n n p n    = −  represents constant in terms of the beam parameter 

and 
2

2 2

2n n
c


 = −  is the radial propagation constant; 0 0n nh = +  is the axial 

propagation constant and 1/2( (4 / ) )p e m  = is electron plasma frequency.  

Differential form of the field expression (2.37) can be solved with the help of making 

some relevant assumptions, e.g., the transverse electron motion in the perturbed state is 

negligible compared to corresponding axial motion.  Thus, the expression for the axial 

electric field, in the presence of beam, can be evaluated by solving the second-order 

differential equation using a formulation of singular point transformation and Taylor 

series [Dwivedi and Jain (2013)]:        

                                                   , 2, 2,{ } { }z n n n n n n nE A J G r B Y G r= + ,                            (2.40) 

where, * 2

2, ( / ) 1/ 3.n nG r =  −  

(i). EM field expressions in the region I 

The region between the coaxial cylindrical cathode and the outer radius of an electron 

beam is considered as region I. Travelling RF waves with all space harmonics are 

considered to be present in this region. Considering Eq. (2.40), the expression for the 

axial component can be written as [Dwivedi and Jain (2012)]: 

0 2{ } n
n

j zI I
z n n

n

E J G r A e


=

=−

=    ,                                     (2.41)                                                                    
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1 2,2
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n
n n j zI I

r n n
n n

G
E j J G e





=

=−

= −  ,                       (2.42) 
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1 2,2
{ r} n

n
n j zI I

n n
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H j J G A e


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(ii). EM field expressions in region II: 

The field expression for region II can be written as [Dwivedi and Jain (2012)]: 

2

0 0 0 0 0
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
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

     ,  (2.44)         

where, Ib is beam current, 0 2, 0 2,{ }/ { }n n nY G r J G r =   and 
2 2 2 2( / ( ))n n b bb c k I   = − − .  

(iii). EM field expression in region III: 

The axial electric field intensity and azimuthal magnetic field in region III for the 

stationary wave supported between discs can be written as [Dwivedi and Jain (2012)]: 

                                    , 0

1 1

{ } exp( )sinIII III III III III

z z m m m m

m m

E E X r A j t z  
 

= =

= =  ,              (2.45) 

 where, 0 0 0 0 0{ } { } { } { } { }III III III III III

m m w m m w mX r Y r J r J r Y r    = − . 
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r m m mIII
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E A X r j t z


  
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                                   '

, 0

1 1

{ }exp( )sin( )III III III III III

m m m m

m m

H H A X r j t z    
 

= =

= =  ,         (2.47) 

where,   0 0 1 0 1{ } { } { } { } { }III III III III III

m m w m m w mX r Y r J r J r Y r     = − . 

(iv). Boundary Conditions 

Just like the above boundary condition explained in the absence of an electron beam, the 

boundary condition in the presence of an electron beam is divided into two parts. One 



Chapter 2                                               Equivalent Circuit Analysis of MILO--Reviewed 

 

 

 

 

66 

 

part representing the discontinuity of two regions between region I and II and the other 

represent the discontinuity between region II and III, respectively. 

Thus, the boundary condition between region I and II can be given as:  

0 ( )

0 ( )

II
zI

z

E z L T
E

L T z L

   −
= 

 −  

            ( br r= )                     (2.48) 

0 0I
zE z=                        ( cr r= )                     (2.49) 

0 ( )I IIH H z L T =   −              ( )br r=          .         (2.50) 

Similarly, the boundary condition between region II and III can be given as: 

0 ( )

0 ( )

III
zII

z

E z L T
E

L T z L

   −
= 

 −  

            ( dr r= )      ,               (2.51) 

0 ( )II IIIH H z L T =   −              ( )dr r=       .              (2.52) 

The discontinuity at the interface of the two regions causes the discontinuation of the 

tangent (i.e. azimuthal) component of the magnetic field intensity ( H ), which is equal 

to the surface current density ( zJ ) and is written as [Dixit (2016)]: 

0 ( )III II

zH H J z L T − =   −          ( )dr r=    .               (2.53) 

Similar to the azimuthal magnetic field intensity, the radial components of electric field 

intensity are discontinuous at the interface between two regions. This discontinuity 

amount can be evaluated by equating it with the ratio of surface charge density to the 

dielectric constant (i.e. /s  ) and can be written as [Dixit (2016)]: 

/ 0 ( )III II

r r sE E z L T − =   −         ( )dr r=   .            (2.54) 
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(v). Equivalent Shunt Capacitance 

The expression for the equivalent shunt capacitance per unit length in the presence of 

the electron beam can be derived similarly to that in the absence of an electron beam as 

explained in the above section. The final expression for beam presence equivalent shunt 

capacitance per unit length is given as [Dixit (2016)]: 

 
2
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       ,                                (2.55)  

where star (*) marks indicate the beam presence case and *

mn
P  is considered as the 

capacitance factor expressed as:  
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(vi). Equivalent Series Inductance: 

The equivalent series inductance per unit length in the presence of an electron beam can 

be derived as similar to that in the absence of an electron beam as explained in the 

above section. The final expression for beam presence equivalent series inductance per 

unit length is given as [Dixit (2016)]: 
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where star (*) marks indicate the beam presence case and *

mn
Q  is considered as the 

inductance factor expressed as:  
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. 

(vii). Dispersion relation and Temporal Growth Rate 

The dispersion relation is used for investigating the electromagnetic behavior of the 

oscillation region for the RF interaction region of the MILO structure in the presence of 

the electron beam and is written as: 

                                                             
* *

e e
L C =         .                                      (2.57)                                                       

The above equation represents the dispersion relation. On substituting the value of 

series inductance per unit length ( *

e
L ) and shunt capacitance per unit length ( *

e
C ) and 

rearranging, the dispersion relation is written as: 
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   .                                   (2.58) 

The above dispersion relation (2.58) is the same as derived using a more involved and 

cumbersome field analysis approach, where  
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The dispersion relation for RF interaction structure is obtained here, on applying the 

equivalent circuit approach, and is used to plot the dispersion characteristics as well as 

study the role of structural parameters to control its shape. For finding the temporal 

growth rate, Eq. (2.58) is differentiated with respect to ω, by substituting 0  → + , 

on rearranging results: 

 
 

         

         

2
0 0 0 0 0 0 1/2

2

0 0 1 0 10

1 )
[( ( )]

1 )

III

m n b n b n n b nn
n III

n b n b n n b nm

X r bJ r Y r J r bJ r Y r

j bJ r Y r J r bJ r Y rX r

     
  

     

 − +
= − + 

− +
 

(2.59) 

The above equation represents expression for temporal growth rate (that is the imaginary 

part of ω, which shows that waves are unstable and they grow in amplitude, drawing 

energy from the sheared velocity field of relativistic Brillouin flow.  

(viii). RF Power and Energy 

In this section, RF energy stored and transferred through the slow-wave structure is 

calculated using an equivalent circuit approach. The admittance of the cavity [Dwivedi 

and Jain (2014)] can be written as: 

                                                  0

0

0

1
( ) 1Y jRC

R


 

 

  
= + −  

   
                                             

                                                    0

int

0

1
( ) 1Y jQ

R




 

  
= + −  

   
,                             (2.60) 

where,
0int

Q RC=  represents the over-voltage coefficient or internal quality factor of a 

cavity, due to dissipative losses in the walls [Cousin et al. (2005)]. The imaginary part 

of admittance represents energy stored or released from the cavity. Due to resonant 

frequency ω0, the external over-voltage coefficient or external quality factor is written 
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as, 0

0 0

0

ext

Z
Q Z C

L



= = , here, 

0
Z  represents output impedance of the signal source. In 

MILO, energy stored inside the cavity is coupled with the load through a coaxial line 

with the output opening axially [Cousin et al.  (2005)]. Interaction cavities coupling 

with the load may be either over coupling or under coupling depends upon the external 

and internal Q-factor. The coupling coefficient of the cavity is defined as,  

0

int

ext
Q Z

Q R
= = .                                                    (2.61) 

For impedance matching, if a transmission line is connected between source and load 

together, it must also be the same impedance,
0 i c

Z Z Z= = , where Zc is the coupling 

impedance of the transmission line. During resonance when, 1 = , 
0c

Z Z= , the output 

guide is adapted with cavity and system behaves like an equivalent resonator or all 

electromagnetic energy injected is dissipated in cavity equivalent resistance. 

Power transferred with the load is written as:   

                                                               
0
(1 )P P = −     ,                                        (2.62) 

where, P0 is initial power injected and   represents a complex reflection coefficient 

function of the load impedance 
c

Z  and guide characteristic impedance 
0

Z such as, 

0 0

0 0

c c

c c

Z Z Y Y

Z Z Y Y


− −
= =

+ +
        .                            (2.63) 

Substituting Eqs. (2.60) and (2.61) in (2.63),  

2 2 2 20 0

int int

0 0

2 2 2 20

int

0

( 1) ( ) 2 ( )

( 1) ( )

Q j Q

Q

  
  

   



 

 

− + − + −

=

+ + −

      .           (2.64) 
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Multiply Eq. (2.64) by its complex and after simple algebra, we get 

2 2 2 200
int

0

4
(1 )

( 1) ( )

P

P
Q





 

 

− = =

+ + −

.                      (2.65) 

Eliminating   from the expression,  

int

2 2 200
int

0

4(Q / )

(1 Q / ) ( )

ext

ext ext

QP

P
Q Q



 

=

+ + −

         .                     (2.66) 

Empty over-voltage coefficient, 

0 0
/

W
Q

dW dt
=  

int 0

2 2 2

0 int 0 0 0

1 1
4 ( )

[1 (1/ 1/ ( / )] ( / / )

ext

ext ext

dW
Q

Q W dtP

P Q Q W dW dt Q



    

+

=
+ + + −

 .                 (2.67) 

Power seen by the cavity is the sum of the variation of energy stored during dt and of 

the power dissipated (
0 int

/W Q ) in the walls of the disc, 

0

int

WdW
P

dt Q


= + ,                                             (2.68) 

0 int 0

1 1P dW

W Q W dt 
= +   .                                (2.69) 

Eq. (2.69) can be rewritten after applying the condition of resonance, 

                                                          0 0 0
4

ext ext

P W W
P

Q Q

 
= − .                                      (2.70) 

Equating Eqs. (2.68) and (2.70), results in a first-order differential equation: 

0 0 0

0

4
0

ext

PdW
W W

dt Q Q

 
+ − = .                                   (2.71) 
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Dividing the above equation by (W1/2), the above equation becomes, 

1/ 2

1/ 20 0 0

0

( )
0

2
ext

Pd W
W

dt Q Q

 
+ − =    .                               (2.72) 

The general solution of the above expression, 

2

0 0 0

0 0

2

4
(t) 1 exp

2
ext

PQ
W t

Q Q





   
= − −    

    

,                          (2.73) 

0

0

0

2

( ) 1 exp
2

W t W t
Q

  
= − −  

   
.                           (2.74) 

Here,  
0

1/
e e

L C =  and 2

0 0 00
4 /

ext
W PQ Q= . Q0 is the loaded quality factor and is 

proportional to energetic storage characteristic time inside the slow-wave structure 

[Cousin et al. (2005)]. W0 is the maximum energy stored inside the resonator.  RF 

energy developed through the MILO device is calculated using Eq. (2.74) on 

substituting equation for inductance and capacitance per unit length. Temporal RF 

output power developed during the beam-wave interaction process is calculated by 

substituting (2.74) in (2.70), thus released RF energy is used to calculate RF output 

power from the device. 

2.5. Conclusion 

In this chapter, the equivalent circuit approach which is used to study beam 

wave interaction analysis for periodic disc loaded coaxial structure used in the MILO 

device has been reviewed and described in details. For this, firstly, various analytical 

approaches that have been used in analysing such structures so far have been reviewed. 

Then, the equivalent circuit analysis for MILO in the beam absent case has been 
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discussed and various characteristics of periodic disc loaded coaxial structure such as 

dispersion relation, phase velocity, and characteristic impedance has been derived using 

equivalent line parameters. To derive these characteristics, the actual structure has been 

replaced by an equivalent transmission line in terms of its equivalent circuit parameters 

with the assumption of the loss-free condition. The two-line parameters (i.e. the series 

inductance and shunt capacitance per unit length) of the line have been used for 

analysis. These two parameters are derived independently and one has to deal with only 

half of the total structure EM field expressions and boundary conditions at a time which 

makes the analysis simpler and yields relatively much simple expression. The 

dispersion characteristics obtained by the present equivalent circuit approach exactly 

pass to those expressions which were obtained through the field analysis. The 

characteristic impedance of the line in the beam absent case which is an important 

parameter while considering circuit matching condition is also be obtained through the 

present analysis. Furthermore, the equivalent circuit analysis for MILO in the beam 

present case has been discussed. The equivalent circuit approach has been developed in 

this chapter considering the presence of an electron beam in order to study the RF 

analysis of MILO. This approach has been used to investigate the device oscillation 

condition, dispersion relation, and temporal RF growth rate. 

The equivalent circuit approach which was used by different researchers earlier 

was encumbered and having limitation to decipher the device behavior. Like, Fan et al. 

had used the equivalent circuit approach to analyze the periodic disc-loaded coaxial 

structure for fundamental modes only. The problem associated with this approach is that 

one cannot analyze the structure behavior for the higher order modes. The equivalent 

circuit approach used by Dixit et al. had limited their analysis for azimuthally 
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symmetric structures and for only symmetric TM0n modes. The problem associated with 

this approach is that we cannot perform the complete analysis (i.e., like symmetric TE 

mode and asymmetric modes supported by the structure) of coaxial structure. Here, the 

equivalent circuit approach used in this thesis can be used to analyze for both symmetric 

as well as asymmetric modes supported in the coaxial structures. Also, the present 

approach can be used for all kind of coaxial structure which is either be azimuthally 

symmetric or azimuthally partitioned. Therefore, this approach eliminates the limitation 

of previously developed equivalent circuit approach. 

 

 

 

 


