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PREFACE 

High-power microwave (HPM) has been very popular in the microwave community due 

to its various civilian and military applications. The generation of RF in millimetre-wave 

ranges and dual-frequency generation through a single HPM device drag the attention of 

researchers and academia around the world for R&D in this domain. HPM source is the 

device that can generate RF power more than 100 MW in a frequency range from 1-100 

GHz.  HPM application domains are mainly in communication, Radar, UWB, Power 

beaming, linear colliders, fusion heating, and indirect energy weapons (DEW). The 

whole process of HPM generation and application uses different sub-systems starting 

with prime power supply and followed by pulsed DC power formation, a microwave 

source, mode converter, and antenna. These different sub-systems of the whole HPM 

system have a unique role in the whole process of RF generation and application. 

Microwave or HPM source is the main sub-system in the whole microwave generation 

process. The different HPM sources which can generate RF power are relativistic 

magnetron, relativistic klystron, relativistic backward wave oscillator, relativistic 

gyrotron devices, Vircator, Reltron, and magnetically insulated line oscillator (MILO). 

The different radiation process followed by these HPM sources is mainly classified as 

Cherenkov radiation, transition radiation, and Bremsstrahlung radiation. This work is 

mainly based on the HPM source, MILO, which uses the Cherenkov radiation process. 

Comparing the other HPM source, the MILO does not require any external magnetic field 

which makes it compact, lightweight, and compatible to use on different mobile 

platforms. 

MILO is a crossed-field high power microwave device that is similar in operation 

and theory of magnetron. It operates by combining the technology of magnetically 
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insulated electron flow and slow-wave tubes. Microwave oscillator which requires an 

external DC magnetic field employs two DC power sources for exhibiting magnetic 

insulation and also gives rise to electrical breakdown as higher voltages are approached. 

These oscillators are having a very high inherent impedance that severely limits the 

power level at which the oscillator will operate. Thus, for efficient operation at higher 

power levels, it would be desirable to have an oscillator that will operate at the lower 

impedance and also eliminate the problem of voltage matching. To overcome the above 

problems, MILO has been used, in which the required magnetic field is supplied by the 

electron-beam current itself, rather than by a separate magnet and thus makes the device 

more compact and lightweight.  

The designing improvement of MILO to avoid some critical issues like pulse 

shortening problem, asymmetric mode generation and mode competition, shot-to-shot 

reproducibility, the requirement of high pulse rate frequency and long life of cathode are 

still consider as a challenge for device development. The performance improvement of 

MILO and bi-frequency MILO is the prime work to be done. In order to carry out the 

aforementioned work, the author has considered the optimization of the MILO device 

sub-section and impedance matching between different sections using an equivalent 

circuit approach. Further, the study of beam-wave interaction for the generation of bi-

frequency through MILO device has also been taken as the objective for current work.  

The author, from time to time, has reported the present work part-wise at national 

and international conferences as well as in reputed journals, namely, IEEE transaction on 

plasma science. 

The author will consider his modest effort a success if it proves to be useful in the 

design of MILO and bi-frequency MILO. 


