Investigations on Different Aspects of the Magnetically Insulated Line Oscillator (MILO) and Bi-frequency MILO

Thesis submitted in partial fulfillment for the Award of Degree

Doctor of Philosophy

By

Arjun Kumar

DEPARTMENT OF ELECTRONICS ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI – 221005 INDIA

ROLL NO: 15091006

2020

CERTIFICATE

It is certified that the work contained in the thesis titled **"Investigations on Different** Aspects of the Magnetically Insulated Line Oscillator (MILO) and Bi-frequency MILO" by **"Arjun Kumar"** has been carried out under our supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirements of

Comprehensive, Candidacy, and SOTA for the award of Ph. D. Degree.

(Prof. Pradip Kumar Jain) Supervisor Dept. of Electronics Engineering IIT (BHU), Varanasi (Dr. Smrity Dwivedi) Co-Supervisor Dept. of Electronics Engineering IIT (BHU), Varanasi

DECLARATION BY THE CANDIDATE

I, Arjun Kumar, certify that the work embodied in this thesis is my own bonafide work and carried out by me under the supervision of Prof. P. K. Jain and Dr. Smrity Dwivedi from "21/07/2015" to "30/12/2020", at the Department of Electronics Engineering, Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, *etc.*, reported in journals, books, magazines, reports, dissertations, theses, *etc.*, or available at websites and have not included them in this thesis and have not cited as my own work.

Date:

Place:

Signature of the Student Arjun Kumar

CERTIFICATE BY THE SUPERVISORS

It is certified that the above statement made by the student is correct to the best of my knowledge.

(Prof. Pradip Kumar Jain) Supervisor Dept. of Electronics Engineering IIT (BHU), Varanasi (Dr. Smrity Dwivedi) Co-Supervisor Dept. of Electronics Engineering IIT (BHU), Varanasi

Signature of Head of Department "SEAL OF THE DEPARTMENT"

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis:Investigations on Different Aspects of the Magnetically
Insulated Line Oscillator (MILO) and Bi-frequency MILOName of the Student:Arjun Kumar

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the Doctor of Philosophy.

Date:

Signature of the Student

Place:

Arjun Kumar

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

ACKNOWLEDGEMENTS

Foremost, I would like to express my immense gratitude to my supervisors Prof. P. K. Jain and Dr. Smrity Dwivedi for their excellent guidance and motivation. The completion of this research work is truly an outcome of their constant untiring support, valuable ideas, and suggestions during my research work. The insightful discussions with them always provided me great enthusiasm. I could not have imagined having better advisors and mentors for my research work.

I wish to extend my sincere gratitude towards my research performance evaluation committee (RPEC) members, Dr. Somak Bhattacharyya and Prof. R. Mahanty for their encouragement and insightful comments. I also thank to all faculty members for their kind cooperation and encouragement during this journey.

My special thanks to Dr. V. Nallasamy, Dr. M. S. Chauhan, Dr. Gargi Dwivedi, Dr. Amit Arora, Dr. M. V. Swati, Dr. Manpuran Mahto, Dr. Siva Venkateswara Rao V., Dr. Vikram Kumar, Dr. Rajan Agrahari, Dr. A. P. Singh, and Dr. Anshu Sharan Singh for their valuable assistance from personal to the technical level.

I am very much thankful to many research scholars of the CRMT laboratory for providing a stimulating and friendly environment. My thanks go to Mr. Prabhakar Tripathi, Mr. R. K. Singh, Mr. M. A. Ansari, Mr. Akash, Mr. Vineet Singh, Mr. Sambit, Mr. Dipti, Mr. Nilotpal, Mr. Nishit, Mr. Soumjit, Mr. V. V. Reddy, Mr. V. Veera Babu, Mr. G. Venkatesh, and Mr. S. G. Yadav.

My thanks and sincere appreciations also go to all staff members of the CRMT laboratory, especially to Mr. Rajesh Kr. Rai for their kind co-operation.

I also thank my colleagues, Mr. Amit, Dr. Aman, and Mr. Ratan, for providing a fun-filled environment.

I deeply admire my Brothers, Sisters, and my close friends Mr. Shashikant and Mr. Vikash for their continued support and encouragement. They are the source of strength for me and remain an invaluable asset to me.

I would like to express my special thanks to my wife Laxmi for her patience and continued support. She supported me a lot during these times.

Finally, I hearty express sincere thanks to my parents Shri. Biru Roy and Smt. Gayatri Devi. I wish to express indebtedness to them, for their unconditional love, extreme patience, and constant support over the years. They provide me the strength and confidence to attain this task.

Above all, I bow my head before almighty Lord Vishwanath for providing me the strength and courage in completing my research work.

Date:

(Arjun Kumar)

Dedicated To My Supervisor and My Family

CONTENTS

2.1.	Introduction	43
CHAPTER 2	EQUIVALENT CIRCUIT ANALYSIS OF MILO - REVIEWED	41-74
1.6.	Plane and Scope	36
1.5.	Motivation and Research Objective	35
1.4.	Literature Review	27
	1.3.2. Principle of Operation	23
	1.3.1. Description of sub-assemblies	19
1.3.	Magnetically Insulated Line Oscillator (MILO)	17
	1.2.6. Virtual Cathode Oscillator	15
	1.2.5. Reltron	14
	1.2.4. Relativistic Gyrotron Devices	12
	1.2.3. Relativistic Magnetron	11
	1.2.2. Relativistic Klystron	10
	1.2.1. Relativistic Backward Wave Oscillator	9
1.2.	Overview of different HPM devices	7
1.1.	Introduction	3
CHAPTER 1	INTRODUCTION AND LITERATURE REVIEW	1-40
Preface		xxxv-xxxvi
List of Symbol		xxxi-xxxiv
List of Abbrev	viations	xxix-xxx
List of Tables	3	xxvii
List of Figure	S	xix-xxv

2.2.	Reported Analytical Approaches	
2.3.	Equivalent Circuit Analysis for MILO	
	2.3.1. EM Field Expression and Boundary Condition	50
	2.3.1.1. Field Expression in disc free region	50
	2.3.1.2. Field Expression in disc occupied region	51
	2.3.1.3. Boundary Condition	52
	2.3.2. Equivalent Line Parameters	53
	2.3.2.1. Equivalent Shunt Capacitance per unit length	54
	2.3.2.2. Equivalent Series Inductance per unit length	57
	2.3.3. Dispersion Relation	59
	2.3.4. Characteristic Impedance	60
	2.3.5. Phase Velocity	60
2.4.	Equivalent Circuit Analysis of MILO for Beam Present Case	60
2.5.	Conclusion 7	
CHAPTER 3	MILO PERFORMANCE IMPROVEMENT USING	
	EQUIVALENT CIRCUIT APPROACH	75-102
3.1.	Overview	77
3.2.	Introduction	77
3.3.	Analysis	80
	3.3.1. Tapering Toward Input Side of Cathode	83
	3.3.2. Tapered Choke Section	85
	3.3.3. Impedance Matching at the Extractor Section	86

	3.3.4 Stub Position Optimization	89
3.4.	Results and Discussion	91
	3.4.1 Optimization of Tapering Length of	
	Cathode at Input Side	92
	3.4.2 Optimization of Tapered Choke Section	93
	3.4.3 Optimization of Extractor Section	95
	3.4.4 Optimization of Stub Position	97
	3.4.5 Simulation Results	98
3.5.	Conclusion	101
CHAPTER 4	ANALYSIS OF AZIMUTHAL PARTITION PERIO DISC LOADED COAXIAL STRUCTURE FOR BI- FREQUENCY MILO USING EQUIVALENT CIRC APPROACH	-
4.1.	Overview	105
4.2.	Introduction	105
4.3.	Analysis	108
	Allalysis	108
	4.3.1. Equivalent shunt Capacitance per unit length	117
	4.3.1. Equivalent shunt Capacitance per unit length	117
	4.3.1. Equivalent shunt Capacitance per unit length4.3.2. Equivalent series inductance per unit length	117 119
	4.3.1. Equivalent shunt Capacitance per unit length4.3.2. Equivalent series inductance per unit length4.3.3. Phase velocity of different modes	117 119 121
4.4.	 4.3.1. Equivalent shunt Capacitance per unit length 4.3.2. Equivalent series inductance per unit length 4.3.3. Phase velocity of different modes 4.3.4. Dispersion Relation 	117 119 121 121

4.5.	Conclusion	131
CHAPTER 5	BEAM-WAVES INTERACTION ANALYSIS FOR BI-	
	FREQUENCY MILO	133-160
5.1.	Overview	135
5.2.	Introduction	135
5.3.	Analysis	138
	5.3.1. EM Field Expression in the presence of	
	Electron Beam	140
	5.3.2 Boundary Condition	146
	5.3.3 Dispersion Relation	147
	5.3.4 Temporal Growth Rate	149
	5.3.5 RF Energy and Power	150
5.4.	Results and Discussion	152
	5.4.1. Effects of Variation of Beam Parameters	157
5.5.	Conclusion	158
CHAPTER 6	DESIGN AND PIC SIMULATION OF DIFFERENT	BI-
	FREQUENCY MILO	161-196
6.1.	Overview	163
6.2.	Introduction	164
6.3.	Design Procedure of Bi-frequency MILO	166
6.4.	PIC Simulation of Different Bi-frequency MILO	169
	6.4.1. L-Band Bi-Frequency MILO	170
	6.4.2. S-Band Bi-Frequency MILO	177

	6.4.3. S/Ku dual-band MILO	183
6.5.	Conclusion	195
CHAPTER 7	SUMMARY, CONCLUSION AND FUTURE	
	SCOPE	197-206
7.1.	Summary and Conclusion	199
7.2.	Limitations of the Present Work and	
	Scope for Further Studies	204
References		207-214
Author's Relevant Publications		215-216

Figure 1.1:	Application domain of HPM at a different frequency and Power level [Benford <i>et al.</i> (2007)].	3
Figure 1.2:	Block diagram of an HPM system [Benford et al. (2007)].	5
Figure 1.3:	The typical schematic view of relativistic backward wave oscillator.	10
Figure 1.4:	The typical schematic view of relativistic Klystron [Gold and Nusinovich (1997)].	11
Figure 1.5:	The typical schematic view of relativistic Magnetron [Bekefi <i>et al.</i> (1976)].	12
Figure 1.6:	All types of Gyro-devices [Gold and Nusinovich (1982)].	13
Figure 1.7:	Typical schematic of reltron oscillator system [Mahto and Jain (2016)].	15
Figure 1.8:	The typical schematic view of the virtual cathode oscillator.	16
Figure 1.9:	The typical schematic view of a magnetically insulated line oscillator (MILO).	18
Figure 1.10:	Process of electron emission from a velvet surface: (a) The application of the intense electric field causes the partial destruction of fiber and the creation of a dense plasma colum (b) Electrons are emitted out of plasma and form a space charge current of the Child-Langmuir type. (c) Heating occurs in fiber due to the Joules effect. (d) Expansion of the plasma column at the thermal speed, and (e) Reduction of inter-electrode space by the total expansion of the plasma of the cathode [Miller (1998)].	19

List of Figures

Figure 1.11:	Different MILO configuration [Clark et al. (1988)].	26
Figure 1.12:	Configuration of Hard-tube MILO (HTMILO) [Haworth et al. (1998)].	26
Figure 1.13:	The configuration of tapered MILO [Eastwood et al. (1998)].	28
Figure 1.14:	The configuration of the improved MILO [Fan et al. (2007)].	29
Figure 1.15:	The configuration of MILO-VCO [Fan et al. (2007)].	30
Figure 1.16:	The schematic of the dual-frequency MILO [Ju et al. (2009)]	31
Figure 1.17:	Bi-frequency MILO configuration: (a) axial view, and (b) front view.	31
Figure 2.1:	The equivalent circuit of transmission line representing the periodic disc loaded coaxial structure for an infinitesimal length dz .	48
Figure 2.2:	The typical schematic view of periodic disc loaded coaxial structure used as an RF interaction structure for MILO.	49
Figure 2.3:	The typical schematic of a periodic disc-loaded coaxial waveguide structure with an electron beam.	61
Figure 3.1:	Schematic view of the magnetically insulated line oscillator (MILO) structure.	81
Figure 3.2:	Input section of the MILO device (a) schematic, and (b) Equivalent circuit diagram.	83
Figure 3.3:	Equivalent circuit diagram of the MILO device at input side.	86
Figure 3.4:	Equivalent circuit diagram of extractor part of MILO.	88
Figure 3.5:	Equivalent circuit diagram for stub section.	90
Figure 3.6:	Reflection coefficient (S11) with normalized tapered length at the input side.	93

- Figure 3.7:(a) Choke section optimization with cut-off frequency (b)94Transmission coefficient at the choke section comparison with
two designs.
- Figure 3.8:Extractor part characteristic impedance at different frequency95(a) at different extractor gap (b) at different extractor radius.
- Figure 3.9:(a) Reflection coefficient at output side. (b) Dispersion relation97of fundamental mode for different section of device.
- Figure 3.10:Reflection coefficient for stub section with different position98from the extractor disc.
- Figure 3.11:(a) Output RF signal received at the output port. (b) RF output99power developed at the output port with experimental data. (c)FFT of the generated signal at output port.
- Figure 3.12:Output RF signal received at the output port comparison.100
- Figure 3.13:RF output power developed at the output port with improvement100in the device structure.
- Figure 4.1:Schematic of an azimuthally partitioned axially periodic metal109disc loaded coaxial structure: (a) sectional view, (b) front view.
- **Figure 4.2:** Unit cell structure and corresponding dispersion curve for **125** azimuthally uniform disc-loaded coaxial structure with different wall radii (r_w) of 129 mm and 140 mm (r_c =53 mm, r_d =86 mm, L=27 mm and T=5 mm).
- **Figure 4.3:** Unit cell structure and corresponding dispersion curve for **125** azimuthally partitioned disc-loaded coaxial structure with different wall radii r_{w1} = 140 mm and r_{w2} =129 mm (with, r_c =53 mm, r_d =86 mm, L=27 mm and T=5 mm).
- Figure 4.4: Normalized group velocity and phase velocity of the 126 azimuthally uniform and azimuthally partitioned coaxial structure: (a) normalized group velocity, and (b) normalized phase velocity.
- Figure 4.5:Frequency range shift attained through the azimuthally126partitioned coaxial structure by changing wall radius (r_w) .

- **Figure 4.6:** Equivalent shunt capacitance and equivalent series inductance 127 of the transmission line: (a) Shunt capacitance per unit length (b) Series inductance per unit length of the equivalent transmission line for azimuthal uniform (r_w =140 mm and 129 mm) and azimuthal partitioned disc-loaded coaxial structure (with r_{w1} =140 mm, r_{w2} =129 mm).
- Figure 4.7:Electric field distribution vector of the azimuthal partitioned128coaxial structure (a) for Mode-A and, (b) for Mode-B.
- Figure 4.8:Magnetic field distribution vector of the azimuthally partitioned128structure (a) for Mode-A and, (b) for Mode-B.
- Figure 4.9:(a) Schematic (b) Normalized power distribution versus129frequency response of a typical azimuthally partitioned axially
periodic disc loaded coaxial structure.
- **Figure 4.10:** Effect of different structural parameters on the dispersion 130 behaviour of the azimuthally partitioned axially periodic disc loaded coaxial structure: (a) disc inner radius (r_d) , (b) waveguide wall radius (r_w) , (c) cathode radius (r_c) , and (d) disc periodicity (L).
- Figure 5.1:Schematic of an azimuthally partitioned axially periodic metal139disc loaded coaxial structure with beam-present in red colour:
(a) sectional view, (b) front view.
- **Figure 5.2:** Dispersion curve for azimuthally partitioned axially periodic **153** metal disc loaded coaxial structure in presence of beam at voltage V=420 kV, current I_a =38 kA, with different wall radii r_{wI} = 140 mm and r_{w2} =129 mm (with, r_c =53 mm, r_d =86 mm, L=27 mm and T=7 mm).
- **Figure 5.3:** Temporal growth rate (f_i) at different phase $(\beta_0 * L)$ in radian **154** for two operating modes supported by the structure for two different azimuthal sections (i.e. TM₀₀ mode for r_{w1} and TM₀₀ mode for r_{w2}).
- Figure 5.4:Equivalent shunt capacitance and equivalent series inductance154of the transmission line in the presence and absence of electron
beam: (a) Shunt capacitance per unit length (b) Series
inductance per unit length.154

Figure 5.5:	(a) RF output peak and average powers obtained through	155
	simulation and comparison with reported results [Chen et al.	
	(2008)] (b) FFT of generated RF signal of the designed bi-	
	frequency MILO considering azimuthally partitioned axially	
	periodic metal disc loaded coaxial structure as interaction	
	structure.	

- Figure 5.6:Comparison of obtained analytical results with simulation157results (a) Average RF output power with time, (b) Normalized
energy store in cavity with time.157
- **Figure 5.7:** Effect of beam parameters on the temporal growth rate of the azimuthally partitioned axially periodic disc loaded coaxial structure in the presence of electron beam: (a) different input beam voltage (V), (b) different beam radius (r_e).
- Figure 6.1:The typical schematic of azimuthal partition L-band bi-170frequency MILO.
- **Figure 6.2:** Dispersion curve for azimuthally non-uniform structure with $r_{w1}=129 \text{ mm}$ and $r_{w2}=140 \text{ mm}$.
- Figure 6.3:Magnetic field vector distribution for operating modes: mode 1172and mode 3.
- Figure 6.4:Phase space of the electron beam at two different time instant to174show the asymmetric beam-wave interaction.
- Figure 6.5:Temporal wave particle power transfer with application of 420174kV of voltage and 38 kA of current.
- **Figure 6.6:** Temporal RF port signal of (a) mode 1 associated with **175** azimuthal partition 180^{0} - 360^{0} (b) mode 3 associated with azimuthal partition 0^{0} - 180^{0} .
- Figure 6.7:Frequency spectrum of generated RF signal observed at the175output port.
- Figure 6.8:Combined temporal RF output power of the two modes with and176without collector design modification.
- Figure 6.9:Virtual cathode formation at the collector through beam dump176disc.

Figure 6.10:	The typical schematic of azimuthal partition <i>S</i> -band bi-frequency MILO.	178	
Figure 6.11:	Dispersion curve for S-band bi-frequency MILO with azimuthally non-uniform structure having r_{w1} =64 mm and r_{w2} =66 mm.	179	
Figure 6.12:	Magnetic field vector distribution of operating modes (i.e. mode 1 and mode 3) of the S-band bi-frequency MILO.	180	
Figure 6.13:	Phase space of the electron particles for S-band bi-frequency MILO at a different time.		
Figure 6.14:	Temporal input power with the application of 490 kV of voltage and 45 kA of current (also known as wave-particle power transfer).	181	
Figure 6.15:	Temporal RF output port signal related in S-band of (a) mode 1 (b) mode 3	182	
Figure 6.16:	The frequency spectrum of the RF signal obtained through FFT 1 of the signal obtained at the output port.		
Figure 6.17:	Combined temporal RF output power of the two frequencies. 18		
Figure 6.18:	The typical schematic of dual-band MILO structure with SWS1 and SWS2 as the slow-wave structures, C1, C2, C3 as the cathode.		
Figure 6.19:	Region of operation curve defining Hull cu-off condition and	105	
	Buneman-Hartree threshold criteria for dual-band MILO.	185	
Figure 6.20:		185 186	
Figure 6.20: Figure 6.21:	Buneman-Hartree threshold criteria for dual-band MILO. Dispersion curve and its temporal growth rate for fundamental		
C	 Buneman-Hartree threshold criteria for dual-band MILO. Dispersion curve and its temporal growth rate for fundamental mode (i.e. TM₀₁ mode) (a) of <i>S</i>-band and, (b) of <i>Ku</i>-band. Role and effect of segregation cavity for different frequency 	186	

Figure 6.24:	Different phases of beam wave interaction inside the device (a) Pre-oscillation phase (b) magnetic insulation phase (c) start oscillation phase (d) non-linear phase.	190
Figure 6.25:	Normalized momentum at different axial position at 65.02 ns time of oscillation.	192
Figure 6.26:	<i>S</i> -band (a) received RF signal at the output port (b) frequency spectrum of corresponding RF output signal found through Fast Fourier Transform (FFT).	193
Figure 6.27:	<i>Ku</i> -band (a) received RF signal at the output port (b) frequency spectrum of corresponding RF output signal found through Fast Fourier Transform (FFT).	193
Figure 6.28:	RF output peak power (in GW) received at the output port for <i>S</i> -band.	194
Figure 6.29:	RF output peak power (in GW) received at the output port for <i>Ku</i> -band.	194

LIST OF TABLES

Table 1.1:	Application of HPM device in different domains.	4
Table 1.2:	Comparison of MILO with other HPM Sources.	17
Table 1.3:	Chronological order of development of MILO device.	33
Table 3.1:	Typical <i>L</i> -band MILO specification.	92
Table 6.1:	Design Specification of L-band bi-frequency MILO.	171
Table 6.2:	Design Parameters of S-band bi-frequency MILO.	179
Table 6.3:	Design parameters of S/Ku dual-band MILO.	186

LIST OF ABBREVIATIONS

Abbreviation	Full form
HPM	High power microwaves
RF	Radio Frequency
PRF	pulse repetition frequency
DEW	Direct energy weaponry
EM	Electromagnetic
TWT	Traveling wave tube
RBWO	Relativistic backward wave oscillator
MILO	Magnetically insulated line oscillator
GHz	Giga-hertz
MHz	Mega-hertz
GW	Giga-watt
MW	Mega-watt
Ns	Nano-second
RKO	Relativistic klystron oscillator
RKA	Relativistic klystron amplifier
CRM	Cyclotron resonance masers
FEL	Free Electron Laser
SWS	Slow-wave structure
TM	Transverse Magnetic
MW	Mega-watt
SCO	Split cavity oscillator

TE	Transverse Electric
EEE	Explosive electron emission
CTL	Coaxial transmission line
UHF	Ultrahigh frequency
RBF	Relativistic Brillouin flow
VCO	Virtual cathode oscillator
PIC	Particle-in-cell
HEM	Hybrid electromagnetic
HE	Hybrid electric
FFT	Fast Fourier Transform
AC	Alternating Current
DC	Direct Current
ТТО	Transit time oscillator
BFMILO	Bi-frequency magnetically insulated line oscillator
TGR	Temporal growth rate
SCW	Space charge wave
Cm	Centimeter
Mm	Millimeter
kV	Kilo-volt
kA	Kilo-ampere
TEM	Transverse Electromagnetic

LIST OF SYMBOLS

Symbol	Details
V _e	Electron velocity
V _p	phase velocity
L_{e}	Equivalent series inductance per unit length
C_{e}	Equivalent shunt capacitance per unit length
G_{e}	Equivalent shunt conductance per unit length
$R_{_{e}}$	Equivalent series resistance per unit length
r_c	Cathode radius
r_d	Disc inner radius
r _w	Outer wall radius
L	Periodicity
Т	Thickness
E	Electric field
Н	Magnetic field
β_n	Axial propagation constant
ω	Angular frequency
γ_n	Radial propagation constant
k	Free space propagation constant
${\pmb J}_0$	Bessel functions of 1 st kind with zero order
Y_0	Bessel functions of 2 nd kind with zero order
$ ho_s$	Surface charge density
Iz	Axial current
V	Voltage
J_z	Axial current density
С	Speed of light
F	Frequency

A_{z}	Vector potential
μ	Permeability
Е	Permittivity
$I_{ heta}$	Azimuthal current
Z_0	Charatecteristic impedance
$f_1\{x, p, t\}$	RF distribution function
ς_n	velocity shifted frequency
Γ_n^*	Radial beam parameter in presence of beam
ω_p	Plasma frequency
$Q_{ m int}$	Internal quality factor
Q_{ext}	External quality factor
Q_0	Loaded quality factor
P_0	Initial injected power
ρ	Complex reflection coefficient
L_{IC}	Equivalent series inductance per unit length for Interaction structure
C_{IC}	Equivalent shunt capacitance per unit length for Interaction structure
W_{nm}	Inductance factor
P_{nm}	Capacitance factor
$L_{ch}(z)$	Equivalent series inductance per unit length for tapered choke section
$C_{ch}(z)$	Equivalent shunt capacitance per unit length for tapered choke section
L _{ext}	Equivalent series inductance per unit length for extractor section
C_{ext}	Equivalent shunt capacitance per unit length for extractor section
L_{cx}	Equivalent series inductance per unit length for coaxial section
C_{cx}	Equivalent shunt capacitance per unit length for coaxial section
Z_{IC}	Impedance of interaction structure
Z_{ext}	Impedance of extractor section

K(z)	Nominal characteristic impedance
$q_v(z)$	Reflection coefficient at tapered cathode section
$C_{E.G}$	Capacitance of the extractor gap
$E_{E.G}$	Electric field at the extractor gap
$\sigma_{_{E.G}}$	Charge per unit length at extractor
Z_{stub}	Impedance of stub
L_{stub}	Inductance of stub
l_{stub}	Length of stub
λ	Wavelength
$\lambda_{_g}$	Guided wavelength
l_T	Length of tapered cathode
\hat{v}_z	Axial drift velocity
γ	Relativistic factor
P_z	Axial momentum
n _e	Charge number density
r _e	Electron beam radius
η	Normalized factor
$\delta(r-r_e)$	Delta function
IA	Alfven current
$P_{ heta}$	Azimuthal momentum
${m J}_{ heta}$	Azimuthal current density
γ_n^*	Radial propagation constant in presence of electron beam
\mathcal{V}_{slow_sc}	Slow space charge velocity
f_i	Imaginary value of frequency
f_r	Real value of frequency
I_a	Anode current
Icr	Critical current

Nominal propagation constant

 $\Gamma(z)$

- *B_c* Cut-off magnetic field
- *V_H* Hull cut-off voltage
- *V_{BH}* Buneman-Hartee voltage
- *e* Electron charge
- *m*₀ Electron mass
- χ_{np} Modal root of the nth order Bessel–Neumann combination
- dB Decibel

PREFACE

High-power microwave (HPM) has been very popular in the microwave community due to its various civilian and military applications. The generation of RF in millimetre-wave ranges and dual-frequency generation through a single HPM device drag the attention of researchers and academia around the world for R&D in this domain. HPM source is the device that can generate RF power more than 100 MW in a frequency range from 1-100 GHz. HPM application domains are mainly in communication, Radar, UWB, Power beaming, linear colliders, fusion heating, and indirect energy weapons (DEW). The whole process of HPM generation and application uses different sub-systems starting with prime power supply and followed by pulsed DC power formation, a microwave source, mode converter, and antenna. These different sub-systems of the whole HPM system have a unique role in the whole process of RF generation and application. Microwave or HPM source is the main sub-system in the whole microwave generation process. The different HPM sources which can generate RF power are relativistic magnetron, relativistic klystron, relativistic backward wave oscillator, relativistic gyrotron devices, Vircator, Reltron, and magnetically insulated line oscillator (MILO). The different radiation process followed by these HPM sources is mainly classified as Cherenkov radiation, transition radiation, and Bremsstrahlung radiation. This work is mainly based on the HPM source, MILO, which uses the Cherenkov radiation process. Comparing the other HPM source, the MILO does not require any external magnetic field which makes it compact, lightweight, and compatible to use on different mobile platforms.

MILO is a crossed-field high power microwave device that is similar in operation and theory of magnetron. It operates by combining the technology of magnetically

Preface

insulated electron flow and slow-wave tubes. Microwave oscillator which requires an external DC magnetic field employs two DC power sources for exhibiting magnetic insulation and also gives rise to electrical breakdown as higher voltages are approached. These oscillators are having a very high inherent impedance that severely limits the power level at which the oscillator will operate. Thus, for efficient operation at higher power levels, it would be desirable to have an oscillator that will operate at the lower impedance and also eliminate the problem of voltage matching. To overcome the above problems, MILO has been used, in which the required magnetic field is supplied by the electron-beam current itself, rather than by a separate magnet and thus makes the device more compact and lightweight.

The designing improvement of MILO to avoid some critical issues like pulse shortening problem, asymmetric mode generation and mode competition, shot-to-shot reproducibility, the requirement of high pulse rate frequency and long life of cathode are still consider as a challenge for device development. The performance improvement of MILO and bi-frequency MILO is the prime work to be done. In order to carry out the aforementioned work, the author has considered the optimization of the MILO device sub-section and impedance matching between different sections using an equivalent circuit approach. Further, the study of beam-wave interaction for the generation of bifrequency through MILO device has also been taken as the objective for current work.

The author, from time to time, has reported the present work part-wise at national and international conferences as well as in reputed journals, namely, IEEE transaction on plasma science.

The author will consider his modest effort a success if it proves to be useful in the design of MILO and bi-frequency MILO.