Table of content

Certificate	iii
Declaration by the Candidate	v
Copyright Transfer Certificate	vii
Acknowledgement	ix
Abstract	xi
Table of content	XV
List of Figures	xix
List of Tables	xxv
List of Symbols	xxix
List of Abbreviations	xxxi
Chapter 1 Introduction	1
1.1 Background	
1.2 Digital Image Forgery	2
1.2.1 Types of Digital Image Forgery	4
1.2.1.1 Copy Move Forgery	4
1.2.1.2 Image Splicing	5
1.2.2 Need of the Digital Image Forgery Detection	5
1.2.3 Digital Image Forgery Detection Techniques	6
1.2.3.1 Active Protection Schemes	7
1.2.3.2 Passive Detection Techniques	7
1.2.4 Image Authentication Challenges	8
1.3 Problem Statement	10
1.4 Motivation of the Research	10
1.5 Objectives of the Research	11
1.6 Contributions to the Thesis	12
1.7 Thesis Organization	14
Chapter 2 Theoretical Background and Literature Review	17
2.1 Literature review on Copy-Move Forgery Detection	18
2.1.1 Block-based Approaches	18
2.1.2 Key-point-based Approaches	20
2.1.3 Data-driven Approaches	21
2.1.4 Research Gaps and Findings	21
2.2 Literature review on Spliced Image Detection	23

2.2.1 Data-driven Techniques	23
2.2.2 Statistical Techniques	27
2.2.3 Research Gaps and Findings	29
2.3 Dataset Used for Experimental Study	31
2.3.1 CoMoFoD	31
2.3.2 CMFD	32
2.3.3 CASIA v1.0 and CASIA v2.0	33
2.3.4 IEEE IFS Dataset	34
2.3.5 Columbia Uncompressed Dataset (CUD)	35
2.4 Evaluation Metrics	35
Chapter 3 Copy Move Forgery Detection using Statistical and Data-driven Techniques	39
3.1 Background	39
3.2 Research Gaps	41
3.3 Proposed Models	42
3.3.1 Copy-Move Image Forgery Detection using DCT and ORB Feature Set	42
3.3.1.1 Method and Model	43
3.3.1.2 Result Analysis and Discussion	48
3.3.2 Detection of copy-move forgery in digital image using a multi-scale, multi-learning model	
3.3.2.1 Method and Model	52
3.3.2.2 Result Analysis and Discussion	59
3.4 Summary	69
Chapter 4 Spliced Image Forgery Detection using Intrinsic Footprints of an Image	71
4.1 Background	71
4.2 Research Gaps	73
4.3 Proposed Method	74
4.3.1 A Technique for Image Splicing Detection using Hybrid Feature Seet	74
4.3.1.1 Method and Model	74
4.3.1.2 Result Analysis and Discussion	83
4.3.2 Spliced image forgery detection and localization using inconsistent noise p	attern 89
4.3.2.1 Proposed Inconsistent Noise Pattern Estimation Technique	90
4.3.2.2 Method and Model	94
4.3.2.3 Result Analysis and Discussion	100
4.4 Summary	110
Chapter 5 Data-driven techniques for detection and localization of blind image forgery	113
5.1 Background	114
5.2 Research Gaps	116
5 3 Proposed Methods	119

Deferences	174
List of Publications	172
6.2 Future Research Directions	163
6.1 Conclusion	159
Chapter 6 Conclusion and Future Directions	159
5.4 Summary	157
5.3.2.3 Result Analysis and Discussion	
5.3.2.2 The Proposed Model	
5.3.2.1 The Proposed Dataset	136
5.3.2 An investigation and analysis of forged digital document using deep inception network	
5.3.1.3 Experimental Analysis and Discussion	126
5.3.1.2 The Proposed Modified Architecture	122
5.3.1.1 Existing Model	120
5.3.1 Modified U-Net Model for Detection of Forged Region in Images Acquired Variant Sources	

List of Figures

Figure 1.1: Example of editing of an image with mild processing (a) Original Lenna
Image (b) Color processed Lenna image (c) Image with noise addition
Figure 1.2: Examples of digital image forgery (region alteration) (a) Original Image (b)
Image Splicing (c) Original Image (d) Copy-move forgery
Figure 1.3: Outline of the thesis
Figure 2.1: An Image acquisition pipeline
Figure 2.2: Steps involved in Block-Based CMFD Techniques
Figure 2.3: Steps involved in Keypoint Matching Based CMFD Techniques
Figure 2.4: Steps involved in Keypoint Matching Based CMFD Techniques21
Figure 2.5: The instances of the CoMoFoD dataset
Figure 2.6: The instances of the CMFD dataset
Figure 2.7: Demonstration of IEEE IFS Dataset
Figure 2.8: Visualization of Columbia Uncompressed Dataset
Figure 3.1: Examples of Copy Move Forgery (CoMoFoD dataset [68]) (a) Original Image
(b) Forged Image (c) Ground Truth mask of Forged Image
Figure 3.2: The framework of the proposed CMFD technique
Figure 3.3: The order in which a block's features are extracted. Coefficients on the
diagonal have the same frequency
Figure 3.4: (a)The red dot depicts the pixel under consideration. The surrounding pixels
values that correspond to its feature are depicted with a red border. (b)The extracted
feature vector of length 16 [75]
Figure 3.5: Image [a1-a6]: Forged Images where a1: Copy-move, a2: multiple copy-
move, a3: copy-rotate-move, a4: copy-scale-move, a5: copy-scale-move, a6: combination

of all; [b1-b6]: Ground truth images related to [a1-a6]; and [c1-c6]: Results of the
proposed methods
Figure 3.6: (a) to (e) depicts the comparison charts for various levels of post-processing
operations and the respective number of images passed by the techniques51
Figure 3.7: Visual Representation of Multi-Scale Network
Figure 3.8: Block-Diagram of the Proposed Model
Figure 3.9: An Illustration of max-pooling of activated feature space and then the
concatenation of another level feature space with first level feature space54
Figure 3.10: Architecture of proposed model for copy-move forgery detection using deep
learning CNN model
Figure 3.11: Accuracy and Loss of model (3x3) during training on CMFD dataset58
Figure 3.12: Accuracy and Loss of model (3x3) during training on CoMoFoD dataset 58
Figure 3.13: Visual result of the proposed model on test images of CoMoFoD dataset 61
Figure 3.14: Performance analysis of the proposed model using line graph on CoMoFoD
dataset (a) Precision, recall, accuracy and F1-score (b) TNR and MCC values62
Figure 3.15: The visual results of the proposed model on images of the CMFD Dataset
66
Figure 3.16: Performance analysis of the proposed model using line graph on CMFD
dataset (a) precision, recall, accuracy and F1-score (b) TNR and MCC values67
Figure 3.17: Image level analysis of the proposed model on datasets (a) CoMoFoD (b)
CMFD68
Figure 4.1: Examples of Spliced Image Forgery (a) First Original Image (b) Second
Original Image (c) Spliced Image (Combination of both)
Figure 4.2: Flow Diagram of the Proposed method
Figure 4.3: Color Conversion of the input image

Figure 4.4: Multiple features from the input image Gray-level color space76
Figure 4.5: Extraction of HoG Based Features from Pre-processed Image77
Figure 4.6: Extraction of LTE Based Features from Pre-processed Image79
Figure 4.7: Frequency Representation of DWT
Figure 4.8: Extraction of DWT Based Features from Pre-processed Image
Figure 4.9: Extraction of LBP Features from Pre-processed Image
Figure 4.10: Overall Framework for Image Forgery Detection
Figure 4.11: Result Analysis of the Proposed method on CASIA v1.0 dataset
Figure 4.12: Result Analysis of Proposed method on CASIA v2.0 dataset
Figure 4.13: Result Analysis of Proposed method on COLUMBIA dataset
Figure 4.14: A Failure Case of the Proposed System
Figure 4.15: Graphical Abstract Representation of Proposed Approach (Overall method
of spliced image detection and localization)
Figure 4.16: The Pre-processed result of Input Image (Conversion of a color image into
Grayscale)
Figure 4.17: Result of Wavelet Transformed Image (Approximation and Detail
Coefficients)96
Figure 4.18: Noise Statistic Estimation of Diagonal Component of Discrete Wavelet
Transformed Image
Figure 4.19: Result after post-processing (After Morphological Operations)
Figure 4.20: Result of Image Splicing detection and localization on Columbia
uncompressed dataset (a) Test Image (b) Ground Truth Mask (c) Localized splice region
result of BLNVS [13] (d) Localized splice region result of PKNV [14] (e) Localized
splice region result of NIBIF [16] (f) Noise Statistic Map of the given method (g)

Localized Spliced Region from the Noise Map (h) Color Overlay of the spliced region on
the RGB input Image
Figure 4.21: Result of Image Splicing detection and localization on CAISA and IEEE
IFS-TC Image forensics Challenge datasets (a) Test Image (b) Ground Truth Mask (c)
Localized splice region result of BLNVS [13] (d) Localized splice region result of PKNV
[14] (e) Localized splice region result of NIBIF [16] (f) Noise Statistic Map of the given
method (g) Localized Spliced Region from the Noise Map (h) Color Overlay of the
spliced region on the RGB input Image
Figure 4.22: Proof of the proposed algorithm on authentic images of datasets (a) Natural
Color Image (b) Noise Mapped Image (c) Localized Spliced Region108
Figure 4.23: (a) Comparison of the Accuracy value of the proposed work with other
techniques (b) Comparison of Matthews Correlation Coefficient value of the proposed
work with other techniques
Figure 4.24: (a) Comparison of F1-Score value of proposed work with other techniques
(b) Comparison of Elapsed Time of proposed work with other techniques110
Figure 5.1: Example of forgery in a digital document (a) Original Image (b) Forged Image
and the forged region is shown in a red box (c) Ground Truth of forged Image115
Figure 5.2: Architecture of the Identity Block
Figure 5.3: Architecture of the proposed model for localization of manipulated regions in
Forged Image
Figure 5.4: Training Result of the proposed model (a) Accuracy (b) Loss on Different
Epochs
Figure 5.5: Visual Results on a different image of Dataset (a) Forged Color Image (b)
Ground Truth Mask (c) Result by the proposed model (d) Result by U-Net model (e)
Result by Encoder-Decoder Model

Figure 5.6: Visual Results of the proposed methods on different test cases acquired from
different sources
Figure 5.7: Comparison of the proposed method with state-of-the-arts techniques for
Image Forgery Detection
Figure 5.8: Tree structure of directory and content of the constructed dataset
Figure 5.9: Inception Block without Dimension Reduction used in Proposed Architecture
Figure 5.10: Architecture of the proposed model for forged document detection 142
Figure 5.11: Training result of the proposed model on FD3 dataset
Figure 5.12: Confusion matrix and corresponding heat map of Image-Level analysis of
the proposed and compared models on test cases of FD3 dataset
Figure 5.13: The visual result of the test data from the publicly available data (a)
Tampered document (b) Ground Truth Mask (c) Result given by the proposed model (d)
Result given by U-net (e) Result given by Linknet
Figure 5.14: The visual result of the copy-move forgery test data from the constructed
dataset FD3 (a) Tampered document (b) Ground Truth Mask (c) Result given by the
proposed model (d) Result given by U-net (e) Result given by Linknet
Figure 5.15: The compared average result (accuracy, F1-score, and MCC value) of the
proposed model with other state-of-the-arts on individual operations of copy-move forged
documents
Figure 5.16: The visual result of the spliced test data from the constructed dataset FD3
(a) Tampered document (b) Ground Truth Mask (c) Result given by the proposed model
(d) Result given by U-net (e) Result given by Linknet

Figure 5.17: The compared average result (accuracy, F1-score and MCC value) of the
proposed model with other state-of-the-arts on individual operations of spliced forged
documents
Figure 5.18: Visual demonstration of misclassified results by the proposed method156