
Chapter 6

SRF Diagnosis using

Attention-based Sensor Fusion and

Transformer Models

6.1 Introduction

Machinery fault diagnosis using vibration analysis with the sequential learning models

is on the rise in FDPM. The attention mechanism has been introduced mainly in se-

quence to sequence models to concentrate on certain parts of the sequence selectively.

The attention scheme which quantifies the interdependence between the input and out-

put elements is called the general attention, and that within the input elements is called

the self-attention. The AM has been successfully implemented in natural language pro-

cessing (NLP) applications and became the driving force of the recent breakthrough

sequential model called transformer [228], [229]. It can identify both long-term and

short-term dependencies of the sensor signals in complex systems like rotating ma-

chines. Despite the success of AM in diverse domains, their application in the fault

diagnosis field is limited. The existing literature of complex RM systems with multiple

sensors poses specific challenges in applying AM and transformer networks. Typically,
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vibration data presented by the sensors is a continuous long raw data sequence that is

not acceptable for most sequential learning models.

Similarly, a multi-sensor system has more than one such sequence, demanding dif-

ferent levels of consideration for each fault. For example, the sensor placed in the axial

direction gives more sensible data for angular misalignment than the sensor placed in

the radial direction. In contrast, the sensor placed in the radial direction gives more

sensible data in parallel misalignment. Hence, different sensor signals must be treated

separately by assigning sufficient weightage by considering its fault discriminative ca-

pability. Similarly, it is also observed that the data values at different positions in the

signal contribute differently in decision making. For example, the unbalance is a fault

that shows cyclic nature, and therefore, the signal data points at certain rotational

intervals are more sensitive than the others [10]. Hence, we can conclude that relatively

weighted sensor fusion and temporal dependency considerations are the key factors in

SRF diagnosis. Moreover, existing AM-related models, including transformers, prefer a

content-rich short input representation of data called embedded representation rather

than the raw vibration sequence. It is evident from the literature that compared to the

commonly used feature extraction with ML or automatic feature extraction DL, the

use of symptomatic fault features with sequential learning models brings about greater

accuracy in SRF classification [10], [183]. Considering these facts, the following obser-

vations are made regarding the inadaptability issues of AM models in SRF diagnosis:

i) lack of proper fault-specific embedding representation for a long sequence of vibra-

tion data, ii) inability to provide adaptive weightage to sensor segments based on its

fault sensitivity in the sensor fusion, and iii) failure in incorporating symptomatic fault

features in fault decision-making.

Meanwhile, the popular sequential models like simple RNN, LSTM, or GRU have

also not been well explored in the literature. A few attempts have been made to capture

the long-term dependencies of the signals to make a decision in SRF diagnosis. Trans-
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formers are the recently developed architecture that employs an attention mechanism

to find the dependencies of input data. The recurring patterns with long-term depen-

dencies are ascertained by transformers, which are exceedingly used in NLP problems.

Transformers are able to access any part of the past data, unlike the RNN models.

Simultaneously, the architecture is more suitable for a parallel processing environment

than the other sequential models. Surprisingly, there have been no works reported on

RFD with transformer or even with simple AM as per our knowledge. But, as the

transformers are primarily designed to deal with NLP problems, it faces some practical

difficulties when dealing with other TS data, especially the raw vibration signals. i)

Compared to the word count of a typical sentence used for NLP classification or pre-

diction tasks, the fault diagnosis sequence are more lengthy. ii) Rather than finding

the individual attention to the data points, it requires finding attention between com-

plete informative segments. iii) It is challenging to find proper embedding (informative

vector) for the segments since the nature and properties of faults are subjective. Thus

it is necessary to address the challenges in providing input to the transformers from a

multi-sensor environment which additionally requires splitting the signal into a fixed

number of segments without fragmenting the sensitive information.

It is observed from the literature of AM with multi-sensor data that attention is

used primarily for selecting features from a set of features that are chosen using CNNs

or other FD operations without considering the symptomatic fault features. Most of

them deal with single sensor data assumption and do not attempt to give relative

weightage to the sensor segments based on the fault sensitivity of each sensor. The

literature lacks a proper embedded feature representation to the attention modules, in-

cluding sufficient fault-specific information from multi-sensor vibration data. Hence, we

propose a framework that generates a more domain-specific embedding representation

to the AM networks, including transformers, to adapt to the fault diagnosis domain.

This incorporates the DFC, that can act as the symptomatic fault parameter for fault
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decision-making. Along with the TD features, DFC enhance the fault information con-

tent of each embedding representation. We have addressed the multi-sensor fusion with

fault pattern-based ranking in order to ensure the relative importance of fused sensor

vectors and their fault sensitivity. The attention score among the fused sensor segments

is assisted with fault pattern-based ranking in the sensor fusion to generate embedding

representation. The combined feature representation generated by bagging these two

categories of features endorses the most discriminative capability within fewer dimen-

sions. We have used the encoder part of a typical NLP transformer with multi-head

attention for final classification, providing the proposed embedding representations as

tokens. With this reduced dimension-embedding, the transformers capture the differ-

ent aspects of dependencies even from short-length sequences, thereby lessening the

execution time. Three transformer models were designed, where the first one followed

the parallel design philosophy of transformers with positional encoding and multi-head

attention layers. The two other models used the recurrent design of transformers by

replacing the positional encoding with RNN layers to address the local structure among

the embeddings.

6.2 Theoretical Background

6.2.1 Transformers for TS classification

A typical transformer consists of an encoder and decoder parts for most of the NLP

tasks. But in order to classify the faulty pattern instead of producing a new sequence,

only the encoder part of the transformer is required. The term transformer block defines

the multi-head attention followed by a position-wise feed-forward layer with residual

connections and layer normalization in this regard. The TS adoption of the typical

encoder operations of a transformer is described as follows:

The embedded vector representation is first fed into a positional encoding layer
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Figure 6.1: General transformer model (M1)

which adds the relative positional information to the segments. The positional en-

coding assists in estimating the long-term dependency between the segments. Let

U ∈ Rns×d represent the embedding representation with d being the dimension of

an embedding for a sample sequence of ns segments length. This particular layer

creates positional encoding P ∈ Rns×d and outputs P + U , where P can be de-

fined as Pi,2j = sin(i/100002j/d), Pi,2j+1 = cos(i/100002j/d) for i = 0, . . . , ns − 1 and

j = 0, . . . , ⌊(d− 1)/2⌋. The input embedding and position encoding layers create a

matrix of dimension ns×d×N , where N is the number of samples. This is fed into the

query, key, and value of the transformer that primarily consists of a multi-head atten-

tion layer. This layer enables the transformer to encode multiple relationships among

the embeddings. Inside this module, three linear layers are provided to transform the
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query (Qu), key (Ku), and value (Vu) matrices of each sample using transformation

matrices Wq, Wk and Wv (with size d × d), respectively. Both the data matrices and

transformation matrices are logically split into separate sections for each attention head

where the size of one section (s s) is given by: s s = d/#heads. Now, each head shares

the same linear layer but works on its own logical part of the matrices so that the

computations of all the heads are attained by a single matrix operation, maintaining

reduced model complexity.

Now the model is provided with the transformed query, key, and value matrices

(QU , KU , VU) that are split across multiple heads. These are further used to compute

the attention score by the scaled dot product attention. One head takes an input of

dimension ns × s s, and every head repeats the identical operation performed for all

the samples in a batch. The dot product of the query with all keys will provide the

weights that have to be assigned to each value. The product of QU and KU is rescaled

by a factor
√
s s to keep the weights in a range since the average size of the dot product

grows with the increased dimensionality of the input. The softmax function regularizes

each row of the rescaled product, and finally, the weighted sum of ‘values’ gives the

output of each head. This operation is given as follows:

Att(QU , KU , VU) = softmax

(
QUK

T
U√

s s

)
VU (6.1)

Here these separate attention outputs for each head are combined by the merge

operation and passed through one linear layer to get the output of this module. Mul-

tiple heads learn different aspects of the segments so that the transformer captures

richer interpretations from the sequence. The multi-head attention layer is followed

by a position-wise feed-forward layer consisting of two fully connected layers which

are applied to each position in the sequence, separately and identically. They use dif-

ferent parameters from layer to layer while the linear transformations are the same

across different positions with the ReLU activation function. The output of this layer
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(a) LSTM model (M2) (b) GRU model (M3)

Figure 6.2: Recurrent transformer models

is represented

FFN(U) = max(0, UW1 + b1)W2 + b2 (6.2)

where W1 and W2 are the weights, and b1 and b2 are the biases of the layers. A block

containing layer normalization and the residual connection are placed around the multi-

head attention and position-wise feed-forward layers. The residual connection allows the

gradients to flow through a network, directly skipping the non-linear activation function,

thereby controlling the vanishing/exploding gradient problem. Similarly, normalization

helps with the internal covariate shift problem and ensures that the scale of features is

not too different. In layer normalization, the calculation is performed across each feature

instead of computing statistics across batch dimensions. As the transformer block is

a sequence-to-sequence layer, we have applied a global average pooling to average the

output sequence in order to produce a single vector. This is further projected down to

a vector with one element per class with output probabilities performed by the softmax

operation.
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6.2.2 Recurrent transformers

The recurrent transformer models [230] capture the local structural dependency among

the embeddings as well as the global long-term dependencies without using the position

embeddings. The position embedding in a typical transformer is replaced by a local

LSTM or GRU layer to create the local RNN (LRNN) design. This captures the local

dependencies and produces a latent representation by operating on a local window. Fig.

6.2 shows the implementations of these models. Such a design has its practical signifi-

cance because the multi-head attention mechanism solely depends on position embed-

ding to capture the sequential property of data, but it is not effective [231] and requires

considerable design effort. Here, LRNN considers local short sequences of length M ,

and processes them sequentially to produce the M hidden states. The state correspond-

ing to position t is represented by: ht = LRNN(Ut−M−1, Ut−M−2, ..., Ut). In this way,

by padding M−1 positions at the beginning of the sequence, the hidden representations

for the whole sequence are generated as: h1, h2, ..., hns = LRNN(U1, U2, ..., Uns). The

upper layers of both these models follow the same structure of a general transformer

shown in the Fig. 6.1.

6.3 Proposed Method

The most crucial task in making AM and transformers adaptable to the RM fault

diagnosis domain is generating embedding representation from multi-sensor data. It

requires proper segmentation of raw data, extraction of most sensitive features, and

multi-sensor segment fusion. As we deal with the vibration data from varying speed

and load industrial conditions, it is necessary to extract the DFC sensibly from the

inconsistent raw data. The first phase of the proposed framework, called the embedding

representation generation phase, deals with these issues and provides the tokens for

classification. The transformer-based classification phase addresses both long-term and
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local dependencies among these embedded representations with the generic transformer

as well as the recurrent transformer models.

6.3.1 Generation of embedded representation

In NLP tasks, a word is the primary information unit and is represented as an infor-

mative vector representation called word embedding before applying it to the AM or

transformer models. But, in the fault diagnosis frameworks, one sensor segment forms

a unit of information where there are multiple sensor segments with different sensitivity

to each fault. Hence a compact embedded representation is generated in the proposed

framework by means of two modules; namely, i) combined-feature representation mod-

ule and ii) sensor fusion module. This phase corresponds to the word embedding layer

of a typical NLP task.

6.3.1.1 Combined-feature representation module

As we have explained in section 3.4, the K number of sensors mounted at different

positions, produce signals V = [V1, V2, ..., VK ] with each Vi ∈ RL where L is the length

of one sample sequence. Provided the sampling points per rotation (Sr), the segment

length (Sl), and the overlapping points in segmentation (So), then according to the

condition So ≤ Sr ≤ Sl, the framework produces ns number of segments, such that

ns = (L − Sl)/(Sl − So) + 1. Thus segments from sensor Si are created as: Vi =

[Vi,1, Vi,2, ..., Vi,ns ].

The DFC extraction follow the same process explained in Section 3.4. Both ampli-

tude and phase values are extracted to generate the ten DFC components of harmonic

frequencies 1x to 5x. Similarly, the TD representatives of each segment, such as mean,

standard deviation, variance, root mean square, absolute maximum, and kurtosis [232],

are generated from the data bins of length Sr. Combining both will generate a 16

dimension feature vector for representing a particular sensor segment. Thus, the tth
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Figure 6.3: Generating embedded representation

segment of sensor i with length Sl can now be represented as Fit ∈ Rd, where d is the

dimension of combined-feature vector (16 in our case) such that d ≪ Sl. This process

is shown in Fig. 6.3 with number 1 given within a red circle.

6.3.1.2 Sensor fusion module

The SRF is sensitive to rotational frequency components depending on the mount

position of the sensors as well as the different sensor modalities. The most sensitive

mount positions of sensors for SRF are given in the Table 6.1 as the affected plane

(A.P). In our experiments, accelerometers and proximity sensors are used in a contact

or contactless manner to measure casing vibrations and shaft vibration. Hence, it is

necessary to give relative weightage for the combined feature vector of each sensor to

generate a single embedded vector for a segment. We use two-way scoring to ensure

relative importance in segment-wise sensor fusion. The first score is based on attention
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Table 6.1: SRF and DFC correlation and decoding

SRF
DFC symptomatic information Amplitude Decoding Phase Decoding

A.P Symptomatic Frequency Phase 1x 2x 3x >3x 2x>1x 0◦ 180◦ Var.

S UB R
Higher 1x with less
than 15.0% amplitude
harmonics

A 0◦ P.S. in
Radial direc-
tion.

1 0 0 0 0 1(R) 0 0

C UB R
Higher 1x with less
than 15.0% amplitude
harmonics

A P.S. of 180◦

in Radial di-
rection.

1 0 0 0 0 0 1(A) 0

D UB R
Higher 1x with less
than 15.0% amplitude
harmonics

A P.S. of 0◦

to 180◦.
1 0 0 0 0 0 0 1

V MA R
2x >1x. Stronger 1x
(Radial and torsional re-
sponses)

A P.S. of 180◦

in axial direc-
tion.

1 1 0 0 1 0 1(R) 0

H MA R
2x >1x. Stronger 3x in
severe cases.

180◦ P.S. in
the axial di-
rection.

1 1 1 0 1 0 1(A) 0

LS A,R
Higher 2x. Harmonics of
1x to 10x & multiples of
its subharmonics.

Unstable
reading.

1 1 0 1 0 0 0 1

HL/NM N.A 0 0 0 0 0 1 0 0
A.P: Affected Plane, P.S.: Phase Shift, R: Radial, A: Axial, Var.: Varying

value among sensor segments, and the second score uses SRF fault similarity pattern

matching.

Attention score generation: The attention mechanism helps to provide selective

concentration to certain parts of the input and ignores the irrelevant parts. We utilize

this property in emphasizing those sensor segments which has got the most sensitive

patterns of SRF. The basic attention mechanism [228], follows three sets of elements,

namely the ‘query,’ ‘key,’ and ‘value.’ In the proposed sensor feature fusion phase, these

three elements are decided as follows:

Query: The input vector corresponding to the current output that matches against

every other input vector is called a query. Our model uses a sensor-level context vector

as the query vector, which is denoted by q1.

Key: The vector that the query is matched against is called the key vector. We use

the hidden representation generated from a single-layer neural network to achieve this.

It is represented as λit = g(WFit + b), where g(·) is the activation function (tanh in our



126 6.3. Proposed Method

Figure 6.4: Generating fault pattern matching score

case) and W and b are the weights and bias of the neural network, respectively.

Value: The vectors used to provide the output of attention by weighted sum is called

the value vector, which is Fit itself in our case. The attention weights that give relative

similarity between the sensor segments are calculated by finding the dot product of the

query and the key. This operation is given as :

α̃it =
e(λit)

T q1∑
i e

(λit)
T q1

(6.3)

The exponential operation always sets out the positive similarity, and its monotonically

increasing property ensures the ordering of weights. The normalization process keeps

the value between zero and one, which sums up to one.

Fault pattern matching score generation: This is the process of estimating the

explicit similarity of DFC patterns of segments with the predefined fault patterns. For
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this purpose, the DFC of subsampled feature vectors is decoded to a binary pattern

representing the most critical fault characteristics of SRF. Table 6.1 shows the am-

plitude and phase characteristics of the symptomatic frequency and the encoded fault

pattern of SRF. The fault encoding process is summarized in Fig. 6.4. An 8-bit fault

template is generated from each combined-feature vector corresponding to the sensor

segments. The first three bits of the template signify the status of lower band rota-

tional frequencies, i.e., 1x to 3x, as SRF is more sensitive in these frequency bands. A

high or low value of 1x to 3x amplitudes is denoted by a one or zero value in the bit

positions. The comparative status between 1x and 2x is given at bit position 5, where

value one indicates that 2x is greater than 1x. The remaining higher-order harmonics

are decoded to bit 4. The phase values are represented in the last three-bit positions.

Bit 6 represents the phase shift of 0◦ and bit 7 indicates 180◦ phase shift. The final bit

position holds a value one when the phase varies between 0◦ and 180◦. This encoding

scheme is subject to slight changes depending on the sensor mounting position (radial,

axial or tangential). The fault pattern of each sensor segment (X) is compared with the

reference pattern of faults (Y ) shown in Table 6.1 for assigning the fault similarity score

(α̂). The matching score is calculated by taking the hamming distance (Z) and sub-

tracting it from the length of the pattern (refer Fig. 6.4). The reference fault pattern for

similarity score calculation is set as the segment’s closest fault pattern. Subsequently,

the softmax function is used to get the normalized score for every tth segment for every

ith sensor. Once the two-level scores are evaluated, their sum is normalized to decide

the final score, i.e., α = N (α̃ + α̂). Here, N is the softmax normalization operation

that sets each score between zero and one, such that the scores sum up to one. Finally,

the uniform representation Ut that aggregates all sensor segments is computed by:

Ut =
K∑
i=1

αitFit (6.4)
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The weighted sum of the final score (α) and the sensor feature vectors produce the

embedding representation Ut for a segment for further transformer processing. The

sub-functions of sensor fusion module such as attention score generation, fault-pattern

matching score generation, and final embedded vector generation are shown in Fig. 6.3

with numbers 2a, 2b and 3, respectively.

6.3.2 Transformer based classification

Since our objective is to classify the faulty pattern instead of producing a new sequence,

we adopt only the encoder part of the transformer. We have used three transformer

architectures, including one general transformer model (M1) and two models based on

recurrent transformer design (M2,M3), which enjoy the advantages of both multi-head

attention mechanism and RNNs.

The general transformer model contains the operational modules of the encoder part

of a typical transformer as referred in Fig. 6.1 and explained in section 6.2.1. The em-

bedded vector representation is first fed into a positional encoding layer which adds the

relative positional information to the segments. In the proposed segmentation scheme,

each segment is affirmed to contain one or more complete rotational information. The

padding mask function is skipped in the proposed model since all the embedded vectors

are of the same dimension. The transformer block primarily consists of a multi-head

attention layer that mainly performs three operations. First, it linearly transforms the

query, key, and value vectors and splits them among the number of heads. Since the

proposed embedding contains both TD and DFC features, we have used two heads to

learn from these embedding dimensions, which correspond to the time and frequency

domains. Then it performs the scaled dot product attention. The the results from

all the heads are merged and passed through another linear layer. The feed-forward

network has two fully connected layers, with ReLU as the activation function. The

residual connection and layer normalization are maintained in the architecture. As the
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transformer block is a sequence-to-sequence layer, we apply a global average pooling to

average the output sequence to produce a single vector. This vector is further processed

by an FC layer before being projected down to a vector with one element per class and

then a softmax operation to produce the probabilities.

In the recurrent transformer models the position embedding is replaced by a local

LSTM or GRU layers to captures the local dependencies. They operate on a local

window of size three as shown in Fig. 6.2. The upper layers of both these models follow

the same structure of M1 as shown in the diagrams.

The hyperparameter settings of the classification models are as follows: The trans-

former models were implemented on Python, and the same set of hyperparameters was

used for all three models. A decent trade-off between accuracy and model complexity

was observed for the recurrent layers and feed-forward layers of the models with 64

hidden nodes (HN) of two layers (L) and a learning rate (η) of 0.001. The initial

hyperparameter search was performed over L ∈ {1, 2, 3}, HN ∈ {16, 32, 64, 128} and

η ∈ {0.1, 0.01, 0.001} for 300 epoch. The experiments found that the transformer model

with one multi-head attention layer having two heads provided decent performance with

a batch size of 84 within the first 50 epochs. The dimension for embedding represen-

tation is given as 16, and the sequence length of a sample was selected as 120. The

models M2 and M3 require an additional parameter called ‘local window size,’ which

is set to three for all the experiments.

6.4 Results and Discussions

In this section, experimental results are presented and discussed. The different sensor

data are segmented into 512 data points satisfying the conditions discussed in section

3.4. The same subsampling and feature extraction operations are performed on both

datasets considering the closest matching speeds under all load conditions. We selected

70.0% of data consisting of all categories for training and the rest for validation/testing.
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Table 6.2: Performance of embedded representation

Simple sensor fusion Proposed sensor fusion
DS-1 (%) DS-2 (%) DS-1 (%) DS-2 (%)

M1

FD 94.57 94.84 95.36 95.45
DFC 95.79 96.01 97.15 97.61
TD+FD 96.11 96.19 96.96 97.73
TD+DFC 97.05 97.54 98.80 98.30

M2

FD 95.01 95.34 96.22 96.04
DFC 96.13 96.74 97.87 98.08
TD+FD 96.92 97.19 98.23 98.30
TD+DFC 97.24 97.96 99.62 99.11

M3

FD 94.79 95.26 96.40 96.33
DFC 96.62 97.14 98.13 97.84
TD+FD 97.01 97.05 98.40 98.21
TD+DFC 97.76 97.75 99.77 99.25

6.4.1 Ablation study on embedded representation module

The embedded representation module is one of the key contributing modules in the

framework. The compact embedded representation is generated in the proposed model

using this module by means of two submodules; namely, i) combined-feature representa-

tion module and ii) sensor fusion module. The ablation study on the combined-feature

representation module is conducted by creating a 16 dimension feature space with FD

and DFC independently and their combinations with TD features. The TD features are

clubbed since they represent the sequential component and provide direct dependency

information among the segments. The independent FD and DFC features show the

impact created in the absence of a combined-feature representation module. Similarly,

the significance of the sensor fusion module is substantiated by replacing it with simple

attention sensor fusion. In the same way, it shows the importance of the fault sensitivity

score generation module in sensor fusion of SRF. Thus this section shows the overall

ablation study in the embedded representation module in three ways.

It is observed from Table 6.2 that both the datasets demonstrate decent performance

with the embedded vectors with the proposed fusion scheme as well as the simple fu-

sion scheme where DFC is involved in decision-making. In feature-wise analysis, the
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DFC alone performed better than FD features in both datasets and gave an accuracy

close to that provided by TD + FD features. It shows that DFC is most suitable for

the embedded representation in the frequency transform domain, which can still be

improved by adding TD features, as shown in the results. Moreover, increasing the

dimension of frequency transformed features (FD or DFC) has minimal impact on the

model performance in terms of accuracy. But interestingly, adding TD features along

with it enhances the performance of the three transformer models, especially the recur-

rent models. The average error rate reduction using the simple sensor fusion method is

around 33.0% for both datasets with combined features. But, for the recurrent model,

it is approximately 36.0% and 34.0%, respectively, for DS-1 and DS-2. Similarly, the

average error rate reduction in the proposed sensor fusion is around 62.0% and 51.0%,

respectively, for DS-1 and DS-2 with combined features. Besides, an error rate reduc-

tion of roughly 70.0% for DS-1 and 57.0% for DS-2 is noted for the recurrent models.

Also, simple attention fusion gives higher accuracy for DS-2 compared to DS-1, while

with the proposed fusion, this trend is not visible. Among the three models considered,

the recurrent transformer models, particularly M3 shows better performance with the

four types of feature set investigated. The feature set evaluation reveals that the most

informative embedded vector representation can be generated from the TD features

combined with DFC, and it has been employed as the embedded representation for

further experiments.

6.4.2 Individual sensor performance

The ablation study replacing the sensor fusion module with individual sensors highlights

certain reflections. The individual sensor performance given in Fig. 6.5 shows the

sensor-wise accuracy, which is an essential factor in determining the overall effectiveness

of the framework. We take the first four sensors from both datasets for analysing the

extent to the multi-head attention deal with proposed embedding vectors on single
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Figure 6.5: Individual sensor performance (Accuracy %)

sensor data without sensor fusion. It is observed that in DS-1, the sensors S3 and S4

give higher accuracy compared to S1 and S2 because of the impact of shaft vibration

signals compared to the casing vibration signal. Meanwhile, in DS-2, the sensors placed

in radial position (S2, S4) give better accuracy than those mounted in axial position (S1,

S3). Thus, it is evident that the nature of sensors and their relative positioning in the

acquisition system varies the accuracy to some extent (1.0% to 2.0% in our example),

which signifies the importance of providing relative weighting in sensor fusion. Besides,

the recurrent transformer models bring about an enhanced accuracy of around 2.0% to

3.0% compared to the basic transformer model. But it is less than 2.0% in the fused

sensor data, which indicates that the impact of sequential information is more evident

in a single sensor signal compared to the fused sensor signal. Comparing the overall

performance, DS-2 gives slightly better results than DS-1 due to the smooth nature

of sensor data. Though the recurrent transformer models are performing almost the

same way,M3 turned out to be the best performing model with DS-1, whileM2 gives

the best results with DS-2. Besides, the individual sensor performance ranges from

91.0% to 96.0% for all the models on both datasets, and simple sensor fusion delivers

performance in the span of 95.0% to 98.0%. Also, the proposed sensor fusion approach

assists in achieving accuracy in the range of 97.0% to 100.0%, reducing the average
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error by more than 50.0%.

Table 6.3: Training performance

M1 (Accuracy %) M2 (Accuracy %) M3 (Accuracy %)
Train. Val. Train. Val. Train. Val.

DS-1 99.91 98.81 100.0 99.6 100.0 99.8
DS-2 99.83 98.29 100.0 99.15 100.0 99.3
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Figure 6.6: Training performance (Accuracy Vs Epochs)

6.4.3 Transformer model performance

The training performance of the proposed framework is given in Table 6.3, and the

accuracy curves of model M1, on both datasets are shown in Fig. 6.6. It is observed

that both datasets demonstrate decent performance with the proposed embedded rep-

resentation in terms of accuracy. It is interpreted as the efficacy of the embedded

representation and the proposed transformer models. The models M2 and M3 pro-

vide higher training and validation accuracies compared to the model M1, but with

increased training time due to recurrent structure incorporated with the transformer. It

is observed that the parallelizable architecture ofM1 reduced the training time around

33%-50% compared to the other two models. Among the two recurrent transformer

models, M3 is offering the best validation accuracy for both datasets. The increased
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training accuracy and a close matching validation accuracy specify that there is no over-

fitting in the training process with both datasets. Besides, the accuracy curve indicates

that the accuracy of DS-1 reaches a maximum value of around 20 epochs, where DS-2

requires around 50 epochs for the same due to the increased diversity of the dataset.

Table 6.4: Class-wise performance of transformers

DS-1 (Accuracy %) DS-2 (Accuracy %)
HL S UB C UB D UB MA LS All NM UB H MA V MA All

M1 98.80 100.0 95.60 100.0 99.60 98.80 98.80 98.12 99.89 99.01 96.17 98.30

M2 99.64 99.90 98.72 100.0 99.56 99.89 99.62 98.88 99.35 99.42 98.79 99.11

M3 100.0 99.87 99.63 100.0 99.67 99.45 99.77 98.98 99.63 99.23 99.15 99.25

The fault-wise performance of the proposed transformer model using the combined

TD-DFC features is given in Table 6.4. The results demonstrate that the models M2

and M3 give higher accuracy compared to M1. However, M3 is the best-performing

model in comparison to the other alternatives. But the rate of improvement in accuracy

between the models is not as much as observed in individual sensor accuracies (refer

Fig. 6.5). In DS-1, the highest overall accuracy is registered as 99.77% by model M3.

Among the classes, D UB class gives higher accuracy compared to the other classes.

The overall accuracy of DS-2 is comparatively lesser than DS-1, producing 99.25% with

the best performing model M3. The V MA class and the NM class mainly give 1.0%

to 2.0% reduced accuracy compared to the other classes. It is observed that the ability

shown byM2 andM3 in exploiting the sequential dependency between the embedded

representations is the key in accuracy enhancement.

Fig. 6.7 shows comparison of evaluation metrics using precision, recall, and F1-score.

Since DS-1 contains more imbalanced class data compared to DS-2, these metrics are

calculated for DS-1 alone. The higher values of these metrics signify that the models

show stable performance even when the dataset is imbalanced. The graph clearly

shows that model M3 is the best performer, while model M1 shows comparatively

lower performance on C UB and HL classes.
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Figure 6.7: Precision, Recall and F1-Score of DS-1

(a) DS-1 (b) DS-2

Figure 6.8: Confusion matrix of M3

Further, confusion matrices of model M3 for both the datasets are shown in Fig.

6.8. The proposed transformer architecture demonstrates a decent performance for

healthy as well as for faulty conditions except for C UB in DS-1. A few instances of

C UB are misclassified as LS as both faults are highly correlated, creating adversity in

classification. DS-2 suffers from misclassifying V MA as the NM class, and very few

samples of NM class are categorized as V MA or H MA. In short, the three proposed

variations of the transformer architecture demonstrated exemplary performance with

multi-sensor fusion producing accuracy above 99.0% for both datasets.
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Table 6.5: Effect of synthesized data

Synthesized Data Synthesized+Original
DS-1 (%) DS-2 (%) DS-1 (%) DS-2 (%)

M1 98.23 98.29 98.99 98.54
M2 98.98 98.53 99.41 99.33
M3 99.17 99.31 99.80 99.19

6.4.4 Performance with synthesized data

To analyze the performance of the proposed framework with synthesized data of DS-1

and DS-2, we followed the soft-DTW-based augmentation scheme proposed in [183].

Thus, a more diverse form of data is generated and tested with the proposed model

to evaluate the generic nature of the framework. The augmentation process generates

the consensus sequences of a set of original sequences smoother than the original data.

In Table 6.5, the accuracy of synthesized data alone and its performance when added

with original data are demonstrated. It is noticed that the synthesized data alone

produces almost the same accuracy among the models on both datasets. It is worth

noting that the sequential property exploited by modelsM2 andM3 from the original

data, is not worked well with synthesized data. The modelM2 is the best performer for

dataset DS-2 with original data added to synthesized data, but with synthesized data

alone, M3 performed best with the DS-2 dataset. Meantime, when the synthesized

data has been added with original data precipitates minor enhancement in accuracy for

both the models. This specifies that even without adding additional diverse training

data, the model can capture discriminative features from the available training set.

6.5 Summary

This work presents a framework for SRF diagnosis using the transformer to bridge the

gap between fault diagnosis domain and attention-based architectures, using a domain-

specific embedding layer. The issues in applying the advanced sequential learning strate-

gies in the SRF domain with raw vibration data are addressed in this chapter. The
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attention mechanism is effectively used with transformers to identify both long-term

and short-term dependencies of the sensor signals in the complex RM system with mul-

tiple sensors. This is achieved by proposing an embedding representation that ensured

symptomatic fault features by incorporating DFC and endorsed discriminative capabil-

ity by combining the DFC with TD features. An attention-based multi-sensor fusion is

presented in this work. This considered attention weights along with the fault pattern-

based ranking and succeeded in ensuring the relative importance of the feature vectors

of the fused sensors. Thus a more realistic and domain-specific embedding representa-

tion has been proposed for equipping the transformers to overcome the challenges in

handling multi-sensor TS data, integrating fault-specific information. The basic trans-

former and two recurrent transformer models utilize the long-term dependency and the

local dependency from the embedded tokens. The framework’s running complexity is

reduced since it can capture sufficient dependency information even from short-length

sequences, with a fewer dimension embedding.

The experiments showed the impact of DFC in the embedded representation by ana-

lyzing its performance with traditional TD and FD features. The DFC with TD features

turned out to be the best feature combination for embedded representation. The multi-

head attention with two heads in the transformer effectively captured the dependency

information from these two kinds of features in different aspects. The individual sensor

accuracy showed the dominance of certain sensors in specific faults, which established

the importance of relatively weighted sensor fusion in SRF diagnosis. It is also observed

that the recurrent transformer models performed better than the general transformer

model among which, the GRU-based models shown slightly better accuracy. Comparing

the class-wise performance, a few instances of C UB are misclassified as LS in DS-1, and

in DS-2, V MA fault is misclassified as the NM class on a very few occasions. In short,

the three proposed variations of the transformer architecture demonstrated excellent

performance with multi-sensor fusion. One important observation is that the proposed
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transformer architectures showed minor accuracy enhancements with the addition of

synthesized data, which specifies that the model can capture discriminative features

from the available training set without necessitating additional diverse training data.

The overall experimental results signify the effectiveness of the proposed framework in

utilizing transformers with multi-sensor data, incorporating fault information content,

and excelling in various industrial working environments.


