
Chapter 5

SRF Diagnosis using TS imaging

with FRP and Classifier Fusion

5.1 Introduction

Much attempt hasn’t been made to utilize the TS property of input vibration signals

in the literature of SRF diagnosis. Therefore, there have been essentially zero attempts

to disclose or quantify nontrivial dynamical features in the vibration signals. It is

true that a range of techniques has been used for the representation of the input data

in order to make it compactable to the applying models, the majority of them are

1D, or 2D structures of the extracted features [10]. TS imaging enables the learning

models like CNN to visually identify and classify the vibration signals. But most of

the existing image representations from the vibration signals fail to utilize the TS

property efficiently, in particular, when 2D data models are made by converting raw

data. For example, the thermal images [28], the 2D grayscale texture of vibration [29],

orbital images [118] etc., disregards TS property totally. The position-based polar

image [122] and the infrared (IR) imaging [120, 136] are generally run using CNN, do

not succeed in the maintenance of the data’s temporal properties, whereas symmetrized

dot pattern images are used for preserving the input data’s sequential property to a



90 5.1. Introduction

level. Recently a few new imaging techniques have been used for vibration data such

as shaft orbit images [119], 2D Kurtograms [215], and the omnidirectional regeneration

method [45]. It is noteworthy that there are broadly two approaches to generate images

from vibration data. The first one is the way of stacking raw data directly in the 2D

form, and the other way is the 2D arrangement of the data in a transformed domain,

both of which fail to keep the TS property of the original signal. In other words, the

TS imaging technique in input data representation lacks in the literature.

The recurrent plot, Gramian angular field, and Markov transition field are the pop-

ular image encodings that integrate TS properties of the original data. RP extracts

trajectories from TS and computes the pairwise distances between these trajectories.

The GAF images are characterized as a Gramian matrix by using a polar coordinate

system such that every element is the trigonometric sum between time points. In MTF

images, the first-order Markov transition probabilities are represented in one dimension

and the temporal dependencies in the other dimension. The RPs are established to

be a definitive representation used to quantify and reveal nontrivial dynamical features

present in TS data when a comparison is drawn between the conventional imaging

schemes discussed in the literature. Hence, RP has proven to be one of the precursors

of TS imaging. The preliminary experiments with the three imaging schemes revealed

that RP is the top performer with the SRF dataset, and hence we adopted RP as the

basic imaging scheme in this regard. A fuzzy RP exhibits all the properties of RP along

with some extra advantages with the incorporation of fuzzy logic. Furthermore, it is can

possible to derive from the literature that fault diagnosis relies on a single information

source and a distinct, intelligent approach showcases certain drawbacks.

Therefore, we build up a framework that uses two decision-making strategies parallel

to each other, i.e., the LSTM network taking DFC stream as input and the CNN

with taking FRP as input. Furthermore, the most informative sensor signals from the

segmented raw vibration signals are proposed to be selected by a DFC-based ranking.



5.2. Theoretical Background 91

The image combining scheme generates a 3D-FRP and 2D flattened FRP (F-FRP). The

system dynamics are characterized by these multi-sensor FRPs which also conserve

the vibration input’s TS properties. Symptom parameters-based decision-making is

facilitated by the DFC stream, which is simultaneously catered to LSTM. In the end,

we made use of classifier fusion in SRF diagnosis. The parallel decision scores here

are fused by fuzzy integral (FI) grounded on fusion depending on the confidence of the

sources.

5.2 Theoretical Background

5.2.1 Recurrence plot

The concept of RP was first put forward by Eckmann et al. [216]. It provides the

service of a visualization tool that displays a dynamical systems’ time constancy which

has been characterized by large-scale topology and small-scale texture. A set of all

possible states in a dynamic system where each point stands for one state is called

phase space. A visual image of the system’s dynamics is provided by the reconstruction

of phase-space in different dimensions. The instances when a phase-space trajectory

visits the same area in the phase-space are shown by RP. Embedding is a process that is

used to transform a TS into an object in space. Embedding dimension is the number of

state parameters required to embed an object or the phase space dimension. According

to Takens’ embedding theorem [217] a single TS can be used to yield the observed

state when an appropriate value of time delay and embedding dimensions are provided.

We make use of this property to obtain a visual image of the dynamic property of

the system with different sensor values in an independent manner. After the work of

Casdagli [218], RP’s application for turning to the main properties of nonstationary TS

became popular.

Suppose for set of state vectors, let S = {s1, s2, ...sn} is the phase-space reconstruc-
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(a) FRP Horizontal MA (b) RP Horizontal MA

(c) FRP Unbalance (d) RP Unbalance

Figure 5.1: FRP and RP patterns

tion of the dynamic system with embedding dimension k, where each state si ∈ Rk,

then RP is represented as an n × n matrix. A threshold ϵ defines the similarity of a

state pair (si, sj) with the following expression.

R(i, j) = θ (ϵ− ∥si − sj∥) (5.1)

Here θ (·) defines a step function that assigns a 1 to R(i, j), if ϵ− ∥si − sj∥ ≥ 0 and 0

otherwise.
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5.2.2 Fuzzy recurrence plot

The FRP is a variation of RP that incorporates the fuzziness in determining the sim-

ilarity of state pairs in RP [219]. A fuzzy membership function µ ∈ [0, 1] that has

reflexivity, symmetry, and transitivity properties characterizes the fuzzy grade of mem-

bership. For the purpose of determination of the state pair similarity, fuzzy clusters

of phase-space states are formed with the popular fuzzy c-means clustering (FCM) al-

gorithm [220] in FRP. The distance between the data point and cluster head is first

determined, and then the membership assignment to each data point is performed by

the algorithm. The fuzzy cluster set C = {c1, c2, ...cv} is generated by using the FCM

algorithm after defining the number of cluster v. The cluster partition is determined

by the degree of belongingness of a state to a particular cluster which is represented by

the fuzzy membership grade. Hence the FRP is defined as:

Rf (i, j) = µ (si, sj) , (5.2)

where i, j = 1, ..., N and µ (si, sj) ∈ [0, 1] shows the fuzzy membership similarity of

state pairs si, and sj. Here the fuzzy membership grades are updated iteratively by the

following equation:

µir = 1/
v∑

p=1

(∂ri/∂rp)
2/(m−1) (5.3)

where m is the fuzziness index such that m ∈ [1, ∞], ∂ri represents the Euclidean

distance between the data point sr and cluster center ci, and µir represents the member-

ship of rth data point sr to the ith cluster center ci. Along with the updated membership

grade µir, the cluster center in each iteration is updated by:

ci =

(
N∑
r=1

(µir)
msr

)
/

(
N∑
r=1

(µir)
m

)
(5.4)
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∀i = 1, 2, ..., v, with an objective of minimizing

N∑
r=1

v∑
i=1

(µir)
m∥sr − ci∥2. (5.5)

5.2.3 Fuzzy integral based classifier fusion

Successful application of FI has been achieved in machine fault diagnosis problem in

the work of Liu et al. [221]. FI regards consequential parameters called fuzzy measures

together with the decision scores of the classifier. It is a weightage given priorly for

every confidence value for fusing the classifiers. Let O = {O1, O2, O3, ...ON} be the

set of output scores from the N classifiers. Then the fuzzy measures g : 2O → [0, 1]

are defined for all the possible combinations of O. It has the properties g(ϕ) = 0 and

g(O) = 1. For any o ⊆ O, the fuzzy measure g(o) has got the monotonic property as

follows. If oi ⊆ oj ⊆ O then g(oi) ≤ g(oj) ≤ 1. The concept of Sugeno- λ measure was

introduced in [222], which adds the property as if oi ⊆ O , oj ⊆ O s.t. oi∩ oj = Φ, then

gλ(oi ∪ oj) = gλ(oi) + gλ(oj) + λ.gλ(oi).gλ(oj) (5.6)

According to this, we can solve λ by

λ+ 1 =
N∏
i=1

(1 + λgi) (5.7)

where gi means gλ(oi). In 1953, the French mathematician Gustave Choquet intro-

duced the Choquet integral [223]. Each and every linear combination of empirical

fusion strategies can be realized on the basis of the choice of fuzzy measures [224].

By utilizing the fuzzy measures, the Choquet integral is able to assign importance to

all possible groups of criteria, which offers far greater flexibility for aggregation. The

normal integration operator is given by :
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Cg(O) =
N∑
i=1

OΠi
[g(oΠi

)− g(oΠi−1
)] (5.8)

where the output scores O is permuted to OΠ such that OΠ1 ≥ OΠ2 ≥, ...,≥ OΠN
.

The Choquet integral finds the score by combining the fuzzy measure for a particular

score along with the confidence of the score, called its support. As shown in Eq. 5.8,

the intermediate decisions determine the ultimate decision-making process that enables

sensitivity to each classifier.

5.3 Proposed Method

The proposed framework employs the classification ability of CNN and LSTM in par-

allel to yield the best classification result. Initially, the measured vibration signal has

been segmented with sufficient length to ensure proper extraction of DFC as well as to

create a TS image, i.e., FRP in our model. The RPs are established to be a definitive

representation used to quantify and reveal nontrivial dynamical features present in TS

data when a comparison is drawn between the conventional imaging schemes discussed

in the literature. Hence, RP has proven to be one of the precursors of TS imaging. All

the properties of RP are displayed by FRP with some extra advantages by integrating

fuzzy logic. A temporal ordering to hasten sequential learning is preserved when the

DFC is extracted from each segment by making use of overlapped bins. The two rep-

resentations bring out two characteristics of input data, such as the temporal property

being kept by the FRP and non-linear dynamical characteristics by the recurrence pat-

tern. At the same time, DFC is proven to be the final parameter for decision-making

by its symptomatic frequency components. We propose two image combining schemes

for input generation and a DFC fault pattern-based FRP selection because we possess

multiple sensor values for FRP generation. The top two most informative FRPs are

flattened and stacked by our scheme to produce a single image. The other scheme
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Figure 5.2: Input data preparation phase

forms a 3D-FRP by assembling the top three FRPs. The first scheme alters the tempo-

ral correlation of recurrence structure, but all the informative data points are included

in it. In contrast, the second method is used to combine multiple recurrence structures

simultaneously in a single model by keeping the temporal correlation. Therefore, two

different aspects of recurrence plots in SRF decision-making are brought out by the two

imaging schemes.

At the decision-making phase, a single-channel CNN (1C-CNN) and a three-channel

CNN (3C-CNN) are fed with these two types of combined FRPs. The LSTM makes

decisions corresponding to the DFC stream, drawn from the bins of the segment. There-

fore, three sets of decision scores are yielded for the same segment of the input signal.

Each of these sets carries with it different properties. In the end, a fuzzy integral-based

fusion module carries out the classifier fusion based on the fuzzy measure weightage that

is provided to these three decision values. Because Choquet fuzzy integral works as the

generalization of the empirical schemes, it was followed in this process [225]. Based on

practical expertise, the fuzzy measures are given and assigned to the classifiers. The FI

fusion then modifies the classifier weightage based on previous decision scores.

The overall operation is described in three phases: input data preparation, decision

score generation, and classifier fusion.
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5.3.1 Input data preparation phase

A critical task of the framework is to create two representation categories for the same

data segment for both channels simultaneously. To make sure that FRP and DFC are

generated properly, it demands preserving enough data points in every segment. The

overall operations in this phase can be seen in Fig. 5.2.

Table 5.1: Binary coded DFC

SRF
Amplitude Phase

1x 2x 3x H.O 2x>1x 0◦ 180◦ Var.

Healthy/Norm 0 0 0 0 0 1 0 0
Static UB 1 0 0 0 0 1(R) 0 0
Couple UB 1 0 0 0 0 0 1(A) 0
Dynamic UB 1 0 0 0 0 0 0 1
Vertical MA 1 1 0 0 1 0 1(R) 0
Horizontal MA 1 1 1 0 1 0 1(A) 0
Looseness 1 1 0 1 0 0 0 1

H.O: higher Order, Var.: Varying, R: Radial, A: Axial

As shown in the first two parts of Fig. 5.2, the raw signals from the sensors are

divided at first into equal-length segments to create the FRP and to extract the DFC

stream. The segment length (Sl) is selected such that each segment contains the re-

quired number of bins to facilitate the necessary amount of DFC values. Likewise, suf-

ficient data points must be considered to represent the dynamics of the system through

FRP generation. Furthermore, a certain number of raw data points in each bin is re-

quired for the legitimate DFC extraction. The segmentation and DFC extraction follow

the same process explained in section 3.4. Let bl be the minimum number of data points

in each bin, Sr be the number of sampling point in each rotation, and Si be the number

of interval points between the bins (in non-overlapping partitions, it is set to zero), then

the condition: Si ≤ Sr ≤ bl ensures proper DFC extraction from each bin. It ensures

that every bin accommodates at least one rotation data. Likewise, every segment must

be sufficiently lengthy (Sl >> bl), as well as it considers the additional condition of
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minimum points for FRP as 50 to 100 [226].

The initial five harmonics of the rotating frequency (1x to 5x) are utilized to derive

the amplitude as well as phase after the DFC extraction, and they are utilized for

DFC-based ranking (refer Section 5.3.1.2). The DFC stream is then created by using

the first three of them (1x to 3x). Two main operations take place after this step, such

as generation of DFC pattern and selection of FRP based on DFC pattern matching.

5.3.1.1 DFC pattern generation

A DFC encoding scheme is proposed that generates a binary pattern based on the SRF

characteristics. The amplitude and phase characteristics of the symptomatic frequencies

of SRF are have been referred from the Table 3.3. The resulting 8-bits binary codes

of SRF are given in the Table 5.1. The encoding helps compare the current bin’s DFC

pattern with that of the referred fault with fast match score generation. The SRF is

comparatively more sensitive to the lower band rotational frequencies, which is why

whether the 1x to 3x amplitudes are high or low is represented by the first three bits of

the pattern. The relativity between 1x and 2x has been represented by bit 5, whereas

amplitudes related to all other higher-order harmonics are decoded to a single bit, i.e.,

bit 4. The three bits, at last, are designated for phase values where bit 6 and bit

7 represent the phase shift of 0◦ and 180◦, respectively. Here, the final bit is used

for representing the varying phase value between 0◦ and 180◦. This encoding requires

slight changes, suggests the sensor mounting position (radial, axial or tangential). At

the time of encoding a new set of DFC, a threshold of the amplitude values decides the

high and the low value, which is selected from the mean of all extracted amplitudes.

5.3.1.2 FRP selection based on DFC pattern matching

The complexity of the framework is reduced by selecting the most informative sensor

segments for FRP generation. This purpose is served by the proposed SRF pattern
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Algorithm 5.1: Input Data Generation

Input: Xf is a set of Nf segment of TS of fault type f , each with g sensor values, and b is the bin
from Xf , where Sr ≤ |b| ≤ Sl with m such bins. P f

ref is the reference pattern of fault f .
Output: FRP3D, FRPF , DFCLSTM : the inputs for classifiers

Initialization :
The vectors Dij , Di are initialized to 0, and set S = 0.

1: for i← 1 to Nf do
2: for j ← 1 to g do
3: for k ← 1 to m do
4: Let Dijk be the DFC of Xf

ijk(k
th bin of jthsensor of ith sample)

5: Dij .append(Dijk)
6: Pijk = EncodePattern(Dijk)

7: Rijk = Hamming Distance Inv(Pijk, P
f
ref )

8: S ← S +Rijk

9: end for
10: Rg = S/m /*Rank of Xf

ij

11: Di.extend(Dij)
12: end for
13: Let FRPR1, FRPR2, FRPR3 be the FRPs generated

from top three ranked Xf
ij ’s

14: FRP3D ←Arrange three FRPs to 3-channel
15: FRPF ← Flatten & Stack FRPR1, FRPR2

16: DFCLSTM ← Di

17: end for
18: return FRP3D, FRPF , DFCLSTM

—————————————-
Procedure Hamming Distance Inv(X,Y)
—————————————-

19: if |X| ≠ |Y | then
20: print ”Length mismatch”
21: else
22: Z = X ⊕ Y
23: Hid = |X| − |Z|1
24: end if
25: return Hid

matching, by choosing the sensor segments that create the closest DFC pattern of a

particular fault. Algorithm 5.1 and part 3 and part 4 of Fig. 5.2 provides a description

of this process. DFC extraction is performed in step 4 of the algorithm for every bin

in a segment for each sensor vector. According to the description in section 5.3.1.1,

the encoding of the corresponding pattern for each DFC is performed. An elementary

inverse operation of the hamming distance then determines the matching score between

the prescribed fault’s reference pattern and the current fault pattern. A segment’s

closest fault pattern is set as the reference fault pattern in the testing phase. The

average derived from the matching scores of all the bins is the ultimate matching score
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of each sensor segment. This matching score is used to rank the top three sensor

segments and for the selection for FRP generation. Steps 6 to 13 in the algorithm

describes these operations.

5.3.1.3 Fuzzy recurrence plot generation

The significance of FRP was revealed by the comparative study of FRP and RP, which

has been provided with an x-component of the Lorenz system, EMG signals, and pseudo

periodic synthetic TS [219]. This shows that FRP has precedence over RP concerning

parameter specification of dynamical systems and visual effects. Between RP and FRP,

the latter is given preference when it comes to the representation of the non-linear TS

signals due to the following properties.

1. The similarity of phase-space of the system is represented on the basis of a con-

tinuum of grades of membership that alleviates the issue of the threshold deter-

mination.

2. A much-enhanced system dynamics visualization is produced in FRP with signif-

icant information of texture.

The visual verification of the same is achieved from Fig. 5.1, which presents the FRPs

and RPs of unbalance and horizontal misalignment faults from the MaFaulDa dataset.

The experiments and results part bring forth the comparison of the same in section

5.4.1.2. The following parameters were selected for FRP generation from the experi-

mentation performed with various FRP parameters. With an embedding dimension of

3, and time delay (τ) set to 1, the rebuilding of the phase space is performed. The

number of clusters for FCM is selected as 3, whereas the fuzzy membership threshold

(T ) is set to 0.5 to change grayscale to black and white. The final FRP image gener-

ation scheme for CNNs is shown in part 5 of Fig. 5.2. The 3D-FRP is generated for

3C-CNN by arranging the top three FRPs in the z-axis, which is mentioned in step 14

of Algorithm 5.1. Likewise, to yield multi-sensor F-FRP, the symmetry property of the
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Figure 5.3: Decision-making phase

RP is utilized for combining the top two DFC-ranked FRPs. Step 15 of Algorithm 5.1

presents this process. The detailed procedure of the same is given below:

1. Extract the oblique triangles from the two selected FRPs.

2. Convert the triangles into flattened arrays, and arrange them to matrices of half

the size of the original FRP.

3. Combine the two half-sized FRPs to generate the flatted 2D FRP.

5.3.2 Decision score generation phase

The CNN and LSTM based schemes in the framework are used for the assessment of

the decision scores as previously mentioned. The CNNs process the FRPs, and the

DFC stream is processed by LSTM, which are finally fused by FI-based classifier fusion

as displayed in Fig. 5.3.

5.3.2.1 CNN-based decision-making with FRP

For measuring the confidence of affiliating FRPs to a given class, a 3-Channel CNN and

a 1C-CNN are used. The CNNs are trained on two different FRP representations, which

perform different demonstrations of the same vibration signal segment. The softmax

layer produces the decision scores for fusion by making use of the categorical-cross
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entropy loss function. The 3D-FRP proposed as input to the 3C-CNN is subsampled

to a size of 128 × 128 × 3. Three convolution layers with 32, 64, and 128; 3 × 3 filters

are possessed by the 3C-CNN model. Each convolution layer has been added with

the max-pooling layers of size 2 × 2. With the introduction of ReLU into each stage,

non-linearity has been accomplished as the CNN made capable of learning complex

structure FRPs. Column vectors are formed by ultimately flattening the feature maps

generated by the convolution stages. A connected layer of 512 neurons is introduced as

the last component of the network. To get faster convergence of parameter values, the

training has been performed by the Adam optimizer, and the batch size has been set

to 64. The 1C-CNN, which works on the multi-sensor F-FRP, follows the same layer

structure and gives the next set of decision scores on the same segment of data.

5.3.2.2 Sequential learning-based decision-making

The common sequential learning models like RNN, LSTM, and GRU learn the temporal

dynamic behavior of input with the help of their sequential connections. For the purpose

of dealing with vanishing/exploding gradient problems, the LSTM and GRU regulate

the information in each cell. The LSTM architecture has been utilized in the proposed

model with the DFC stream derived from each segment of input vibration. The long-

term relationships in the input signal and its temporal information in the network

have been apprehended by several recurrent layers. After that, a fully connected layer

provides the higher-level representation of data and combines the class discriminating

capability. The categorical cross-entropy for loss function and Adam as an optimizer

represent the other parameters of the model. Furthermore, tanh, ReLU , and softmax

activation functions are used by the RNN layer, dense layer, and the output layers,

respectively.

The hyper parameter search was conducted over the recurrent layers L ∈ {1, 2, 3},

hidden nodes HN ∈ {16, 32, 64, 128} and learning rate η ∈ {0.1, 0.01, 0.001} for 300
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epoch. At the end, the decision regarding the best performing parameters L = 2,

η = 0.001, HN = 64 was made.

5.3.3 Classifier fusion phase

The CNN and LSTM models possess extensive classifier diversity with two different

categories of inputs. Therefore, it is sought after to generate an aggregation scheme that

deals with the issues related to classifier diversity and offers an improved classification

result than the individual classification. In this respect, in many machine fault diagnosis

applications, fuzzy integral fusion has been proven successful.

The Choquet integral finds the score by combining the fuzzy measure for a particular

score along with the confidence of the score, called its support. It is evident from Eq.

5.8 that the intermediate decisions determine the final decision-making process that

enables sensitivity to each classifier. We have N number of decision scores, and M is

the number of classes in the process of fusion. Therefore, the fuzzy measure is altered

according to Eq. 5.8 for N times for every class index in M . The prediction scores for

each class are then found by making use of the modified fuzzy measure, according to

Eq. 5.6. Thus compared to the normalized softmax probabilities previously obtained, a

more robust modified fuzzy probability is generated. Finally, the final class prediction

is obtained from the maximum of the predicted scores. An operation that checks the

selected classifiers’ appropriateness and ensures sufficient diversity among them has to

front the classifiers’ fusion. In the literature, there exist diverse measures that efficiently

find classifier diversity in different domains. The Q statistics measure is one of the

widely known and simple diversity measures [227]. It can be demonstrated by using

the given equation:

Q =
a.d− b.c
a.d+ b.c

(5.9)

where the number of times both the classifiers come up with, the correct guesses and

wrong guesses are given by a and d, respectively. The variable b represent the count
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when the first classifier provides the wrong decision but the second displays it right. The

value of c gives the count of the opposite condition. The classifier fusion is acceptable

if Q < 1, no diversity exists if Q = 1, and complete diversity exists if Q = −1 [227].

To guarantee diversity as the first step of fusion, the three classifiers are checked

according to pair with a confusion matrix for both classifiers’ predicted value. From

Table 5.4, the initial fuzzy measures for FI-based fusion are then calculated by using

the following formula [225].

(accuracy+F1-score)

2
- min(accuracy) (5.10)

5.4 Results and Discussions

In this section, experimental results are presented and discussed. For the generation

of FRPs, the raw data collected from each sensor of the rotor testbed is segmented

into 2048 data points. A summary of the same is found in the subsampled space at 512

points with an overlapping of 64 points generate enough DFC stream to apply to LSTM.

Since the dataset DS-1 is made up of healthy and five defect classes with five various

speeds, the selection of DS-2 data is based on the DS-1 dataset with the closest matching

speeds under all load conditions. The same subsampling and overlapping operations of

DS-1 were followed by the DS-2 data. The train-test ratio is selected as 70.0%-30.0% to

partition both the datasets initially. The evaluation of the effectiveness of the proposed

framework is done with two CNNs, and an LSTM model that uses FRPs and DFC

feature for operating, respectively. Moreover, the applicability of single sensor data has

been checked with and without augmentation, which produced additional FRPs and

DFCs for training. For the purpose of conducting the experiments, four sensor values

(S1,. . . , S4) from both datasets were considered. The overall experiments have been

performed to: i) check the suitability of FRPs as input for SRF diagnosis, ii) evaluate

the performance of the proposed paradigm on multi-sensor as well as single-sensor data,
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and iii) analyze the advantage of fusing CNNs and LSTM classifiers outputs with FI-

based fusion along with other existing fusion techniques.

5.4.1 Evaluation of FRP imaging schemes with CNNs

The imaging scheme of combining FRPs generated from multiple sensors has been

compared in two ways to ensure its appropriateness as an input representation. Firstly,

a comparison has been made with the existing pre-trained CNN models along with the

proposed CNNs. Secondly, results from the FRP are evaluated against its alternative

imaging scheme, i.e., RP. The effectiveness of the proposed FRP image combining

scheme with DFC-based ranking has been presented in this section.

5.4.1.1 Comparison with existing pre-trained models

Popular pre-trained CNN models have been used first to check the proposed image

combining schemes for FRPs. The evaluation result has revealed the generalized usage

of FRP inputs for vibration analysis. The derived results are displayed for sensor-wise

FRP, 3D-FRP, and F-FRP images as input categories. Demonstration of the compari-

son of the proposed model is available in Table 5.2 with four pre-trained CNN models

like VGG16, Inception V3, Resnet50, and EfficientB0. Single-sensor input images are

duplicated to other channels to match the pre-trained CNN model’s input shape. For

comparison purposes, FRPs are generated from individual sensor values and applied

to the pre-trained CNN model to identify their performance on the non-natural FRP

image.

As shown in Table 5.2, apart from EfficientB0, the pre-trained models produced

only around 75.0% accuracy. On the other hand, EfficientB0 can attain approximately

82.0% of accuracy. This shows that the performance beyond a specific level with FRP

cannot be achieved with the natural image-based pre-trained models. In the meantime,

it is seen that an improved accuracy compared to the individual sensor FRPs has been



106 5.4. Results and Discussions

T
a
b
le

5
.2

:
C

om
p

arison
w

ith
variou

s
p

re-train
ed

C
N

N
m

o
d

els

M
o
d
e
l

S
1

F
R
P

S
2

F
R
P

S
3

F
R
P

S
4

F
R
P

3
D
-F

R
P

F
-F

R
P

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

V
G
G
1
6

7
2
.0
9

7
4
.5
0

7
3
.0
0

7
3
.1
4

6
9
.2
3

7
2
.4
0

7
0
.1
0

7
4
.6
0

7
3
.1
1

7
7
.4
9

7
5
.5
0

7
6
.0
1

R
esn

et5
0

7
6
.0
0

7
6
.5
6

7
4
.3

7
5
.0
0

7
2
.6
9

7
4
.2
2

7
3
.7
3

7
5
.8
5

7
7
.3
4

7
8
.9
0

7
8
.8
9

8
0
.0
1

In
cep

tio
n
V
3

7
6
.8
9

7
7
.0
1

7
4
.3
1

7
6
.5
6

7
3
.9
9

7
5
.4
5

7
4
.5
6

7
4
.0
4

8
0
.1
1

8
1
.5
6

8
0
.5
5

8
2
.0
0

E
ffi
cien

tB
0

8
2
.0
3

8
2
.0
4

8
3
.4
6

8
2
.0
1

8
3
.1
1

8
2
.9
6

7
9
.4
5

8
0
.9
8

8
4
.4
5

8
5
.5
6

8
5
.9
6

8
6
.0
0

P
ro
p
o
sed

3
C
-C

N
N

9
2
.6
7

9
3
.5
0

9
0
.5
0

9
2
.0
7

9
0
.7
5

9
2
.6
5

8
9
.5
0

9
1
.6
0

9
5
.5
6

9
6
.0
0

9
6
.1
3

9
6
.2
2

P
ro
p
o
sed

1
C
-C

N
N

9
1
.3
2

9
1
.9
9

9
0
.0
1

9
1
.1
4

9
0
.1
0

9
2
.1
1

8
9
.4
0

9
0
.4
3

N
.A

N
.A

9
6
.8
2

9
6
.7
3

T
a
b
le

5
.3

:
C

om
p

arison
of

F
R

P
s

w
ith

R
P

s

M
o
d
e
l

R
P

F
R
P

S
in

g
le

S
e
n
so

r
(A

v
g
.)

3
D
-R

P
F
-R

P
S
in

g
le

S
e
n
so

r
(A

v
g
.)

3
D
-F

R
P

F
-F

R
P

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

D
S
1

D
S
2

D
S
-1

D
S
-2

D
S
-1

D
S
-2

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

(%
)

V
G
G
1
6

7
0
.1
1

7
3
.1
1

7
2
.1
5

7
5
.6
5

7
2
.2
5

7
3
.1
4

7
1
.1
1

7
3
.6
6

7
3
.1
1

7
7
.4
9

7
5
.5
0

7
6
.0
1

R
esn

et5
0

7
2
.6
7

7
3
.0
4

7
5
.2
9

7
6
.6
5

7
3
.9
6

7
5
.5
1

7
4
.1
8

7
5
.4
1

7
7
.3
4

7
8
.9

7
8
.8
9

8
0
.0
1

In
cep

tio
n
V
3

7
3
.0
0

7
7
.2
3

8
0
.5
5

8
0
.2
1

7
8
.9
9

7
9
.6
4

7
4
.9
4

7
5
.7
7

8
0
.1
1

8
1
.5
6

8
0
.5
5

8
2
.0
0

E
ffi
cien

tB
0

7
9
.8
7

8
0
.4
5

8
2
.4
3

8
2
.9
6

8
1
.4
1

8
2
.8
5

8
2
.0
1

8
1
.9
9

8
4
.4
5

8
5
.5
6

8
5
.9
6

8
6
.0
0

P
ro
p
o
sed

C
N
N

8
8
.1
1

9
1
.3
5

9
2
.1
9

9
4
.0
4

9
3
.7
6

9
3
.4
6

9
0
.8
6

9
2
.4
6

9
5
.5
6

9
6
.0
0

9
6
.8
2

9
6
.7
3



5.4. Results and Discussions 107

observed in the two latter FRPs, i.e., 3D-FRP and F-FRP. DS-2 shows slightly enhanced

accuracy compared to DS-1 with the majority of the pre-trained models among the two

datasets. This tendency is more apparent with the 3D-FRP and F-FRP inputs also.

It is due to more regular patterns produced in the DS-2 data collection setup than the

DS-1 data collection setup.

Comparing the different sensor FRPs based on accuracy, the S1, and S2 sensor

data can produce slightly better accuracy than the other sensors. Apart from that,

approximately 20.0% variation in the performance is seen on various classifiers for

each sensor-wise FRP, 3D-FRP, and F-FRP image. Certain facts are revealed with

the higher accuracy achieved by the proposed model for all categories of input FRP

images. In other words, training of the proposed CNN model is done based on the non-

natural image FRPs in order for it to perform much better compared to the natural

image pre-trained models. Therefore, this shows that the proposed CNN model can

effectively detect the specific fault diagnosis pattern using FRP images. Subsequently,

the performance of more than 90.0% for each sensor-wise FRP, 3D-FRP, and F-FRP

image is manifested by it. Furthermore, the highest accuracy was achieved by the

two proposed FRP image combining schemes. This signified that DFC is influential in

selecting the most informative FRPs to present the different faults in SRF diagnosis.

Apart from being perceptible in the proposed model, it is also visible with the results

of all the compared pre-trained models.

5.4.1.2 Comparison with recurrence plots

In order to establish the dominance of the proposed FRPs in making use of the system’s

underlying dynamics, the experiments that were initially performed with FRP have been

repeated with RP. The effectiveness of using FRP over RP is demonstrated in Table

5.3 along with both the datasets of SRF diagnosis. Virtually, the same trend of FRP

on both pre-trained models and the proposed CNN models can be observed from the
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performance of RP, i.e., DS-2 got slightly increased accuracy over DS-1. Also, compared

to the pre-trained models, the proposed CNNs showed to be much better. That said,

compared to RP’s performance, the FRP has demonstrated slightly better. According

to the critical observation, FRP produced around 2.0% increased accuracy than RP,

which is more apparent in 3D-FRP and F-FRP input data. In any case, according to

the result, it is evident that the error rate has been reduced at least by approximately

23.0% with the use of the FRP image scheme and 13.0% compared to RP for DS-1 and

DS-2 datasets, respectively. However, a significant reduction in the error rate in F-FRP

has been observed, and it is about 50.0% for both datasets. Likewise, in the case of 3D-

FRP, it is close to 43.0% and 33.0% for DS-1 and DS-2 datasets, respectively. The effect

becomes noticeable due to the soft thresholding that has been made use of in FRP gives

rise to more finite patterns than the hard threshold RPs. When the latter two input

representations are observed, the property increases the information content to present

various faults. This shows that the proposed FRP combining scheme which is based on

DFC, is efficient against FRP and RP on both datasets. Therefore, the proposed FRP

selection and combining scheme can be adopted in the case of SRF diagnosis domains

where multi-sensor data is present with any non-natural imaging schemes. According

to what was discussed in the previous section, it created additional impact over natural

image pre-trained models as the proposed CNNs are trained with non-natural RPs or

FRPs. Based on the entire trend demonstrated in Table 5.2 and 5.3, the best performer

is the presented CNNs with the proposed FRP image combining schemes.

Table 5.4: Performance of individual classifiers

Model
DS-1 DS-2

Accuracy F1-Score Accuracy F1-Score
(%) (%) (%) (%)

LSTM 97.25 97.19 96.69 96.70
3C-CNN 95.56 95.60 96.00 96.06
1C-CNN 96.82 96.80 96.73 96.80
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5.4.2 Performance of proposed framework

The performance assessment of the entire framework comprising of three independent

classifiers has been given in this section. To begin with, the classifiers are checked

one after the other for accuracy and F1-score with the proposed input representations.

These values comprehend the level to which the fusion scheme has enhanced the perfor-

mance, and serve the parameter setting of FI-based fusion. Apart from FI-based fusion,

testing has also been performed on the other empirical decision fusion strategies like

maximum, average, and weighted average schemes. The subsequent subsection carries

the presented results.

5.4.2.1 Performance of individual classifiers

We have used three classifier models to handle different input representations generated

out of segments from vibration signals of each sensor. To generate output from the

feature-based scheme, from each bin, the DFC extracted values are combined in a

sequential manner and fed to an LSTM. The performance of these three individual

classifiers is shown in Table 5.4. Performance exceeding 95.0% on both datasets is

demonstrated by all the classifiers. Also, the performance of the classifiers remains

in an accuracy cluster of 95.0% to 97.0%. In any way, the highest accuracy for both

datasets is provided by LSTM, and it is close to 97.0%. It is the usual course that DS-2

performs a little better than DS-1 in CNN models. However, in the case of LSTM, DS-

1 features give better accuracy than DS-2. This happens as DS-2 has greater diverse

working conditions, which generate more varying nature features compared to DS-1.

Consequently, DS-1 gives more consistent accuracy with FRP as a result of the overall

system dynamics represented by FRP not reflecting the diverse working conditions

as different sets of patterns. According to what was seen in the previous section,

slightly increased accuracy compared to 3C-CNNs is being provided by 1C-CNN with

F-FRPs. The classification performance is tested with accuracy as well as F1-score
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Table 5.5: Performance of classifier fusion

Method DS-1 (%) DS-2 (%)

Maximum 95.62 96.19
Average 96.37 96.38
Weighted Average 98.82 97.11
Fuzzy Integral 99.60 99.06

metrics because the real-world machinery fault datasets are comprised of imbalanced

class distribution. The individual classifier performance is in a satisfactory range, as

shown by the results expressed in Table 5.4. Moreover, the determination of the initial

fuzzy measures in FI-based fusion is also facilitated by the F1-scores.

5.4.2.2 Framework performance with fuzzy integral fusion

Table 5.5 shows the comparison of the fusion results of FI with certain other decision

fusion strategies. Amongst the empirical fusion strategies that were compared, the

maximum accuracy is produced by the FI-based fusion. An accuracy that is slightly

better than the minimum accuracy of individual classifiers is generated by the two ini-

tial fusion methods. In the meantime, an accuracy that is closer to the FI method is

generated by the weighted average fusion. It is noteworthy that an accuracy better

than the highest individual classifier accuracy can only be produced by the weighted

average and FI-based fusion strategies, which causes fusion between the classifier rela-

tive scoring. Therefore, the error rate of an individual classifier has been reduced by the

FI-based fusion strategy by around 85.0% and 71.0%, respectively, for DS-1 and DS-2

datasets. Thus, the importance of FI-based fusion strategy in the proposed method to

better the overall fault diagnosis performance is evidently established.

Furthermore, to evaluate the final fusion performance with multi-sensor data, the

confusion matrix is shown in Fig. 5.4. The outstanding performance for healthy and

faulty components is manifested by the proposed FI fusion. At the same time, certain
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(a) DS-1 (b) DS-2

Figure 5.4: Confusion matrix of FI fusion

samples of couple UB in DS-1 have been misclassified as healthy or static UB. This

happens due to the properties of couple UB with equal weights, which at times can

create the same effect of healthy samples. In other instances, its effect is similar to

static UB, which creates some adversity in classification. Apart from the misclassified

samples of vertical misalignment, for the DS-2 dataset, a decent performance was shown

by the proposed fusion. All in all, by achieving decent results for SRF diagnosis, the

worth of the proposed fusion method is showed.

5.4.3 Individual sensor performance with fusion

In order to evaluate the effectiveness of the proposed framework, the outcomes of a single

sensor situation are also assessed with the FI fusion scheme on FRP and DFC. The

benefit of the DFC pattern-based ranking scheme of FRPs with the multi-sensor data

is evidently showed by analyzing the individual sensor performance in this experiment.

As shown in Fig. 5.5, the fusion of sub-sampled DFC patterns and FRP even with

a single sensor value can produce an accuracy around 92.0% to 94.0%. The benefit of

fusion and the improvement of the proposed multi-sensor FRPs combining scheme are

signified by the results. What is noteworthy here is that a specific sensor data, whose

increased effectiveness with FRP was showed, does not need to have the same impact
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Figure 5.5: Individual sensor fusion

Table 5.6: Effect of augmentation on sensor data

Classifier
Sensor Avgerage Accuracy

Without Augmentation With Augmentation
DS-1(%) DS-2(%) DS-1(%) DS-2(%)

LSTM 91.08 90.26 92.15 91.09
3C-CNN 90.86 92.46 91.23 92.86
1C-CNN 90.21 91.42 90.67 91.98
FI Fusion 92.18 92.92 93.00 93.57

with DFC features and vis-a-vis.

A comparison of the results in Table 5.5, shows that an accuracy closer to 100.0%

can be achieved by the fusion of the combined FRPs and multi-sensor DFCs. Apart

from this, it was observed that when single sensor DFCs produced accuracy around

91.0% with LSTM, and it is raised around by 97.0% with multi-sensor DFCs (refer

Table 5.4). To summarise, effective utilizing of multi-sensor data with DFC was proven

by the proposed framework, producing satisfactory accuracy even with single sensor

data.
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5.4.4 Effect of data augmentation

In the situations where single sensor data is available, the training samples lack diversity

both in FRPs and DFCs, resulting in reduced accuracy. To overcome such a situation

we followed the soft-DTW-based augmentation scheme [183] that preserves the TS

properties, which is showed efficient with the same SRF datasets (DS-1 and DS-2).

Table 5.6 shares an interesting observation that the augmentation preserves the TS

property and increases the accuracy of LSTM, which uses DFC around 1.0%. Mean-

while, this impact is not much visible with the FRP data. In the case of the overall

sensor data applied to the FI classifier fusion, the augmentation produced negligible

accuracy enhancement.

5.5 Summary

This work presents a framework for SRF diagnosis with classifier fusion based on the

fuzzy integral. It incorporated the TS imaging scheme to maintain the temporal prop-

erty generally lost in other imaging schemes and explore hidden dynamical patterns and

non-linearities in data. The preliminary experiments conducted with GAF, MTF, and

RP on SRF datasets signified the dominance of RP in this domain. A more enhanced

system dynamics visualization with comprehensive texture information is produced by

using fuzzy membership in the FRP imaging. The proposed framework showed efficient

in generating FRPs utilizing multi-sensor data with DFC-based ranking that effectively

deals with the FRPs from multiple sensors. This mitigates the inordinate effort required

in developing the less informative FRPs, reducing the complexity.

The model has the advantages of combining automatically extracted features from

FRP by CNN as well as the manually extracted DFC features from the same input

for decision-making. Thus the fusion of the CNN-based decision scores along with

the sequential classifier like LSTM based decision scores improved the results across
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the board to a great extent. The DFC stream extraction suppressing the industrial

data issues makes the framework suitable for practical industrial environments. The

experiments showed the suitability of FRPs as input for SRF diagnosis, and at the same

time, it showed that the proposed CNN model trained on the non-natural image FRPs,

is more suitable for SRF than the natural image pre-trained CNN models. Comparing

FRPs and RPs, the critical observation is that FRP produced around 2.0% increased

accuracy than RP, which is more evident in 3D-FRP and F-FRP input data. This is

observed because the soft thresholding used in FRP creates more finite patterns than

the hard threshold RPs. Moreover, all the individual classifiers produced more than

95.0% accuracy on both datasets. It is also noticed that the overall system dynamics

represented by FRP do not reflect the varying working conditions as different sets of

patterns, and therefore DS-1 gives more consistent accuracy with FRP than DS-2.

The experiments with classifier fusion show that the FI-based fusion produced the

maximum accuracy among the compared empirical fusion strategies. It is also observed

that the fusion strategies, which fuses the classifier relative scoring, can only produce

an accuracy better than the highest individual classifier accuracy. As the properties

of the couple UB fault sometimes create a similar effect of healthy samples, such mis-

classification is noticed from the results of DS-1, and similar adversity in classification

is created for static UB in DS-2. In the case of the overall sensor data applied to the

FI classifier fusion, the soft-DTW augmentation produced negligible accuracy enhance-

ment as it preserves the TS properties in the synthesized samples. The experimental

results demonstrated the efficacy of the proposed framework in satisfying objectives

like TS characterization and system dynamics consideration of the input, effective DFC

usage, and efficient classifier fusion.


