
Chapter 3

Data Acquisition and DFC

Processing

3.1 Introduction

This chapter presents the acquisition process of vibration signals and the detailed de-

scription of the dataset characteristics. Since the rotor faults are more sensitive to

vibration data, the referred datasets use different vibration sensors to collect data at

different speed, load and other working conditions. To analyze rotor faults other than

broken rotor bar fault, more than 80.0% of the works depend on rotor testbeds for

faulty data generation. The primary dataset (DS-1) is a novel one which has been

collected from a rotor kit setup (Meggitt-Mi 19003) [183], which simulates the real

plant varying speed working environment. In addition, a publically available data set

called Machinery Fault Database (MaFaulDa) [184] is employed as the second dataset

(DS-2) for general performance comparison in the proposed frameworks. The experi-

mental setup, fault simulation process, related parameters of data acquisition, etc., are

explained along with the testbed description is given in the first section of the chapter.

The remaining sections bring out the significance of DFC in SRF diagnosis in detail

to provide an insight into the effective fault diagnosis. Then the section contains the
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Figure 3.1: Rotor fault implementation in a testbed

proposed DFC extraction process from varying operating conditions followed by the de-

scription of the experiment conducted to signify the dominance of DFC as the decision

parameter in SRF diagnosis.

3.2 Datasets Description

3.2.1 Meggitt dataset (DS-1)

The data acquisition setup contains the RTB, the signal-conditioning unit (SCU), and

the monitoring and analyzing unit (MAU) [16]. Fig. 3.1 presents a diagrammatic

representation of a typical rotor testbed-based data acquisition setup along with the

fault implementation and the associated frequency responses.

The main component of the testbed assembly is an electric motor controlled by a

variable frequency drive (VFD, which varies the frequency and voltage supply) con-
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Figure 3.2: Meggitt testbed (Meggitt-Mi 19003)

Table 3.1: Setup conditions for testbed of DS-1 dataset.

Features Specification / values

Sensors
Accelerometer: Piezo-electric ,
Proximity sensors: Eddy current based

RPM / Frequency
RPM Range: 0 − 3600
Sampling Frequency: 1 KHz

Motor Power 1 kW-h

Rotor Speeds
750 rpm, 1500 rpm, 2250 rpm, 3000 rpm, 3250
rpm with Runup and Rundown

Unbalance weights 13.0 g and 26.0 g (Dynamic UB)

Diameter Weighing Disc: 100.18 mm and Shaft:12.66 mm

nected to a rotating shaft via a flexible coupling. The shaft is supported by bearing

housing that is fixed by pedestal bolts to the testbed base. The bearing housing has

provisions for mounting sensors in horizontal, vertical, and axial directions. The shaft

will be mounted with discs for various purposes. Generally, a disc with one or more

notches is closely placed with a tachometer that senses the rotational speed of the shaft.

This tachometer reference, along with a sensor waveform, is used to calculate the phase
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information. Meanwhile, weighing discs, which will likely incorporate grooves, holes, or

another eccentric weight connecting provision, will also be mounted on the shafts. The

majority of the testbeds are equipped with a metal bush connecting facility to create

the rub impact [185]. Contact type general-purpose accelerometers and non-contact

type proximity sensors are commonly used for the vibration data acquisition. The ac-

quired data is then passed through an SCU, which often performs signal amplification

and analog-to-digital conversion. It is then applied to the MAU, which is generally

a computer that carries out the monitoring and analysis of the input signal and any

associated tasks with the help of specifically developed software. In SRF, the unbalance

Table 3.2: Setup conditions for testbed of DS-2 dataset.

Features Specification / values

Sensors
Analog tachometer, accelerometers, and micro-
phone.

Frequency
RPM

Sampling Frequency: 51.2 kHz
RPM Range: 700 − 3600 rpm

Motor Power 1/4 CV DC

Rotor Speeds 10.0 − 60.0 Hz

Unbalance weights 6.0 g, 10.0 g, 15.0 g, 20.0 g, 25.0 g, 30.0 g, 35.0 g

Misalignment
Horizontal: 0.50 mm, 1.0 mm, 1.50 mm, 2.0 mm
Vertical: 0.51 mm, 0.63 mm, 1.40 mm, 1.90 mm,
1.27 mm, 1.78 mm

Diameter Rotor: 152.4 mm and Shaft: 16.0 mm

fault is created by connecting weights (bolts, nuts, washers, etc.) on the weighing disc.

Two equal weights are placed 180◦ apart to create couple unbalance, while a one-sided

weight is positioned to generate static unbalance. Much like in couple unbalance, if

unequal weights are set in place, then dynamic unbalance can be simulated [26]. The

coupling is loosened to induce a parallel shift and/or angular shift to create parallel

and/or angular misalignment [185]. In terms of loosening faults, the majority of the

works deal with pedestal loosening, which is simulated by loosening the pedestal bolt of



3.2. Datasets Description 47

the bearing housing to create clearance from the testbed base [16]. Meanwhile, struc-

tural looseness can be demonstrated by loosening the bolt connecting the testbed base

to the foundation. The stationary bush that is in contact with the shaft or disc pe-

riphery will induce rub impact [26]. The shaft bend and shaft crack provisions are also

shown in Fig. 3.1. Here, the experiment is conducted by setting different fault condi-

tions as described before, and then the testbed is set to different rotational frequencies

and load conditions to collect data via repeated trials. The SRF dataset created for

our experiments consists of six different fault classes namely healthy (HL), static UB

(S UB), couple UB (C UB), dynamic UB (D UB), misalignment (MA) and looseness

(LS). The data collection conditions and the general testbed information are provided

in Table 3.1.

3.2.2 MaFaulDa dataset (DS-2)

MaFaulDa is a publicaly available dataset that uses SpectraQuest’s machinery fault

simulator and produces multivariate TS data for SRF diagnosis. The dataset uses the

two sets of accelerometers for the collection of vibration data, which are organized in

three orthogonal directions, i.e., axial, radial, and tangential. It is equipped with a

tachometer to measure the system rotation frequency and a microphone to capture the

operating sound. The faulty conditions considered in this setup are normal (NM), unbal-

ance (UB), and horizontal misalignment (H MA) and vertical misalignment (V MA).

The unbalance conditions are simulated with seven different weights. The misalign-

ments are implemented with varying shift clearances in the data gathering process. A

total of 1951 various conditions are incorporated in the dataset. For each scenario,

the data is collected at 50 kHz over a time interval of 5 seconds, with eight prescribed

signals. The MaFaulDa data acquisition setup description is given in Table 3.2.
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Table 3.3: Description of rotor faults

FaultCategory
(Fault No.)

Vibration Characteristics Assoc.
Faults Cause & Effect

Plane Symptomatic Frequency Phase
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is
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(1

)

Angular
(1a)

Axl 2x peaks are higher than 1x
peak. Stronger 3x axial and
torsional responses at 1/3rd of
critical speed.

A phase shift of
180◦ in the axial
direction.

4a(C),
Brg.
Flts(E)

Cause: Component expansion and
cold alignment due to thermal distor-
tions. Improper coupling alignment,
Uneven foundation, imparted forces
from other components, bent shaft,
mass unbalance, etc.
Effect: Early fatigue failure, exces-
sive heat and friction, and compo-
nent damage.

Parallel
(1b)

Rad 2x peaks are higher than 1x
peak. Stronger 1x axial and
torsional responses.

A phase shift of
180◦ in the radial
direction.

Parallel
&
Angular
(1c)

Axl
&
Rad

2x peaks are higher than 1x
peaks. Presence of 3x har-
monics.

A phase shift of
180◦ in radial and
axial position

U
n
b
a
la
n
c
e
(2

)

Static
(2a)

Rad Larger 1x and harmonics with
less than 15.0% of the 1x.

A phase shift of 0◦

in radial direction

4a(C),
3a(C),
4d(C)

Cause: Rotor mass eccentricity due
to assembly errors, manufacturing
defects, debris deposit, etc. Presence
of other faults: bow shaft, corrosion,
falling of damaged rotor part, etc.
Effect: Higher dynamic load and
early fatigue failure, wobbling
movement.

Couple
(2b)

Rad Larger 1x and harmonics with
less than 15.0% of the 1x.

A phase shift of
180◦ in radial di-
rection

Dynamic
(2c)

Rad Larger 1x and harmonics with
less than 15.0% of the 1x.

0◦ to 180◦ Phase
shift.

L
o
o
se

n
e
ss

(3
)

Component
(3a)

Axl
&
Rad

Dominating 2x. Presence of
1x to 10x harmonics, subhar-
monics (x/2, x/3, etc.), mul-
tiples of subharmonics (2x/3,
4x/3, etc.).

Unstable phase
reading.

3 (E),
2 (E)

Cause: Improper fittings, tear and
wear, thermal expansion.
Effect: Damage or detach of compo-
nents, Secondary faults like misalign-
ment and unbalance.

Structural
(3b)

Rad Higher 1x and/or 2x. Har-
monics frequency amplitude
above 50.0% of 1x.

180◦ phase shift
between base
plate and founda-
tion

2 (C)

Cause: Loosened bolts or bed-
plates, deteriorated concrete foun-
dation, loose or distorted machine
mountings.
Effect: Component looseness, unbal-
ance, and misalignment.

S
h
a
ft

F
a
u
lt
s
(4

)

Bent
Shaft
(4a)

Axl
&
Rad

Higher 1x when bent at the
middle of shaft. 2x generated
when bent close to the cou-
pling.

A phase shift of
180◦ in the axial &
0◦ in the radial di-
rections. 2a(E)

Cause: 1) Permanent: Large un-
balance force, uneven shrink fittings,
residual stress or collision.
2) Temporary: Friction and thermal
distortion, high length to width ra-
tio.
Effect: Higher dynamic load and
early fatigue failure, unbalance.

Shaft
Crack
(4b)

Rad Dominating 2x. Presence of
1x and certain subharmonics
(1/2x, 1/x, etc.).

Directly propor-
tional to the depth
of the crack.

4c(E),
4a(E)

Cause: Severe thermal and mechani-
cal stresses or manufacturing defects.
Effect: Reduction in bending stiff-
ness, shaft bow.

Rub
Impact
Fault (4c)

Rad Higher 1x with 2x, 3x and
other harmonics. Presence of
1/2x, 1/3x, etc.

Inconsistent
phase. 1 (C),

2 (C),
4a(E)

Cause: Excessive unbalance, mis-
alignment, self-excited instability,
resonance, thermal distortions.
Effect: Excessive heat, Thermal bow.

Shaft
Corrosion
& Wear
(4d)

Not directly evident.

4b(E)

Cause: Electrochemical reaction due
to environmental factors.
Effect: Metal lose, crack

Broken Ro-
tor Bar (5)

Rad Case 1: Higher 1x with, up
to 4x. Pole-pass sidebands
with 2x line frequency. Case2:
Higher 1x with 2x line fre-
quency sidebands.

Inconsistent
phase.

4a(E),
2 (E)

Cause: Thermal, magnetic, dy-
namic, mechanical, and environmen-
tal stresses.
Effects: Uneven current flow. Ther-
mal bow and unbalance.

*Abbreviations- Axl: Axial, Rad: Radial, Assoc.: Associated, Brg. Flts: Bearing Faults, C: Cause of, E: Effect
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3.3 DFC and SRF

The study of symptomatic parameters of rotor faults revealed that SRF is more sensitive

to DFC of rotational frequency. Hence this section addresses the SRF-DFC correlation

and the experiments conducted to substantiate it. The impact of DFC in characterizing

the vibration of SRF can be visually verified from Fig 3.3, where DFC representation of

a healthy and unbalance vibration signal at 1500 RPM is shown. At the 1x frequency of

around 25Hz, the amplitude of unbalance signal is high, and small spikes are present at

all the other rotational frequencies. In contrast, for healthy data signal all amplitudes

of rotational frequencies are similar. This evidence that DFC can be the clear indicator

of SRF. A more detailed description of SRF is given in Table 3.3 with amplitude and

phase characteristics, along with the most affected plane, associated faults, and the

causes and effects of the faults. The fault-wise description of the impact of DFC in

SRF is given below:

(a) Healthy (TD) (b) Unbalance (TD)

(c) Healthy (DFC) (d) Unbalance (DFC)

Figure 3.3: DFC representation of signal at 1500 RPM
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3.3.1 Structural rotor faults

The SRF, being the primary cause of vibration, strongly reflects the abnormal vibrations

by various DFC parameters. The vibrational characteristics of faults such as misalign-

ment, unbalance, and looseness are explained in this section to depict the DFC-SRF

correlation.

3.3.1.1 Misalignment

Misalignment can be analyzed by comparing the ratio between 1x (unbalance indica-

tor) and 2x (misalignment indicator) components. In normal misalignment scenarios,

2x and 1x components are present in the radial vibration spectrum, with 2x being the

predominant component with a range up to 150.0% of 1x [67]. The severe misalignment

conditions are characterized by the harmonics 3x to 8x or even a full high-frequency

harmonics series. Patel et al. [186] presented certain observations to identify the type

of misalignment as well as to distinguish between misalignment and crack faults in the

rotor. In order to uniquely identify misalignments, they suggested investigating the

presence of strong negative higher harmonic frequency components compared to that

of rotor crack. They also observed that stronger 1x axial as well as torsional responses

and weak higher harmonics represent parallel misalignment. They added that a strong

3x harmonic component in its axial and torsional vibration response at 1/3rd critical

speed indicates angular misalignments. Phase information is also used as a defining

feature of misalignments. Across the coupling or machine, a phase shift of 180◦ in the

axial position shows angular misalignment, and the same in radial position indicates

parallel misalignment, whereas that in both axial and radial position represents com-

bined misalignment [68]. The vibration waveforms follow a periodic pattern having one

or two cycles in each revolution of the shaft.
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3.3.1.2 Unbalance

The vibration wave produced by unbalance is sinusoidal and occurs at a frequency of

‘one per revolution’ (1x), i.e., a single frequency vibration with the same amplitude in

all radial directions. Other than the severe faulty states, vibration generally contains

1x only, without any harmonics of it. The 1x with high amplitude and its harmonics

with less than 15.0% of the 1x is an indication of an unbalanced state [187]. In this

case, up to the first critical speed of the machine, the amplitude increases with speed,

and the phase from the vertical and horizontal measurements differ by 90◦. In dynamic

unbalance, there will be 180◦ phase shift in the radial direction, while static unbalance

shows a phase shift of 0◦. For unbalance due to the bent shaft, the phase shift of 180◦

happens in the axial direction with no phase shift in the radial direction [67].

3.3.1.3 Looseness

In the case of component looseness, the initial stage vibration signature contains mostly

1x and 2x components, but with escalated deterioration, the fractional harmonics with

increased amplitude starts to appear. Generally, looseness is characterized by several

running speed frequency harmonics (1x – 10x) with subharmonics (x/2, x/3, etc.) and

their integer multiples (2x/3, 4x/3, etc.) of magnitudes greater than 20.0% of the 1x

amplitude. Structural looseness creates 1x and/or 2x radial components with predom-

inant vertical amplitude, subject to the type of issue. For rigidly connected machines

with no belts or couplings, the radial 2x signifies looseness. The waveform generated

is periodic with one or two cycles per revolution. A phase difference of 180◦ exists

between the foundation and vibrating components in case of structural looseness [67].
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3.3.2 Shaft faults

According to the fault categorization from the vibration perspective, the shaft faults

such as bending, cracking, and rub impacts are the secondary cause of abnormal vibra-

tion. Hence, their frequency characteristic responses are described in this section.

3.3.2.1 Bent shaft

In the case of bent shaft, if the bent is close to the middle of the shaft length, then 1x

will be dominating, and 2x will be dominant for the bents near to the couplings. The

most affected plane is axial, though vertical and horizontal planes will also give out 1x

and 2x peaks [72]. The 2x amplitude can vary from 30.0% of the 1x amplitude to 100.0%

– 200.0% of the 1x amplitude. The spectrum of bent shaft is almost similar to that of

misalignment; hence, the phase can be used as a good differentiating indicator. In bent

shafts, the radial phase measurements will be in phase, while axial measurements will

be 180◦ out of phase at opposite ends of the component [67].

3.3.2.2 Shaft crack

The first and foremost effect of shaft crack is the reduction in bending stiffness in the

direction of the crack, which results in inducing excessive 2x vibration in the shaft [71].

The second effect is the rotor bow, where the bending results in the natural axis shift cor-

responding to the direction of the crack. This effect generates 1x components, which will

progressively add to the already existing residual unbalance frequency component [72].

The cracked shaft vibration mostly affects the radial plane, and it produces increased

1x vibration along with the 2x and 3x harmonics. In certain scenarios, the presence of

subharmonics 1/2x, 1/x, etc., are also observed with this fault. Studies revealed that

the phase shift is directly proportional to the depth of the crack [71,188].
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3.3.2.3 Rub impact

The vibration changes in characteristic ways whenever the rub happens between sta-

tionary and non-stationary components. So other than the times there is no contact,

the waveform seems absolutely normal. The spectrum will be containing higher am-

plitude subharmonics and superharmonics of the synchronous frequency with a strong

rub impact. Chu et al. [189] observed the presence of 1/2 fractional harmonic compo-

nents and 1/3 fractional harmonic components along with the 2x, 3x harmonic com-

ponents. Meanwhile, the existence of pseudo-resonance and backward whirling compo-

nents showed by [190] as the effect of rub. The phase information shows that it can not

maintain a consistent phase in rub related vibration motion.

3.3.3 Broken rotor bar

Uneven current flow to induction motor rotor owing to crack or break results in two

kinds of vibration changes. In the first case, 1x and harmonics generally up to 4x

will accompany with pole-pass sidebands with quite low 2x line frequency [67]. In the

second case, the amplitude of rotor bar passing frequency (RBF, which is the number

of rotor bars times the running speed) will be higher, with 2x line frequency sidebands

(100Hz or 120Hz) [66]. Due to the motion of vibration, the phase will be consistent in

broken rotor bar faults.

3.4 DFC Extraction

According to the literature review, the utilization of DFC is instrumental in developing

solutions of SRF. Meanwhile, the literature study upholds the need of more realistic

industrial data with varying speed and load conditions, which in turn makes the DFC

extraction more complicatied. Hence we proposed the following procedure in DFC

extraction and data subsampled feature space creation, which suppresses the other
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raw data related issues. Sub-sampling is performed by selecting the summary interval

points that ensure sufficient data points in each sensor segment. This stipulates proper

extraction of DFC (FD component) and TD representatives of each segment. The

process is described as follows:

Let K be the number of sensors mounted at different positions, producing univariate

TS vibration signals V = [V1, V2, ..., VK ] with each Vi ∈ RL where L is the length of

one sample sequence. Since the framework deals with rotational data, one complete

informative segment should consider at least the number of sampling points produced

in a single rotation. This decision is based on the given rotational frequency in rpm Rs

and the sensing frequency Sf of the data acquisition system. The rotation frequency

is converted in seconds for the convenience of calculation by Rf = Rs/60. Then, the

number of sampling points per rotation is calculated by: Sr = 60Sf/Rs or Sf/Rf .

Thus, the interval points or segment length is decided according to the condition: So ≤

Sr ≤ Sl, where So is the overlapping points in segmentation and Sl is the segment

length. The segments are extracted equally from all the sensors so that the number of

segments from an L length single sensor sequence is:

ns = (L− Sl)/(Sl − So) + 1 (3.1)

Hence, the segments of sensor Si are denoted by Vi = [Vi,1, Vi,1, ..., Vi,ns ].

After the segmentation, each segment is depicted by a high-level representation in

the sub-sampled feature space. The rotational frequency and its higher-order harmonic

components are more sensitive to the SRF. Thus, the basic task is to extract these

components from the vibration spectrum. In a real plant scenario, RM working at a

fixed rpm (Rs) undergoes speed fluctuations due to varying voltage, connected load,

the influence of other rotating components, etc. As a result, the rotational frequency

and its harmonic components can not be estimated directly by Rf and its multiples

to extract DFC. In faulty conditions, this phenomena of fluctuation of actual values
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Figure 3.4: DFC extraction from varying RPM

around the theoretical values are more obvious. Hence, the process of extracting DFC

with FFT is assisted with proper normalization process [16] to reduce the rate difference

under varying operating conditions. This operation is shown as

Aamp =
1

fn

fn∑
i=1

amp(fix) (3.2)

µ (fix) =
amp(fix)

Aamp

(i = 1, 2, ..., fn) (3.3)

Here, we consider fn frequency bands for DFC extraction and the amp(fix) represents

the amplitude corresponding to fix frequency. The Aamp shows the mean of these

amplitudes, and finally µ(fix) gives the normalized amplitude values. There is often

a fluctuation observed in the frequency range near the rotation frequency bands, and

hence, a multi-pass filter with a frequency range of ∆f that extracts frequency between

fix−∆f and fix+∆f is used. This has been shown in Fig. 3.4, considering the frequency

spectrum of the unbalance fault at 1500 rpm. In practical data collection experiments,

it is observed that the rpm variation is approximately less than 10.0%, which doesn’t
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cause significant amplitude change. Both amplitude and phase values are extracted

to generate the DFC components. Similarly, the TD representative of each segment

is generated from the data bins of length Sr. The DFC extraction is performed on

the harmonic frequencies according to the number of features required, and appended

along with the TD features to generate a subsampled vector for representing a particular

sensor segment.

3.5 Role of DFC in SRF Diagnosis

This section proves the significance of DFC in SRF diagnosis by comparing the perfor-

mance of the conventional TD and FD features against DFC features. This study is

conducted in order to substantiate DFC as the symptomatic fault feature of SRF. The

two top performing ML algorithms, SVM and ANN along with ANFIS algorithm for

evaluating fuzzy reasoning on DFC decision parameters are used for the DFC perfor-

mance comparison. The first two models are the most widely used ML technique in RM

fault diagnosis [10]. At the same time, ANFIS blends the ability of fuzzy logic to mimic

human reasoning and backpropagation learning of ANN. All three models were tested

with ten features each from TD, FD, and DFC features for performance comparison.

The TD features contain mean, standard deviation, variance, root mean square, abso-

lute maximum, coefficient of skewness, kurtosis, crest factor, margin factor, and shape

factor. The FD features include mean, variance, third moment, fourth moment, grand

mean, C factor, D factor, E factor, G factor, and H factor derived from the frequency

transformed domain. DFC is represented by amplitude and phase representatives of 1x

to 5x frequencies.

ANFIS method was developed by Jang in 1993 [111]. ANFIS model allows user

interference compared to ANN which can be utilized to incorporate domain specific

decision making criterias. It is a hybrid learning a structure that combines fuzzy logic

and ANN which consists of backpropagation learning. But in ANFIS, the fuzzy logic is
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Table 3.4: DFC Performance with ML Models

ML Models
DS-1 DS-2

TD FD DFC TD FD DFC
ANN 84.84 92.49 94.27 87.52 92.76 94.43
SVM 80.51 92.04 93.96 86.07 92.00 94.39
ANFIS 84.46 93.20 95.01 88.52 93.59 95.64

treated more systematically that it demands least expert knowledge. So in this imple-

mentation, eventhough it is possible to add the rules related to SRF diagnosis directly,

the system is let to learn the rules itself, providing the decision making parameters as

input. ANFIS normally has five layers of neurons of which neurons in the same layer are

of the same function family. The layers are named as the fuzzification layer (I), the rule

layer (II), the normalization layer (III), the defuzzification layer (IV), and the output

layer (V). The ANFIS algorithm uses Sugeno based fuzzy logic to deal with impreci-

sion or uncertainty and neural network for adaptability. Integrating the relatively low

learning rate neural network with fuzzy logic makes it suitable for time critical applica-

tions [191]. SVM is implemented with RBF kernel, and its regularization parameter C

is set to 1.0, and the parameter γ that decides the influence of training example is set

to 0.1 by performing grid search. The ANN has three layers, i.e., the input layer con-

tains ten nodes, the hidden layer with non-linear RBF activation function containing

20 nodes, and the output layer nodes decided depending on the number of classes.

The results are shown in Table 3.4, from which it is observed that TD features show

the least accuracy on both datasets as they are extracted directly from the raw data

segments. But FD features and DFC perform much better than TD, signifying the

importance of transformed features in identifying SRF. The FD features give almost

similar accuracy in both the datasets with the models, but an apparent discriminative

ability can be determined with DFC features in the transformed domain. This shows

that DFC contains more symptomatic fault features of SRF, with less complex extrac-

tion operation than traditional FD features. It is evident that all the three ML methods



58 3.6. Summary

provide the highest accuracy with DFC, especially the ANFIS model. The role of DFC

as decision parameters of SRF is exploited by the rules derived by ANFIS, much better

than the other models. This establishes DFC as the most dependable feature for SRF.

Among the datasets, DS-2 got higher accuracy than DS-1, especially with TD features.

But in the transformed domain, there is no significant performance enhancement for

DS-2. ANN and SVM show almost similar performance for both datasets with a slight

upper hand for ANN, while with the transformed data, ANFIS is dominating. From the

discussion, It is apparent that DFC demonstrated its role in efficacious SRF diagnosis.

The impact of DFC with sequential DL methods can be verified from section 4.5.2.

These result leads to recognizing DFC as the main component of SRF diagnosis in the

proposed framework.

3.6 Summary

In order to promote the fault-characteristics-based analysis of RM fault diagnosis, un-

derstanding the vibrational characteristics of the faults are very much essential. This

chapter serves this purpose by providing the theoretical background of rotor faults with

fault characteristics analysis. It also illustrates a general AI-based RFD framework,

which we followed in all the models described in the remaining chapters. Similarly,

data availability drives the recently developed intelligent data-driven methods. The

RM fault diagnosis suffers from various data-related issues such as data scarcity, data

imbalance, and impure data. Furthermore, it is indispensable that data must reflect

real plant working environments. Hence, this chapter is provided a description of the

datasets we used in the experiments. Similarly, this chapter emphasizes the role of DFC

in SRF with the summarization of various related findings and with the experiments

conducted in our works in this regard.

The critical difference between the DS-1 and DS-2 data sets is the variation of

speed used to capture the data. The operating range of rotational frequency is almost
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similar in both datasets, with an upper band RPM of 3600. DS-1 has five different

RPM conditions and six faults, while DS-2 contains four fault conditions with around

50 different rotor speeds of varying other operating conditions. It summarizes that the

DS-2 dataset is more diverse as compared to the DS-1 data set. But the run-up and run-

down data provide distinguished fault diagnosis capabilities to DS-1, which is absent

in DS-2. Moreover, DS-1 is more imbalanced than DS-2, which demands additional

metrics like F1-score to ensure its performance. The performance comparison with the

conventional TD and FD features and DFC features has been done on SVM, ANN,

and ANFIS algorithms. The DFC produced apparent discriminative ability compared

to the other two features, especially over the TD features in the transformed domain.

Moreover, the role of DFC as decision parameters of SRF has been proven by the

exceptional results produced by ANFIS, which exploits the rules derived from DFC.

Thus the impact of DFC is showed in SRF diagnosis, and the result leads to recognizing

DFC as the main component of SRF diagnosis in the proposed framework


