
Chapter 2

Literature Review

2.1 Introduction

The rise of Industry 4.0 precipitated the development of PHM, which gave way to

an industrial system that is more complicated with higher automation and increased

precision. Thus, the health state monitoring of such equipment became a challenging re-

sponsibility to improve the availability of the system. A significant amount of real-time

heterogeneous data generated by various sensors of CPS from several RM needs to be

effectively analyzed using AI-based algorithms to perform intelligent digital monitoring

in a collaborative and distributed environment of the industry. It supports identify-

ing the root cause of numerous faults, investigates their development, and proactively

forecasting the maintenance activities to overcome cataclysmic accidents, unplanned

shutdowns, and substantial loss.

In the beginning, the RFD research was split into two categories: i) model-based

diagnosis and ii) signal-processing-based diagnosis. In the model-based diagnosis, the

features of the monitored system and physical quantities like mass, stiffness, damping-

matrices, etc., are simulated using a mathematical model along with the facts of physics

[48]. The modeling can be performed at two levels: (i) system-level or (ii) component

level. That said, the researchers observed some drawbacks with this method. To begin
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with, it has proven to be impracticable as the system turns more complex with more

advanced machinery and high-tech technologies. Furthermore, this method has proven

inadequate for updating real-time processes with newly read data. More research studies

on the model-based identification of rotor faults can be found in the literature review

done by Bachschmid et al. [49]. In the meantime, signal processing-based techniques [50]

depend on drawing fault-specific characteristic features from the acquired signal and

yoking them with the suspected fault’s statistical model. Similar to the model-based

methods, using methods based on pure signal processing for fault diagnosis also has

some restrictions. Notwithstanding, for a specific period, the basis of fault diagnosis

and the decision-making algorithms was the characteristic features recognized by the

signal processing methods [12,51–53].

Recently, in the context of Industry 4.0, the motto of ‘right information and data at

the right time for decision making’ emerged as the primary force of AI-based data-driven

FDPM [4,54]. Under the AI umbrella, there are two main categorical divisions: shallow

learning (SL) – also known popularly as machine learning (ML) and deep learning (DL).

The decision-making philosophy driven by data has been enhanced due to low-cost

sensors and big data availability. The far-flung utilization of ML and the fast outgrowth

of DL algorithms have established their popularity in the field of RM fault diagnosis [55,

56]. What is more, these algorithms are highly regarded among the research community

due to their flexible and robust nature [55]. Regrettably, most of the research related to

AI-based fault diagnosis of RM focuses solely on the bearing or gear faults [12, 55, 57],

while giving little emphasis to rotor faults. Hence in this literature study, we proposed

a more clear RM fault classification from the vibrational characterizes perspective to

affirm the position of rotor faults. The theoretical background of rotor faults was then

provided to give an explicit idea that makes the researchers capable of coming up with

new fault-specific enhancements. The research fields of ML- and DL-based RFD are

examined in this section with other advanced methods.
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Figure 2.1: Rotating machinery fault categorization

2.2 Rotating Machinery Fault Categorization

As seen before, the right categorization of rotating machinery faults is significant for

moving past component-wise analysis and enhancing the fault-characteristics-based

analysis for RFD. An example of fault categorization is shown in figure 2.1. In this

example, before the rotor faults are categorized from a ‘cause of vibration’ perspective,

the rotor faults are isolated from the bearing and gear faults in the first step. Based on

this, the primary cause of vibration is SRF or 1x fault, and the secondary cause is shaft-

related faults. Together they make up the first two categories. In the meantime, the

broken rotor bar (BRB) fault has also been added to the fault category list. The most

common and vital rotor faults like unbalance (UB), misalignment (MA), and looseness

(LS) are placed under SRF. Shafts can be affected by faults such as a bent shaft (BS),

a rub impact fault (RIF), a shaft crack (SC), and corrosion and wear (Cr&Wr). These

are believed to be part of the category of shaft fault and are often associated with

SRF. In a practical scenario, it is impossible to assume that a single fault occurs in the

rotor at any given time. Therefore, to represent the combination of multiple faults, we
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incorporated compound fault (CF) in the fault grouping process.

The uneven distribution of mass in the motor stimulates the rotor to unbalance,

which causes the inertia axis of the rotor to become imperfectly aligned with the ge-

ometric axis [58]. The asymmetry can cause misalignment in the applied load, the

improper alignment of the couplings, shafts, bearings, and the thermal distortion of

the bearing-housing supports. The bearings end up holding a heavier load than they

were particularly designed for [59] due to this fault. The present literature is filled to

the brim with research on bearing pedestal looseness. Improper assembly or the pro-

longed running of machinery can cause looseness [60]. Looseness related to the bearing

can reproduce the effect similar to that of unbalance, whereas secondary damage and

detachments are brought on by component-based looseness. It is worth noting that

around 40.0% of rotor-related problems are associated with unbalance, 30.0% with mis-

alignment, 20.0% to resonance, and the leftover 10.0% to other reasons [61]. The rub

fault is brought on by the contact between the rotor and the stationary parts of the

machine under tighter clearances. The shaft is no longer able to withstand forces re-

leased during normal operation because of shaft crack, and it is created due to extreme

thermal and mechanical stresses [62]. A broken rotor bar fault [63] generally takes place

in induction motor (IM) rotors, inducing an uneven current flow through the rotor and

creating both thermal and bending issues with the rotor. The corrosion-based faults on

the shaft’s surface are worsened due to the electrochemical reaction from environmental

factors [64].

2.3 Background of Rotor Faults

The nature and behavior of the vibration are affected by rotor-related faults; that is

why vibration sensing has become the most popularly used signal sensing method for

RFD [65]. The RFD researchers prefer the subharmonic and superharmonic frequency

components of non-linear and complicated vibration motion, which characterize differ-
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ent rotor faults precisely. A rotor testbed used for acquiring the vibration data with

the provisions for rotor fault simulation is shown in Fig. 3.1 with description in section

3.2.

As seen before, this work displays a grouping of an array of generic fault categories

that affect the rotor under the category of rotor faults. These include SRFs, shaft

faults, and broken rotor bar faults. According to what was drafted in the introduction,

these categories are further split into subcategories depending on the nature and cause

of faults [66–68].

2.3.1 Structural rotor faults

Structural rotor faults are the main reason for abnormal vibration in the rotor and are

called 1x faults. These can be further split into three: misalignment, unbalance, and

looseness.

2.3.1.1 Misalignment

Misalignment is a scenario that takes place when bearings, shafts, and couplings are

not properly aligned along their centerlines [68]. With prolonged machine operation,

component expansion and cold alignment are respectively caused by heating and cool-

ing. The net result is the misalignment of the machinery components. Misalignment

can also be caused by continually operating with an unsteady foundation, a movement

in the foundation, or the improper alignment brought on by imparted forces from other

components [67]. Additionally, the risk of installation misalignment to the system in-

creases if the couplings are not installed properly. In the meantime, faults due improper

bearing seats and bent shaft causes a specific type of misalignments similar symptoms

of normal misalignment [68]. When the bearings have to bear a higher dynamic load

than they are designed for specifically, it leads to misalignment and unbalances, which

ultimately causes failure due to premature fatigue. Misalignment causes excess heat and
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friction and subsequent damaging of the component in the couplings, while in horizontal

shafts, vibration on both the vertical and axial planes is brought on by misalignment.

In the end, excessive vibration in the horizontal and axial planes characterizes any mis-

alignment in the overhung horizontal shaft. In both these cases, axial vibration is a

salient component. Inordinate horizontal and axial vibration points to misalignment in

the case of the vertically aligned shaft [67].

Parallel misalignment, angular misalignment, and parallel and angular misalignment

are the three categories of misalignments [69].

(i) Parallel misalignment : The centerlines of shafts joined by the coupling are parallel

in the case of parallel misalignment. However, they will be at an offset, and it is char-

acterized by solid radial vibration.

(ii) Angular misalignment: Angular misalignment takes place when a bending force is

induced on the shaft by the joint at the coupling. In cases like these, a strong vibration

in the axial direction is caused when joining shafts’ centerlines are crossed at an angle

between them.

(iii) Parallel and Angular misalignments: When parallel misalignment and angular mis-

alignment simultaneously occur in a rotor system, it is called parallel and angular mis-

alignment. This gives rise to vibration in both axial and radial directions.

2.3.1.2 Unbalance

Unbalance is the defective state of a machine that takes place when the centerline of

the mass of the rotor (inertia axis) and the center of rotation (geometric axis) are non-

coinciding [58]. The primary reasons for an unbalanced rotor are the adding of new

fittings to the rotor before proper counterbalancing, rotor mass eccentricity produced

by the uneven build-up of debris on the rotor, and assembly errors (unidentical blades

of the wind turbine, windings of the generator rotor, etc.) [67].

Apart from these aspects, several other rotor faults can also cause unbalance. For
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instance, unbalance can be brought on by factors like the falling of damaged rotor parts,

a bent shaft or loose parts, or corrosion and abrasion. An unbalance fault can damage

the critical components of the machine, including the gears, bearings, and couplings.

As a matter of fact, the bearings are particularly affected by unbalance in that. As

mentioned previously, the bearings experience ultimate breakdown due to premature

fatigue as they are made to carry a higher dynamic load than what they are designed

for specific. A wobbling movement that rotating structures face during operation char-

acterizes the vibration that results from the unbalance. A radial vibration that is partly

vertical and partly horizontal is produced by unbalance. Excessive vibration is a fine

way to point out unbalance as the machine experiences more flexibility in the horizon-

tal plane. Most forces are generated perpendicular to the shaft, which is why in an

ideal scenario, axial measurements should point out weak vibration [67]. The dominant

frequency component will be 1x in vertically placed shafts, as the unbalance is caused

by the mass effects of radial plane vibration. A phase shift of 90◦ takes place as the

sensor moves from the horizontal to the vertical position [58].

Generally, unbalance fault can be split into three types:

i) Static unbalance: It is the unbalance that is noted when at rest, in which the balance

is affected by only one force. In the said scenario, there is a displacement in the inertial

axis of a rotor, and it lies parallel to the axis of rotation. Because of a critical chance

of uneven mass distribution that gives rise to a parallel shift between the axes, this

problem is experienced widely in disk-shaped rotors. The risk of static unbalance is

higher in simple systems than the risk of couple unbalance.

ii) Couple unbalance: In couple unbalance, the rotor looks balanced statically when

two equal weights or forces are placed 180◦ apart. It is impossible to observe this issue

when the rotor is at rest. The elongated cylindrical type rotors commonly face this

phenomenon. The supposed ‘wobble effect’ is caused by a couple unbalance producing

a 180◦ out-of-phase reading from opposite ends of the shaft. In general, this type of
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fault is mostly observed in systems with more than one coupling or complex systems

with unbalanced weights at multiple locations in the rotor.

iii) Dynamic unbalance: Dynamic unbalance is an unbalance condition that takes place

in real systems. This unbalance condition presents a combination of static unbalance

and couple unbalance. This type of unbalance is observed to be present in almost every

rotor, and to address this, weights must be applied on a minimum of two planes.

2.3.1.3 Looseness

Based on whether the looseness affects by a structural component or mechanical part,

this fault is categorized into two types: component looseness and structural looseness.

The Component looseness occurs when the mechanical components are inappropriately

fitted, whereas structural looseness occurs due to the relative movement among the

surfaces of the fundamental structures. Excessive horizontal, vertical, and structural

vibrations in the horizontal and overhung horizontal shafts are caused by this type of

looseness. The issue is extended to the vertical shafts through excessive horizontal and

structural vibrations. The looseness issue accounts for more vertical vibrations than

horizontal vibrations [70].

i) Component looseness: Component looseness can be observed in rotating components

and/or non-rotating connections that constrain the shaft to its rotating axis (such as

the bearing base [pedestal], bearing mounts, and bearing caps) because of improper

fittings, wear and tear, and thermal expansion. Secondary damage is induced in this

issue as it leads to the components becoming damaged or separated from the assembly.

For instance, relatively small residual misalignment can be caused by component loose-

ness, thus producing increased vibrations affecting both the radial and axial planes.

Unbalance may occur if the loosened components are rotor mounted.

ii) Structural looseness: The fundamental structures of an RM are not supposed to

move freely. The structural looseness occurs when a little movement occurs between



2.3. Background of Rotor Faults 23

the surfaces of structures like bedplates, a disintegrated concrete foundation, loose or

distorted machine mountings, etc. It is usually produced between one vibrating com-

ponent, which is generally the foot of the machine, and one stationary component, the

foundation. Vibration in the radial plane can be caused by both structural looseness

and soft foot looseness.

2.3.2 Shaft faults

Shaft faults directly affect the shaft like bending, cracking, rub impacts, and corrosion

and wear. They can be brought on either as a result of SRF or because of other external

reasons. Most of the shaft faults are considered as the secondary cause of abnormal

vibration. Shaft faults which are known to be the most important, are laid out below.

2.3.2.1 Bent shaft

It is the most frequently observed RM fault and usually develops because of thermal

distortion, creep, or a large unbalance force [71]. In contrast, another cause of thermal

rotor bowing is rotor rub. Gravity can make a rotor can go through a cold bow during

a resting position, particularly in shafts with a high length to width ratio. The static

unbalance faulty condition’s reemergence can be brought on by the rotor bow on a

rotating machine. A bent shaft can also result from improper handling and high torque

pressure. Effects that are similar to the misalignment are brought on by bent shafts,

which causes the shaft to bear a higher dynamic load than they are specifically designed

for, thus finally resulting in failure because of premature fatigue [67].

2.3.2.2 Shaft crack

Shaft crack is observed when weak spots in the shaft are developed because of severe

thermal and mechanical stress or manufacturing defects, limiting its ability to hold up

the forces produced during normal operation. The causative stress can be cyclical in



24 2.3. Background of Rotor Faults

nature, wherein the initial crack converts into a fatigue fracture which results in an

abrupt breakage of the shaft. The reduction in bending stiffness in the direction of the

crack is the primary effect of shaft crack, resulting in inducing excessive 2x vibration in

the shaft [71]. The rotor bow comes as the second effect, wherein the bending causes

the natural axis shift corresponding to the direction of the crack. This effect gives rise

to 1x components that will progressively add to the pre-existing residual unbalance

frequency component [72].

2.3.2.3 Rub impact

A rub impact is created by the contact that emerged between the rotating components

and the stationary components. Its effect will stay passive in terms of overall vibration.

Highly non-linear vibrations are caused when a stator–rotor rub fault takes place in the

system due to misalignment, excessive unbalance, self-excited instability, and resonance

[73]. The stator–rotor rub is caused by the static forces working on the rotor in the

radial direction and the thermal distortions in the casing. A thermal bow in the rotor

can be the result of the heat induced by the asymmetric friction generated by the rub

impact in a one-per-revolution fashion. This gives rise to both a phase difference and

an unbalance effect. The degree of non-linearity grows with the increase in the rub

impact, thus creating higher amplitude harmonics of rotating frequency.

2.3.2.4 Shaft corrosion and wear

Corrosion and wear fall under the category of non-fracture-type shaft failure. Corrosion

results from the electrochemical reaction due to environmental factors, which ultimately

leads to the metal being worn away. Moreover, this increases the stress and ultimately

culminates in fatigue cracks. By and large, shaft failure will not be caused by these

faults. That said, they may give rise to fatigue failures which leave clear evidence

when they are in conjunction with the other faults. Here, cracks expand from the place
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where the metal part is extracted due to the debris created by oxidation in a direction

perpendicular to the applied stress on the area. In the meantime, a corrosion issue is

presented by pitting causes short-term failure, resulting in a small amount of material

loss from the shaft periphery [64].

2.4 Fault Diagnosis Approaches

In industrial applications, most RM fault diagnosis systems were based on traditional

signal processing methods such as the discrete Fourier transform (DFT), FFT, EMD,

WPD, HT, HHT, Wigner–Ville distribution (WVD), WT, etc. But nowadays, fault

diagnosis framework follows either ML-based SL algorithms or DL-based algorithms as

shown in Fig. 1.1. Considering the data acquisition phase, both ML and DL pursue

the same data collection process, though they demand data at different quantity and

precision. For an acceptable level of generalization, DL cannot compromise with the

amount of data customarily needed by ML, but can deal with noisy data environments.

But in feature processing phase, DL exercises the automated feature extraction and

selection by learning discriminative features in an end-to-end manner. As opposed to

DL end-to-end learning, ML goes for manual feature extraction which requires sufficient

domain expertise and time.

The conventional SL algorithms are constrained in their ability to learn the non-

linear relation of features. The need for extensive computation, the required time

(especially for the feature processing), and the demand for specialized expertise in

the domain, are other limiting factors. By using multiple-layer deep architectures, DL

methods could imbibe advanced levels of representation of input data as they go deeper,

which enables them to identify more complex features on their own. The most widely

used SL and DL approaches in the literature of RFD, especially in SRF are discussed

in this section.
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2.4.1 Machine learning-based approaches

RFD research has been successful in employing a variety of SL algorithms before and

after the advent of DL methods in the research arena. Irrespective of the fact that

the ML methods require a complex feature engineering ,it has certain advantages that

favours the machine health monitoring research, like the provision for applying domain

knowledge and the comparatively fewer data requirements. One of the earliest methods

found in the existing literature involves using ANN for motor fault diagnosis. There-

after, the research in this domain flourished with several algorithms adopted across the

supervised and unsupervised categories.

2.4.1.1 Artificial neural network

In AI-based machine health monitoring, the history of the application of ANNs stretches

over three decades [74], and it has been an indispensable part of the literature on SL

of RFD right from its inception. The approaches using ANN in RFD are custom-

made according to the variations of ANN architecture and signal processing techniques

used in feature processing. The method of integrating finite element analysis with

the neural networks is adopted in specific works of RFD [33, 75]. Several researchers

have tried to find out the best suited ANN architecture and feature extraction method

for specific tasks in RFD [30, 76–78]. A few works have registered to incorporate the

TD features in ANN, whereas FD and TFD features can be seen in a fair amount of

works lately [23, 79, 80]. Certain significant contributions have been observed in the

preprocessing of input data for the smooth learning of neural networks in RFD [26,81],

[82–85]. Moreover, ANN is viewed as a replacement for conventional feature extraction

methods. One such approach was proposed with a two-level learning stage by Lei et

al. [86]. A feature fusion model based on information entropy and the probabilistic

neural network was proposed by [87]. While summarizing the literature it is clear

that the majority of the researchers have tried different feature processing methods to
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improve the output, while a fair number of works follow TD approaches, despite the

prevailing trend of adopting FD approaches with ANN. Similarly, the proportion of

works that have modified the ANN structure and the number of works that consider

DFC feature extraction very high with ANN. Moreover, the percentage of works that

deal with RFD exclusively (without considering bearing or gear faults) demonstrates

the fact that ANNs are highly suitable for RFD analysis.

2.4.1.2 Support vector machine

As one of the frontrunners in both classification and regression tasks, SVM has been

proven to be a decent performer in machine health monitoring over the last two decades.

There are numerous ways in which researchers modify SVMs for adapting to their re-

search problems in RFD like wavelet-SVM [88], multi-layer SVM [89], multiclass wavelet

kernel-SVM [90], fuzzy SVM [91], proximal SVM [92], etc. By fusing the advantages of

the information entropy method and SVM, Fei et al. [93] proposed an information fu-

sion based method known as process power spectrum entropy and SVM. Tang et al. [94]

showed that the multiclass SVM trained with chaos particle swarm optimization out-

performs ANN in identifying rotor faults. In data and feature representation, SVMs

show their variegation with the thermal images [28], 2-D gray-scale texture [29], his-

togram features [95], etc. In some works, SVMs work with features extracted by CNN

to enhance the fault diagnosis performance [96]. There are some works reported in

the literature where SVM gave far-reaching attention to the feature extraction process.

SVMs used central limit theory [80], compensation distance evaluation technique [97],

characteristic frequency band energy entropy [98], Park’s vector approach [99], GA [37],

etc., for features engineering of RFD. Certain works demonstrated the dominance of

SVM over state-of-the-art ML techniques [79, 100, 101], while some others provided

fault-specific contributions to RFD [25, 32, 102, 103]. It is worth noting that the re-

searchers mainly attempt to change the kernel and incorporate new data structures to
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SVM to achieve a decent RFD accuracy. SVMs account for the maximum share in ML

methods for RFD analysis. SVMs succeed in utilizing information entropy fusion and

spectrum analysis in certain applications, demonstrating its ability to deal with a host

of input representations, while it is even used to evaluate the performance of feature

extraction. Due to the excellent potential for handling outliers, SVMs can be used with

any form of sensing method. Similarly, a number of the significant contributions that

made use of DFC in RFD involved using SVM for classification. In short, SVMs are

the most versatile of the ML models from an RFD perspective.

2.4.1.3 k-Nearest neighbor

k-NN is an instance-based, non-parametric algorithm renowned for its interpretability

and ease of implementation. It is the most popular algorithm used in RFD after SVMs

and ANNs. Chen et al. [34] proposed a k-NN based fault classification method that used

of the ’maximum cross-correlation sum operator’ as a similarity measure. The k-NN

with Euclidean and Mahalanobis distances was applied for rotor fault classification by

Biet et al. [104] using rotor flux measurements and classical electrical measurements,

which was a follow up work of [105]. Glowacz et al. [39] proposed a method for selecting

essential frequency components as features and applied to k-NN. Recently, Gohari et al.

[106] studied the identification of unbalance parameters of a rotating shaft having multi-

discs with k-NN. The fault specific frequency selection used with k-NN for selecting

essential frequency components as features in some works [39, 107]. In the works [22,

100,108,109], k-NN was employed for comparison purpose and proven as one of the best-

performing algorithms specifically appreciated for its faster and simpler operation. Even

though k-NN is simple and convenient, it is not widely adopted in RFD. In fact, barely

10.0% of the works utilize k-NN despite its ability to deal with decision boundaries of

any form. A number of researchers developed different similarity measures derived from

well-known distance functions, while others operated well-established algorithms such
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as GA to boost the performance of k-NN. However, the inability to recognize important

attributes, the overheads involved in deciding the parameter ‘k,’ and the interpretability

issue due to its non-parametric nature have been identified as the main limitations of

this algorithm, which make researchers reluctant to adopt it for RFD analysis.

2.4.1.4 Näıve-Bayes

Näıve-Bayes is the most popularly used Bayesian model in RFD, which works on condi-

tional probability basis. Wang et al. [110] used envelope features of the motor current

extracted using Hilbert transform. Bayesian modeling has a drawback that it is unable

to model and learn from the TS level change of data. As an attempt to mitigate this

disadvantage, Yusuf et al. [35] presented the NB classifier on the fault groups created by

the hidden Markov model (HMM). Xu et al. [36] developed a Bayesian belief network

with three layers, namely machine running conditions layer, machine faults layer and

fault symptoms layer with two topological configurations of causality, and fault symp-

tom. It was one of the attempts to incorporate human expertise in the field of RM

fault diagnosis. The higher chance of correlated features in the RFD dataset results in

certain restrictions to apply Bayesian family classifiers, as the independence assumption

is its core aspect. The inability to model and learn from the TS data, as well as the

issues created in the classifier due to the absence of data, are just some of the limiting

factors.

2.4.1.5 Fuzzy logic and other methods

The ability of fuzzy logic to mimic human reasoning has been utilized in RFD by

certain researchers. El-Shafei et al. [77] used the learning vector quantization (LVQ)

neural network in parallel to a fuzzy inference engine for addressing the SRF. The fuzzy

Sugeno model adaptive neuro-fuzzy inference system (ANFIS) [111] is a commonly

used fuzzy model in RFD [112]. Lei et al. [113] combined multiple ANFIS with GAs
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for a more reliable and intelligent RFD. Zhang et al. [91] introduced a fuzzy support

vector machine by integrating fuzzy logic with SVM. Qiu et al. [114] summarized a

significant analysis of unbalanced non-linear rotor systems and lately, fuzzy neural

network technology application in equipment fault diagnosis was proposed by Xu et

al. [115]. The decision making based on fuzzy logic has advantages over other methods

since the rules derived from the fault state play the key role. As the fuzzy classification

system does not have the capacity for pattern recognition as other ML models do, and

since certain concerns exist in terms of its implementation, it is not widely accepted in

RFD scenarios. However, individual attempts to utilize the harmonics of the rotating

frequency as the input to the fuzzy system and the use of ANFIS have returned some

significant result improvements.

Among the remaining ML algorithms, the random forest was used by Yang et al.

[109] with multiple class feature selection. Quiroz et al. [38] used the same algorithm

with TD statistical features. The linear descriminant analysis algorithm was explored

for RFD with acoustic signal input by Glowacz et al. [39], and decision tree was used

by Nguyen et al. [116]. A vibration image-based diagnosis was proposed by Yan et

al. [117] in which three features such as histogram of vibration image, histogram of

oriented vibration image, and 2-D FFT generated from vibration images were used.

The AdaBoost proposed in this work overcome the overfitting problem, and it fuses

multiple features. Martin-Diaz et al. [40] selected AdaBoost for comparative analysis

to prove its significance in RFD analysis.

2.4.2 Deep learning-based approaches

The abundance of data and the evolution of new algorithms supported by the hardware

expansions have accelerated the development of DL, which is essentially a nested hierar-

chical and more abstract representational framework. The advantage of the automatic

feature extraction of DL models made them widely accepted within the field of machine
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fault diagnosis since this allows for avoiding the requirement of high domain expertise

in feature engineering.

2.4.2.1 Convolutional neural network

The CNN is established as a convolution-based hierarchical image pattern recognizer

and is the most widely used DL model in RFD. The discrepancy caused by using 1-D TS

signals in a 2-D convolution-based network is solved by different methods such as 1-D

to 2-D conversion or by introducing 1-D CNNs. Several image representations of input

data have been widely used with CNNs such as orbital images [118,119], infrared images

[120,121], bi-polar images [122], etc. There are several ways by which vibration data has

been applied to CNNs in 2-D form. Symmetrized dot pattern image [123,124], 2-D image

based on the spectrogram [125], continuous wavelet transform scalogram (CWTS) [126]

are some of the examples. Dislocated time-series CNN is proposed by Liu et al. [127]

to handle disparity of TS industrial data (most often in 1-D form) with 2-D images.

Ince et al. [128] introduced adaptive 1-D CNN, while [129] demonstrated another 1-D

CNN with fusing multi-sensor data for multiple motor faults. Similarly, vector CNN

developed by Xiaoxun et al. [130], and a 1-D CNN-GRU model was proposed by Liao

et al. [47]. A recent contribution in 1-D CNN was presented by Zhao et al. [131] to

identify shaft misalignment and crack in the rotor system. The variant CNN structures

like physics-based CNN [132], WDCNN (Wide first-layer kernels deep CNN) [133] are

also present in the literature. In order to deal with multi stream data, a multi-stream

CNN was proposed by Yuan et al. [134], and a multi-channel CNN was developed by

Sonkul et al. [135]. A novel multi-mode CNN was proposed in [136] with adjustable filter

banks to decide appropriate convolution mode. Scarce labeled samples issue of data has

been addressed with the help of SVM to deal with CNN [137,138], where Xu et al. [139]

developed a small data-driven CNN for similar issue. Hardware associated approaches

with CNN that directly deal with the industrial IoT based hardware platforms, as well
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as with other embedded systems, have also been observed in RFD literature [140,141].

The majority of the RFD-related DL works adopted CNN as the classifier. A fair

number of the related works altered the structure of CNN to make it compactable with

RFD issues, while the review substantiates that utilizing DFC with CNN is close to

impossible. It is also clear that 1D CNNs began to gain in popularity, and adding the

discriminative ability to CNN ensure the wider acceptance.

2.4.2.2 Deep belief networks

DBN is an unsupervised, probabilistic DL network with a stacked structure of RBMs or

AEs, pre-trained using a greedy learning algorithm. Oh et al. [45] developed a method

for converting raw vibration signals to the image by the omnidirectional regeneration

method. Guan et al. [142] made a significant contribution to structural fault identi-

fication by combining EMD and DBN. Compressed sensing was effectively applied by

Shao et al. [143] along with convolutional DBN. To handle heterogeneous data sources,

Yan et al. [144] proposed a multi-DBN model with information fusion. DBN was ob-

served as a fault feature extractor by Shao et al. [145] and used for the performance

evaluation of layer-wise feature extraction. Li et al. [146] applied DBN by stacking five

RBM layers with Bernoulli functions for RFD and mechanical degradation assessment.

Most of the works demonstrated the scope and possibilities of using DBN in terms of

different aspects, including -feature extraction, -fusing of DBNs for multi-sensor data,

-using DBN with regenerated input, and convolutional DBNs. Meanwhile, layer-wise

feature extraction is another interesting aspect of utilizing DBNs. In short, the possi-

bility of using extracted features rather than raw data is the distinguishing feature of

this method.



2.4. Fault Diagnosis Approaches 33

2.4.2.3 Autoencoders & DNN models

As an unsupervised method capable of learning features, AE is widely used in many

applications, including RFD. The basic AE models are enhanced by stacking multiple

AEs to form a stacked autoencoder, while, through the addition of denoising capabil-

ity, stacked denoising autoencoders can be developed. Chen et al. [147] proposed a

simple and straightforward implementation of AE. A hybrid AE model combining one

denoising autoencoder and multiple contractive autoencoders, was proposed by Shao

et al. [148] that enhanced the feature learning ability of standard AE. Zhao et al. [44]

illustrated SDAE to detect the rotor faults with FFT transformed FD signal as input.

Meng et al. [149] addressed irregularity of raw vibration, generalization issue, etc., when

using AE for SRF. Narendiranath Babu et al. [150] presented two AEs and a softmax

layer for the realization of deep neural network (DNN) for RFD. The same authors

enhanced the study with TD, FD, and TFD features and increased number of hidden

layers in [151]. An SDAE was employed by Kong et al. [152] for identifying rotor re-

lated faults of aero-engines. Recently, Tang et al. [153] introduced an SAE to identify

dynamic unbalance, and static unbalance faults. To improve the robustness of feature

representation of sparse AE, Sun et al. [154] proposed adding partial corruption into

the input with the help of the denoising coding. Lei et al. [43] proposed a two-stage

learning process utilizing sparse filtering in SAE.

Extreme learning machines (ELM): To reduce the overhead of tuning the parameters of

the DL models an ELM based AE was proposed by Yang et al. [155]. Another approach

with ELM was proposed by Sharma et al. [156], in which RMS value of 3-phase voltage

and current signature was considered as input to the model. A hierarchical structure

designed by concatenating the forwarding list of ELM was proposed in [155]. Another

architecture modification in ELM was observed in ensemble ELM, proposed by Wang et

al. [157] for compound-fault diagnosis of rotating machinery. Recently Zhao et al. [158]

proposed a multi-manifold deep extreme learning machine algorithm to classify the SRF
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and the rub fault. In addition, DNN structure of multiple feed-forward layers (neither

with RBMs nor with AEs) are also available in the literature of RFD. For instance, Bo

et al. [159] developed a simple DNN model, with DFC parameters as input and Li et

al. [146] applied DNN with five hidden hyperbolic tangent layers.

The autoencoder-based models are the most widely used DL models after CNNs in

the RFD-related literature. In fact, since RFD uses the features learned by AE, only

nominal attempts have been made to utilize DFC in the literature, and there is an

ongoing trend within the research fraternity to enhance the feature-learning capability

of AE. Deep AE performs well in terms of multiple-fault or overlapped-fault situations.

Generally, SDAE performance has been studied with varying numbers of hidden nodes

and different deep architectures. Meanwhile, ELM-based AE is becoming increasingly

popular since it shifts the emphasis from the overheads involved in parameter tuning.

2.4.2.4 Sequential DL Models

An RNN is capable of learning temporal information of sequential data by holding the

past information and sharing weights using its recursive structure.

LSTM & GRU: These are two variants of RNN that are equipped with gates to avoid

vanishing gradient problem. There were only a few attempts made to capture the long-

term dependencies of input TS signal using the sequential analysis techniques of AI.

One such work was manifested by Lei et al. [46], who introduced LSTM for categoriz-

ing SRFs, bearing faults, and other compound faults in a wind turbine test rig. Xiao

et al. [160] proposed a more advanced approach of hybrid feature learning that com-

bined statistical parameters, recurrence quantification analysis, and three-layer stacked

LSTM. Liao et al. [47] proposed a 1-D CNN-GRU architecture that adaptively learns

fault factors. We can conclude the following things about sequential learning DL ap-

proaches in RFD. Given the majority of sensing methods used in RFD produce TS

data, only a few attempts were made to pinpoint the sequential analysis for capturing
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the TS behavior of RFD data, resulting in a nominal share for RNN in RFD litera-

ture. LSTM and GRU models are being recognized in recent times, which provides a

roadmap for RFD analysis to explore the long-term dependencies. These models are

easily incorporated with the other models to exploit the effectiveness of both.

Attention Mechanism (AM): A few applications have used AM in RM fault diagnosis

for selecting features adaptively by utilizing the dependency information. Interestingly,

a feature attention mechanism has been developed for adaptive feature selection by

Huang et al. [161] using shallow multi-scale CNN for the classification. Li et al. [162]

used AM for assisting the deep networks in locating the informative data segments as

well as in extracting discriminative features for LSTM. Similarly, Wang et al. [163] used

AM to optimize the CNN structure and Hao et al. [164] facilitated AM for optimal fea-

ture selection from the original vibration signal. A GRU with attention has been used

by Zhang et al. [165] to perform classification without being affected by the length of

the data. A motor fault diagnosis framework has been proposed by Yan et al. [166] in

which an attention mechanism is used to integrate the features of different time points

adaptively. An RNN based on an encoder-decoder framework with attention mecha-

nism has been developed by Chen et al. [167] for the remaining useful life prediction

of bearing. A few more works have been found in the literature almost following the

same approach for using attention in fault diagnosis for wind turbines [168], gears [169],

wheelset bearing [170], roller bearing [171] etc., with different DL models.

2.4.2.5 Generative adversarial networks

Being an input reconstruction based semi-supervised learning method, GAN turned

out to be a critical solution to data-related issues in RFD. In one of such attempts, the

data imbalance issue was addressed by Lee et al. [172] by applying GANs to oversample

the minority class. Data imbalance issue was solved using an adversarial network as

discriminator and CNN as the classifier, by Han et al. [173]. In this method, the small
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datasets are transferred to the model, and then trained with the adversarial strategy.

We can infer the following observations about GANs from the literature. GANs are

mainly used for oversampling data in RFD research. While dealing with small-sized

datasets, GANs appeared to be a solution to many issues, including data imbalance.

The philosophy of adversarial training is applicable in other DL models as well.

2.4.3 Classifier fusion

The conventional fault diagnosis method of using a single information source together

with a unique decision method exhibits certain shortcomings. Classifier fusion is an

extensively used method to combine multiple classifiers to generate better classification

results than any single classifier [174–178]. Niu et al. [179] proposed a decision fusion

by finding the optimal sequence of classifiers’ for fusion. It is based on selected decision

vectors using the correlation measure of classifiers and the sensor fusion method us-

ing relativity theory. SVM, LDA, k-NN, improved iterative scaling, Gaussian mixture

model, and LVQ classifiers were used, and multi-agent classifiers fusion algorithm was

engaged for fusing them. The comparison results with majority voting and Bayesian

belief classifiers showed the superiority of multi-agent fusion. The same authors con-

tinued the fusion method in [41] using multi-level wavelet decomposition with transient

current as the input. Santos et al. [180] combined bagging, AB, general boosting pro-

jection, and RF classifiers to obtain an ensemble classifier for performing unbalance and

misalignment classification of wind turbines under various speed and load conditions

using current and vibration signals as inputs. The results of the proposed method com-

pared with C4.5 DTs, k-NN and NB, and found that the AB using J48 DTs as base

classifiers achieved the highest accuracy. Tao et al. [181] proposed a novel classifier

ensemble technique known as weighted majority voting with a different confidence level

to ensemble NB, RF, and SVM classifiers. Based on the vote through the confidence

diversity, they assembled multiple classifiers, and the results were compared with the
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conventional normal weighted majority voting method. The AB ensemble classifier pre-

sented by Martin-Diaz et al. [182] addressed the issue of imbalance data in RM fault

diagnosis. The fusion of classifiers in RFD literature can be summarized as follows:

The works that performed classifier fusion constitute only less than 5.0% of overall ML

literature of RFD. SVM, k-NN, and NB are often found among the fusing classifiers.

The different fusing methods like multi-agent fusion, Bayesian belief fusion, decision

level fusion, majority voting, and its variants, have been used in most of the works, and

their performance comparison has been carried out. The literature proves that classifier

fusion in RFD can address multiple drawbacks of individual classifiers, but still, the

research in this direction has a long way to go.

2.5 Summary of Literature Review

This section summarizes the research progress in RFD, in line with the various phases

of data-driven AI-based RFD framework. The overall statistics of the state-of-the-art

research is demonstrated in the heatmap shown in Fig. 2.2. In data collection, the data

source selection is very critical in the case of RFD. From the literature summarized in

the heatmap, it is identified that around 42.0% of works depended on RTB method

for data collection and about 20.0% bank on the other sources, including test rigs for

bearing, gear, or wind turbine whereas a few works utilized open-source datasets as

well. The 30.0% of works collected induction motor current and voltage as input. It

is noticeable that the ML had to depend hardly 13.0% on other open sources, while

DL heavily draws around 34.0% for other sources. This indicates that testbed kind

of data collection methods are unable to mitigate the data requirement issues of DL.

The facts about the data source of RFD summarized so far draws in two important

conclusions. Firstly, testbed, which is recognized as the primary data source of RFD,

often fails to provide sufficient data for DL so that DL methods choose some open-

source datasets. Secondly, these datasets lack rotor specific data though they have a
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Figure 2.2: Summary of literature review

large amount of bearing or gear fault data. The other challenges identified from the

literature in acquiring faulty data are: i) In real situations, the machine runs in faulty

conditions are very rare compared to its normal running conditions. So it is difficult

to get faulty data keeping the balanced sampling. ii) Though we can simulate faulty

conditions in testbeds and acquire data, it will be a challenging and difficult task to run

the testbeds for a long time in a faulty environment. iii) Commonly available testbeds

find it difficult to simulate the frequently changing RPMs, load, and other environmental

conditions like noise, which makes the data unrealistic most of the time. This scenario

opens a new research direction of data generation or augmentation. Among the signal
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sensing methods in the data acquisition phase, the most commonly adopted approach

is vibration analysis since SRF is the root cause that influences the characteristics and

behavior of vibration.

In feature processing phase, DL exercises the automated feature extraction and se-

lection by learning discriminative features in an end-to-end manner, and therefore, this

phase is skipped in DL. But certain signal processing techniques have been utilized

in DL models for data preprocessing and proper input representation. As opposed to

DL end-to-end learning, ML goes for manual feature extraction, which is summarized

from RFD perspective, as follows: i) The symptom parameters of SRF are frequency

harmonics. Hence, the TD methods are unable to capture and utilize these parameters,

resulting in poor performance for RFD. ii) The non-linearity and non-stationary nature

of the rotor vibration signals complicates the accurate fault diagnosis for the FD meth-

ods. Because the Fourier transform is suitable only for stationary signal processing,

and it fails to reveal the inherent information of non-stationary signals. In the case of

the wavelet transform, the selection of a wavelet basis and its lack of ability to adapt to

changes are the key factors adversely affecting the performance. iii) While the TFD pro-

cessing techniques, particularly STFT, WVD, etc., gained immense popularity in RFD

by its exceptional ability to handle non-stationary signals, these are exhibiting certain

deficiencies. For instance, STFT fails to produce an ideal resolution to frequency and

time simultaneously. Similarly, WVD produces inference terms in its decomposition

process. The literature review statistics indicate that 18.0%, 40.0%, 31.0% of works

still depend on conventional TD, FD, and TFD features, respectively. Irrespective of

the fact that TFD processing is best-suited for extracting SRF specific features from

the non-linear and non-stationary vibration signals, a more prominent share is enjoyed

by FD operations.

In classification phase, around 80.0% of ML models operated in the RFD litera-

ture is constituted by SVM (41.0%), ANN (29.0%), and k-NN. The NB and all the
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other classifiers provide less than 5.0% each in the literature. Similarly, CNN seized

a predominant position among the DL methods with a 56.0% share in the literature

followed by AE based models, while DBN also registered some significant contributions.

In terms of accuracy and classification speed, SVM and ANN are top-notch, which is

evident from their wide acceptance among the ML models in RFD. But, architecture

versatility of ANN is higher compared to SVM, which is evident from the fact that a

higher fraction of ANNs in the literature altered their basic structure in accordance

with the RFD problem. NB and k-NN are worthy of their ability to deal with over-

fitting and have good interpretability while SVM and ANN still have to advance a lot

in this regard. Since the raw signals acquired from sensors are affected by noises, it is

observed that the researchers depended on preprocessing steps to deal with noisy raw

data, rather than going for NB like ML models which project staunch robustness to

noise. Among the DL methods, CNN is most popular in RFD but fails to incorporate

fault specific features. But as we mentioned earlier, DBN, AE-based models, and DNNs

give some scope in this direction since they prefer processed data to raw data. One of

the remarkable features in the existing literature is that the fault specific discrimina-

tive feature extraction reduces the size of the DL model and eventually leads to better

performance. Some other works indicated significant effort to change the ’black box’

nature of DL by using proper visualization tools like t-SNE. Almost all DL algorithms

are robust to noise, but CNNs present a bit more denoising capability compared to

others, especially better than AEs. SDAE like models overcome these limitations. The

performance generalization issues of DL related to the size and diversity of data, class

imbalance, etc., have to be addressed in the literature.

2.6 Research Gap

The present research can be enhanced in the following ways to inspire research on

RFD, with special emphasis on SRFs in order to provide a more generalized, industry
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conforming, and realistic solution,

1. Synthetic data generation: To address the data scarcity issues, make use of syn-

thesized data by engaging data augmentation or GAN-based data generation.

Research can be carried in TS data augmentation, emphasizing the TS properties

of the data, maintaining the correlation between different columns of multivari-

ate TS, and finally confirming the labels of synthesized data. It results in the

emergence of a challenging research problem in TS domain and augmentation

literature.

2. Challenging datasets: Another research exists in bridging the gap between testbed

data and real-world industrial data. As previously mentioned, developing a com-

plex dataset by applying varying RPMs and load conditions in testbed simulations

can give rise to novel issues in research and make the solution ready for industry.

3. SRF specific symptom parameters: Novel research challenges are posed by ex-

traction and usage of fault specific symptom parameters in both refining classifier

architecture and feature engineering process.

4. More domain-specific data representations: The imaging techniques used in the

SRF literature are either stacking the raw data or arranging the data in a trans-

formed domain, which loses the properties of the original signal. In short, the

literature lacks the TS imaging technique in input data representation. Similarly,

it is challenging to present proper embedding representations to transformer ar-

chitectures from raw vibration data.

5. Sensor fusion: The complex RM systems deal with multi-sensor data, where each

sensor signal acts upon the fault at different levels. No works reported in the

literature of RFD considering the relative weightage sensor fusion.

6. More learning strategies: In RFD, there is the least application of classifier fusion

and transfer learning kind of advanced learning strategies. Many opportunities

can be opened up by merging new classifiers at different levels (data-level, feature-
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level, decision level, etc.) in an attempt to improve accuracy.

7. Sequential deep learning: As indicated by the literature of RFD, no substantial

attempts have been made so far to tap into the sequential nature of the sensed

signals utilizing RNN based deep sequential models like LSTM and GRU. More-

over, no works were found in the literature to exploit the long-term or short-term

dependency of the input data segments, which can be captured by an attention

mechanism to produce better results.


