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Preface

The fourth industrial revolution (Industry 4.0) gave rise to a complex industrial produc-

tion system that has been bolstered by the integration of semantic machine-to-machine

communication, cyber-physical systems (CPS), and the Internet of Things. The benefits

of early awareness, self-optimization, self-configuration, decision making, and predictive

maintenance capability have strengthened Industry 4.0. The rise of a new discipline

called prognostics and health management (PHM) was facilitated by advancements in

technology, and it has emerged as an essential arm of Industry 4.0. It has been charac-

terized by an important component called failure detection and predictive maintenance

(FDPM). It prevents the risk of disastrous failures, major accidents, and unantici-

pated shutdowns of the whole system, thus safeguarding the fringe benefits such as

safety, optimum cost, availability, and reliability. Heterogeneous sensors which are used

to collect data from the machine components are incorporated for the virtual model-

ing of the physical machine working environment. This data caters to the condition

monitoring process of FDPM with artificial intelligence (AI) methods to increase the

availability and dependability of the system and decrease financial and human losses.

A range of mechanical and electro-mechanical systems such as automotive equipment,

fans and blowers, aircraft engines, turbines, industrial compressors, conveyor systems,

and pumps have rotating machinery (RM) as an integral part of it. Given that, because

of the uninterrupted and harsh nature of the operation, they are subjected to both de-

terioration and failures. Therefore, they require constant monitoring for sustainable



xx Preface

performance. Hence, condition-based monitoring of RM is a core of a maintenance pol-

icy formulation, which the research community has extensively investigated nowadays.

As a result, AI-based data-driven FDPM of RM is on the rise, but unfortunately, the

majority of the research in this field focuses only on the faults related to bearing and

gear, overlooking the root cause that affects the structural components.

There are diverse methods associated with the RM fault diagnosis; nonetheless, vi-

bration analysis is commonly used as vibration affects the durability and reliability of

machines. It became the most appropriate choice for providing fault condition infor-

mation by means of fault-related spectral component identification. In such a scenario,

this thesis focuses on developing AI-based RM fault diagnosis methods for efficiently

identifying and solving the root cause of RM issues, protecting the structural integrity

of the whole system, analyzing the vibrational characteristics of the faults. To this end,

we first categorized the rotor faults based on fault characteristics rather than the con-

ventional component-wise categorization from a ‘cause of vibration’ perspective. The

research is directed at making use of the characteristics and the prior knowledge on the

fault in automated diagnosis instead of simply adopting data-driven AI approaches. A

novel vibration dataset has been developed by a testbed, which simulates the industrial

scenarios since various machine learning (ML) or deep learning (DL) techniques mainly

used vibration data in the diagnosis process. The testbed dataset often suffers from

insufficient and/or imbalanced data of various fault conditions, which eventually leads

to a lack of diversity in datasets and overfitting. A time-series (TS) property preserving

data augmentation scheme that upkeeps the fault-specific characteristics of data has

been proposed to solve this issue. The diagnosis data has been presented in a sequential

data representational form to bridge the gap between experimental laboratory data and

practical industrial data.

It also handles the unevenly sampled or missing data, different operating speed

conditions, and subdues other sensor issues related to raw data, and incorporates
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domain-specific fault information. The harmonics of the rotational frequency of RM in

the spectrum of vibration is termed as distinctive frequency components (DFC). The

symptomatic fault component analysis leads to defining the role of DFC in RM fault

diagnosis. Many ML and DL techniques have been used to study the importance of

DFC in rotor faults in this research. It is equally important to investigate different

input data representation methods such as images, sequences, features, etc. We have

analyzed the state-of-the-art TS imaging techniques on vibration data for RM fault

diagnosis. The experiments utilized the sequential information provided with the input

data, fault-specific component usage, and advanced data modeling paradigms. This

work also facilitated the use of an attention mechanism to capture long-term and short-

term dependencies of the vibration sequence with transformer architectures. Moreover,

advanced learning techniques and methods such as early classification, classifier fu-

sion, transformer networks, etc., have been investigated in this work. The exceptional

fault diagnosis results obtained from the proposed techniques and methods mark the

importance of this study in RM fault diagnosis.


