CERTIFICATE

It is certified that the work contained in the thesis titled "Intelligent computing techniques for vibration pattern analysis" by Aneesh G Nath has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Supervisor

Dr. Sanjay Kumar Singh
Professor,
Department of Computer Science and Engineering,
Indian Institute of Technology (BHU) Varanasi,
Uttar Pradesh, INDIA 221005.

DECLARATION BY THE CANDIDATE

I, Aneesh G Nath, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of **Prof. Sanjay Kumar** Singh from July 2017 to July 2021 at Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 22-10-2021

Place: Varanasi

Aneesh G Nath

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Prof. Sanjay Kumar SinghProfessor,Dept. of Computer Science and Engineering,Indian Institute of Technology (BHU) Varanasi.

Signature of Head of Department

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Intelligent computing techniques for vibration pattern analysis Name of the Student: Aneesh G Nath

Copyright Transfer

The undersigned hereby assigns to the Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

theer

Place: Varanasi

Date: 22-10-2021

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Aneesh G Nath

Dedicated to

My parents,

and

All my teachers.

ACKNOWLEDGEMENT

Though only my name appears on the cover of this dissertation, so many great people have contributed to its production. I owe my gratitude to all those people who have made this thesis possible, and because of whom my doctorate program experience has been one that I will cherish forever. I take this opportunity to express my profound gratitude and sincere regards to my supervisor Dr. Sanjay Kumar Singh, Professor, Computer Science and Engineering Department, Indian Institute of Technology (BHU), Varanasi for his excellent guidance, monitoring and constant encouragement throughout this doctorate program. I am obliged to faculty members, and staff members of the Computer Science and Engineering Department, BHU, Varanasi. Also, I want to express my deepest gratitude to Dr. Udmale Sandeep Sambhaji, Dr. Anshul Sharma, Mr. Abhinav Kumar, Miss. Vandana Bharti and Mr. Ritesh Sharma who supported me throughout my thesis work and provided me technical, moral, and emotional support during my research program. Extraordinary gratitude goes out to Thangal Kunju Musaliar College of Engineering (TKMCE), Kollam, Kerala with special mention to TKMCE management and administration for providing the opportunity and support for completing the doctorate program under Quality Improvement Programme (QIP) of AICTE. I express my heartiest thanks to Janab T. K Shahal Hassan Musaliar, Chairman, T K M College Trust, Dr. T A Shahul Hameed Principal, TKMCE, Dr. Ansamma John, Head of Computer Engineering Department, TKMCE for providing the academic environment during my preparation of doctorate program. In addition, I like to thank IMAGENOUS Engineering Pvt. Ltd. Vadodara-390016, Gujarat, India, and Meggitt India Pvt. Ltd., North Bangalore-560022, India for providing the experimental environment. Exceptional gratitude goes out to my colleagues and friends with special mention to Mr. Amit Kumar Debnath, and all my QIP colleagues, especially Mr. Medara Rambabu, and Mr. Santhosh Kumar Tripadi for their support and help. I have spent some of the craziest and most memorable moments with them. Last but not the least, I thank specially to my parents, Mr. Gopinath C and Mrs. D Jayakumari,

my parents-in-law Mr. R Divakaran and Mrs. K Sreelatha, my wife Deepa D S, my son Adharv D Aneesh, and my nephew Ishaan Ashwin D for their constant support and encouragement, without which this assignment would not have been completed at all. I am grateful to my other family members who have supported me along the way.

Date: 22-10-2021

Aneesh G Nath

Contents

Li	List of Figures xi			
\mathbf{Li}	List of Tables xiii			
\mathbf{Li}	st of	Symbols	xv	
\mathbf{Li}	st of	Abbreviations x	vii	
Pı	refac	e	xix	
1	Intr	roduction	1	
	1.1	Problem Formulation	6	
	1.2	Scope of the Work	6	
	1.3	Objectives	7	
	1.4	Methodology	8	
		1.4.1 Data acquisition \ldots	9	
		1.4.2 Feature processing \ldots	10	
		1.4.3 Fault classification	11	
	1.5	Significant Contributions	12	
	1.6	Organization of the Thesis	13	
2 Literature Review		erature Review	15	
	2.1	Introduction	15	
	2.2	Rotating Machinery Fault Categorization	17	
	2.3	Background of Rotor Faults	18	
		2.3.1 Structural rotor faults	19	
		2.3.2 Shaft faults	23	
	2.4	Fault Diagnosis Approaches	25	
		2.4.1 Machine learning-based approaches	26	

		2.4.2 Deep learning-based approaches
		2.4.3 Classifier fusion
	2.5	Summary of Literature Review
	2.6	Research Gap
3	Dat	a Acquisition and DFC Processing
	3.1	Introduction
	3.2	Datasets Description
	-	3.2.1 Meggitt dataset (DS-1)
		3.2.2 MaFaulDa dataset (DS-2)
	3.3	DFC and SRF
		3.3.1 Structural rotor faults
		3.3.2 Shaft faults
		3.3.3 Broken rotor bar
	3.4	DFC Extraction
	3.5	Role of DFC in SRF Diagnosis
	3.6	Summary
4	SRI	Diagnosis with Augmentation and Early classification
	4.1	
	4.2	Soft-DTW Based Augmentation
		4.2.1 Theoretical background
	4.9	4.2.2 Proposed method
	4.3	Early Classification
		4.3.1 Sequential DL models for early classification
		4.3.2 Proposed method
	4.4	
	4.5	Results and Discussions
		4.5.1 Impact of subsampling and augmentation
		4.5.2 Performance analysis of sequential models
	1.0	4.5.3 Performance analysis of ECM
	4.6	Summary
5	SRI	F Diagnosis using TS imaging with FRP and Classifier Fusion
	5.1	Introduction
	5.2	Theoretical Background
		5.2.1 Recurrence plot

		5.2.2	Fuzzy recurrence plot	93
		5.2.3	Fuzzy integral based classifier fusion	94
5.3 Proposed Method		sed Method \ldots	95	
		5.3.1	Input data preparation phase	97
		5.3.2	Decision score generation phase	101
		5.3.3	Classifier fusion phase	103
	5.4	Result	s and Discussions	104
		5.4.1	Evaluation of FRP imaging schemes with CNNs	105
		5.4.2	Performance of proposed framework	109
		5.4.3	Individual sensor performance with fusion	111
		5.4.4	Effect of data augmentation	113
	5.5	Summ	nary	113
6	SRI	F Diag	nosis using Attention-based Sensor Fusion and Transform	er
	Mo	dels		115
	6.1	Introd	luction	115
	6.2	Theor	etical Background	118
		6.2.1	Transformers for TS classification	118
		6.2.2	Recurrent transformers	122
	6.3	Propo	sed Method	122
		6.3.1	Generation of embedded representation	123
		6.3.2	Transformer based classification	128
	6.4 Results and Discussions		s and Discussions	129
		6.4.1	Ablation study on embedded representation module	130
		6.4.2	Individual sensor performance	131
		6.4.3	Transformer model performance	133
		6.4.4	Performance with synthesized data	136
	6.5	Summ	ary	136
7	Cor	nclusio	n and Future Scope	139
	7.1	Conclu	usion	139
	7.2	Future	e Scope	141
\mathbf{Li}	st of	Publi	cations	143
R	efere	nces		144

List of Figures

1.1	AI-based RFD framework	8
2.1	Rotating machinery fault categorization	17
2.2	Summary of literature review	38
3.1	Rotor fault implementation in a testbed	44
3.2	Meggitt testbed (Meggitt-Mi 19003)	45
3.3	DFC representation of signal at 1500 RPM	49
3.4	DFC extraction from varying RPM	55
4.1	DTW graphical representation	64
4.2	Soft-DTW barycenter approach	68
4.3	Sequential DL models	72
4.4	Overall framework	76
4.5	Accuracy v/s epoch graph for the model $\mathcal{M}_1, \mathcal{M}_2 \ldots \ldots \ldots \ldots$	78
4.6	Model comparison with different nodes	79
4.7	Comparative analysis of TD, DFC, and combined features	81
4.8	Effect of α	82
4.9	Confusion matrix of ECM- \mathcal{M}_1 & ECM- \mathcal{M}_2 on DS-1 & DS-2 datasets .	84
4.10	Comparative analysis of proposed model with traditional approach 8	
5.1	FRP and RP patterns	92
5.2	Input data preparation phase	96
5.3	Decision-making phase	101
5.4	Confusion matrix of FI fusion	111
5.5	Individual sensor fusion	112
6.1	General transformer model (\mathcal{M}_1)	119
6.2	Recurrent transformer models	121
6.3	Generating embedded representation	124

6.4	Generating fault pattern matching score	126
6.5	Individual sensor performance (Accuracy $\%$)	132
6.6	Training performance (Accuracy Vs Epochs)	133
6.7	Precision, Recall and F1-Score of DS-1	135
6.8	Confusion matrix of \mathcal{M}_3	135

List of Tables

3.1	Setup conditions for testbed of DS-1 dataset	45
3.2	Setup conditions for testbed of DS-2 dataset	46
3.3	Description of rotor faults	48
3.4	DFC Performance with ML Models	57
4.1	Training performance	78
4.2	Performance of ECM on dataset DS-1	83
4.3	Performance of ECM on dataset DS-2	83
5.1	Binary coded DFC	97
5.2	Comparison with various pre-trained CNN models	106
5.3	Comparison of FRPs with RPs	106
5.4	Performance of individual classifiers	108
5.5	Performance of classifier fusion	110
5.6	Effect of augmentation on sensor data	112
6.1	SRF and DFC correlation and decoding	125
6.2	Performance of embedded representation	130
6.3	Training performance	133
6.4	Class-wise performance of transformers	134
6.5	Effect of synthesized data	136

List of Symbols

Symbol	Description
V	Set of univariate time-series vibration signals
L	Length of a single-sensor vibration sequence
R_s	Rotational frequency in rpm
S_f	Sensing frequency
S_r	Number of sampling points per rotation
S_o	Number of overlapping points in segmentation
S_l	Segment length
n_s	Number of segments
f_n	Frequency bands
f_{ix}	i^{th} rotational frequency
$amp(f_{ix})$	Amplitude at f_{ix}
A_{amp}	Mean of amplitudes
$\mu(f_{ix})$	Normalized amplitude values
\mathcal{P}	Optimal path matrix
\mathcal{D}	DTW distance matrix
β	Soft-DTW smoothening parameter
F	Forward pass matrix of soft-DTW
В	Backward pass matrix of soft-DTW
ε	Entropy of samples
${\cal F}$	Base classifier for early classification
heta	class-wise confidence threshold
η	Classifier learning rate
S	Set of state vectors
k	Embedding dimension of phase space
ϵ	Similarity of a state pair
$ heta\left(\cdot ight)$	Step function

Symbol	Description
μ	Fuzzy membership function
v	Number of clusters
C	cluster set
m	Fuzziness index
0	Output scores of fusing classifiers
au	Time delay for embedding
U	Embedding representation of transformer
Q_u	Query matrix
K_u	Key matrix
V_u	Value matrix
$ ilde{lpha}$	Attention score of sensor fusion
\hat{lpha}	Fault pattern matching score
α	Final attention score
F_{it}	Combined feature vector

Abbreviations

Abbreviation	Description
AB	AdaBoost
AE	Autoencoder
AI	Artificial Intelligence
AM	Attention Mechanism
ANFIS	Adaptive Neuro-Fuzzy Inference System
ANN	Artificial Neural Network
BBN	Bayesian Belief Network
BS	Bent Shaft
BRB	Broken Rotor Bar
CNN	Convolutional Neural Network
CPS	Cyber-Physical Systems
DBA	DTW Barycenter Averaging
DFC	Distinctive Frequency Components
DL	Deep Learning
DT	Decision Tree
DTW	Dynamic Time Warping
EC	Early Classification
EMD	Empirical Mode Decomposition
FCM	Fuzzy C-means Clustering
FD	Frequency-Domain
FDPM	Failure Detection and Predictive Maintenance
FFT	Fast Fourier Transform
FI	Fuzzy Integral
FIC	Fault Information Content
FRP	Fuzzy Recurrence Plot
GA	Genetic Algorithm
GAF	Gramian Angular Field

Abbreviation	Description
GAN	Generative Adversarial Network
GRU	Gated Recurrent Unit
HHT	Hilbert–Huang Transform
HT	Hilbert Transform
ICA	Independent Component Analysis
MA	Misalignment
ML	Machine Learning
k-NN	k-Nearest Neighbor
LDA	Linear Discriminant Analysis
LR	Logistic Regression
LRNN	Local RNN
LS	Looseness
LSTM	Long Short-Term Memory
LVQ	Learning Vector Quantization
MTF	Markov Transition Field
NB	Naïve-Bayes
PCA	Principal Component Analysis
PHM	Prognostics and Health Management
RF	Random Forest
RFD	Rotor Fault Diagnosis
RM	Rotating Machinery
RNN	Recurrent Neural Network
RP	Recurrence Plot
RTB	Rotor Testbed
\mathbf{SC}	Shaft Crack
SL	Shallow Learning
SRF	Structural Rotor Faults
STFT	Short-Time Fourier Transform
SVM	Support Vector Machine
TD	Time-Domain
TFD	Time-Frequency-Domain
TS	Time-Series
UB	Unbalance
WT	Wavelet Transform

Preface

The fourth industrial revolution (Industry 4.0) gave rise to a complex industrial production system that has been bolstered by the integration of semantic machine-to-machine communication, cyber-physical systems (CPS), and the Internet of Things. The benefits of early awareness, self-optimization, self-configuration, decision making, and predictive maintenance capability have strengthened Industry 4.0. The rise of a new discipline called prognostics and health management (PHM) was facilitated by advancements in technology, and it has emerged as an essential arm of Industry 4.0. It has been characterized by an important component called failure detection and predictive maintenance (FDPM). It prevents the risk of disastrous failures, major accidents, and unanticipated shutdowns of the whole system, thus safeguarding the fringe benefits such as safety, optimum cost, availability, and reliability. Heterogeneous sensors which are used to collect data from the machine components are incorporated for the virtual modeling of the physical machine working environment. This data caters to the condition monitoring process of FDPM with artificial intelligence (AI) methods to increase the availability and dependability of the system and decrease financial and human losses. A range of mechanical and electro-mechanical systems such as automotive equipment, fans and blowers, aircraft engines, turbines, industrial compressors, conveyor systems, and pumps have rotating machinery (RM) as an integral part of it. Given that, because of the uninterrupted and harsh nature of the operation, they are subjected to both deterioration and failures. Therefore, they require constant monitoring for sustainable performance. Hence, condition-based monitoring of RM is a core of a maintenance policy formulation, which the research community has extensively investigated nowadays. As a result, AI-based data-driven FDPM of RM is on the rise, but unfortunately, the majority of the research in this field focuses only on the faults related to bearing and gear, overlooking the root cause that affects the structural components.

There are diverse methods associated with the RM fault diagnosis; nonetheless, vibration analysis is commonly used as vibration affects the durability and reliability of machines. It became the most appropriate choice for providing fault condition information by means of fault-related spectral component identification. In such a scenario, this thesis focuses on developing AI-based RM fault diagnosis methods for efficiently identifying and solving the root cause of RM issues, protecting the structural integrity of the whole system, analyzing the vibrational characteristics of the faults. To this end, we first categorized the rotor faults based on fault characteristics rather than the conventional component-wise categorization from a 'cause of vibration' perspective. The research is directed at making use of the characteristics and the prior knowledge on the fault in automated diagnosis instead of simply adopting data-driven AI approaches. A novel vibration dataset has been developed by a testbed, which simulates the industrial scenarios since various machine learning (ML) or deep learning (DL) techniques mainly used vibration data in the diagnosis process. The testbed dataset often suffers from insufficient and/or imbalanced data of various fault conditions, which eventually leads to a lack of diversity in datasets and overfitting. A time-series (TS) property preserving data augmentation scheme that upkeeps the fault-specific characteristics of data has been proposed to solve this issue. The diagnosis data has been presented in a sequential data representational form to bridge the gap between experimental laboratory data and practical industrial data.

It also handles the unevenly sampled or missing data, different operating speed conditions, and subdues other sensor issues related to raw data, and incorporates domain-specific fault information. The harmonics of the rotational frequency of RM in the spectrum of vibration is termed as distinctive frequency components (DFC). The symptomatic fault component analysis leads to defining the role of DFC in RM fault diagnosis. Many ML and DL techniques have been used to study the importance of DFC in rotor faults in this research. It is equally important to investigate different input data representation methods such as images, sequences, features, etc. We have analyzed the state-of-the-art TS imaging techniques on vibration data for RM fault diagnosis. The experiments utilized the sequential information provided with the input data, fault-specific component usage, and advanced data modeling paradigms. This work also facilitated the use of an attention mechanism to capture long-term and shortterm dependencies of the vibration sequence with transformer architectures. Moreover, advanced learning techniques and methods such as early classification, classifier fusion, transformer networks, etc., have been investigated in this work. The exceptional fault diagnosis results obtained from the proposed techniques and methods mark the importance of this study in RM fault diagnosis.