
Chapter 5

A meta-heuristic-based virtual machine
consolidation algorithm

This chapter1introduces a new algorithm for VM consolidation in cloud data centers. It

uses live migrations of VMs during the execution of cloudlets so that underloaded physical

servers can be switched off by transferring those VMs to other physical machines. The VM

consolidation problem in cloud data centers is NP-hard. Hence a meta-heuristic approach

called Water Wave Optimization (WWO) is used to implement VM consolidation. The

proposed approach produces a near-optimal solution using an objective function that

minimizes energy utilization.

5.1 Introduction

Cloud computing depends on shared computing resources instead of having on-premise

servers to deal with user applications. In other words, cloud computing is taking services

and moving them outside an organization’s firewall. Virtualization technology is one of the

key fundamental technologies to enable cloud computing. It improves cloud resource

utilization and sharing. It was extensively used mainframe systems to improve

1Medara, Rambabau, et al. ”Energy Efficient Virtual Machine Consolidation Using Water Wave
Optimization.” 2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020.
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manageability, reliability, and resource utilization [117]. The capability of virtualization is

broadly used in workload consolidation, workload isolation, and workload migration.

Virtualization technology does a great deal of cost-saving, energy-saving, hardware

performance enhancement for cloud providers. It allows the cloud server to be shared

among multiple applications of various users at the same time [118]. Virtualization is

achieved by assigning a logical name to physical resources and providing a pointer to that

resource on a need basis. Virtualization not only provides a way to execute multiple shared

applications but also helps in sharing hardware resources of processor, memory, and

network bandwidth. Virtualization in cloud computing is done by a hypervisor or Virtual

Machine Monitor (VMM) which creates an abstraction layer between the software and the

hardware in use. In this system, a server can be virtualized into multiple instances at a

time, but every instance is logically isolated from each other for security reasons.

The various virtual machines (VM) running on different physical machines of a datacenter

need to get processor time, memory, and bandwidth for the completion of tasks assigned to

it. The VMM or hypervisor is responsible for the allocation of VMs on the PMs and this is

done by the various VM allocation algorithms. This chapter concern with the

energy-efficient allocation techniques and those that perform dynamic migrations of VMs.

The process in which dynamic migration of the VMs happens during runtime to reduce a

load of overloaded physical machines (PM) and to put to sleep the underloaded PMs is

called VM Consolidation. Switching off the underloaded hosts will help us reduce the

energy consumption of the data centers and this can be done by migrating the VMs from

those machines to other machines [119]. This chapter presents an energy-aware VM

consolidation technique that uses a new meta-heuristic called water wave optimization

(WWO). The original WWO algorithm was proposed for the continuous space

multidimensional optimization problem. Later, it was adapted to solve the famous discrete

optimization problem of the Travelling Salesman Problem (TSP) [120] by modifying its

original parameters. This work motivated us to try the WWO by modifying the parameters

and apply to our multidimensional discrete optimization problem of energy-efficient VM

Consolidation.

The rest of this chapter is organized as follows. We introduce the related work in Section 5.2.

The Cloud Data Center (CDC) model is discussed in Section 5.3. The overview of the water

wave theory is introduced in Section 5.4. The proposed WWO-based VM Consolidation
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algorithm is presented in Section 5.5. Section 5.6 presents the experimental setup and

discussion on results. Finally, Section 5.7 concludes our work and discussed the future

directions.

5.2 Related work

There have been many works done to minimize the energy consumption of data centers

by maximizing resource utilization. By applying the Ant Colony Optimization (ACO)

algorithm, an approach [121] resolves the Multi-dimensional Bin Packing (MDBP) problem

by effectively consolidating the VMs in the PMs through workload placement in a cloud

environment. Despite this, the energy-aware VM placement scheduling approach [122]

measures the fitness value between VMs using an ACO algorithm to identify the past

optimal placement in the corresponding PM rather than measuring the fitness between the

VMs and PMs. It tends to provide the solution with a minimum number of PMs, which

helps to reduce the overall energy consumption. ACO metaheuristic-based scheduling

method [123] consolidates the VMs by incorporating the vector algebra, which minimizes

the energy consumption and reduces resource wastage in the cloud environment. A genetic

algorithm also has been used by the existing researchers to develop the energy-efficient

cloud datacenter through VM consolidation [124].

To reduce the energy consumption through minimizing the time, memory, and cost

consumption, the task-based load balancing approach [125] employs the Particle Swarm

Optimization (PSO) algorithm to migrate only several tasks to the identical VM resource

rather than migrating the entire overloaded VM. A modified PSO algorithm [126] ensures

the energy-efficient VM placement in the cloud data center by optimizing the operators

and parameters of the PSO algorithm. In order to minimize the energy utilization in the

workflow scheduling, the recent research works have focused on modeling the

energy-aware scheduling algorithms through resource hibernation, dynamic power

management, or Dynamic Voltage and Frequency Scaling (DVFS) techniques. The

multi-objective Discrete PSO (MODPSO) approach [60] employs the hybrid PSO

algorithm and DVFS technique to reduce the energy utilization by the cloud infrastructure,

which averts the compromise between the performance and energy consumption by

handling multiple QoS requirements. Greedy-based heuristics proposed in [127] set upper
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and lower utilization threshold for Central Processing Unit (CPU) utilization. If exceed the

upper threshold or utilization drops below the lower threshold then the VM migration plan

enforced.

Zheng Yu-Jun [128] proposed a new optimization technique called Water Wave

Optimization (WWO) which is a metaheuristic inspired by shallow water wave models.

WWO approach is competitive with few state-of-the-art evolutionary algorithms such as

ACO, BA, BBO, IWO, etc., and effective for real-time applications [129]. The proposed

algorithm in this chapter adapts the idea of WWO algorithm to effectively place virtual

machines on a selected physical machine in an energy-efficient way while satisfying

Quality of Service (QoS) requirements.

5.3 System Model

A heterogeneous Cloud Data Center (CDC) contains m physical machines (PMs). Each

PM is characterized by computing resources such as CPU, memory, storage capacity, and

network I/O. The performance of the CPU is defined in terms of Millions of Instructions

Per Second (MIPS). The PMs are virtualized to serve many users at any given time.

Users present their request for provisioning of v virtual machines of PM. The length of

the user request is specified in Millions of Instructions (MI). We used the greedy-based

approach called Best Fit (BF) for the initial allocation of VMs to PM. The BF algorithm is

a well-known heuristic for the bin-packing problem [130].

The VM resource utilization changes with time due to dynamic workloads. Hence, the

initial provision of VMs to PM needs to be enhanced with an efficient VM consolidation

approach. Our proposed WWO-VMC algorithm is applied periodically to optimize the VM

placement depending on the workload. The BF algorithm is used to optimize the resource

utilization locally, whereas our proposed WWO-VMC approach is used to optimize resource

utilization globally. Based on the percentage of CPU utilization we categorize the PM into

one of the three categories PMunder, PMover and PMnormal . We consider PM as underutilized

PMunder if the CPU utilization is under 40%, PM as over-utilized PMover if CPU utilization

is over 90%, and all other PMs are normal utilized PMnormal .
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FIGURE 5.1: Shallow and deep water wave models

5.4 Theory of Water Wave

Isaac Newton was the first person to make an effort on the theory of water waves. Further,

the linear theory of water waves was studied by French mathematicians Laplace, Lagrange,

Poisson, and Cauchy and they made authentic theoretical advances [131]. The WWO

approach proposed in [128] is an efficient technique for global optimization. The shallow

water wave theory is the basis for WWO, which uses a numerical approach to analyze the

evolution of wave amplitudes (heights), periods (wavelengths), and propagation directions

under different conditions such as nonlinear wave interactions, wind force, and frictional

dissipation [129]. The solution space in the WWO algorithm is comparable to the seabed

region. The fitness of any point in the solution space is estimated inversely by the depth of

the seabed. The fitness functions of waves measure high if the distance is less to the still

water [128]. The various changes in the shape of water waves such as amplitude or height

and wavelength are depicted in Figure 5.1.

The high energy waves having large amplitude i.e., good wave produce a high-quality

solution, and low energy waves having long wavelength produce poor solutions. The

majority of evolutionary algorithms keep up a population of solutions; similarly, WWO

maintains a solution. Each solution of which is similar to a “wave” with two parameters

height and wavelength. The height of wave h∈ Z+ (integer domain) and wavelength λ ∈ R+

(real domain). These parameters are initialized as constants h = hmax and λ = 0.5 [60]. The
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best solution exploration procedure in the WWO algorithm is modeled as wave propagation,

wave refraction, and wave breaking.

5.5 Energy Efficient VM Consolidation with WWO

As discussed in Section 5.3, each PM provides one or more VMs, and both PMs and VMs

are categorized by their resource utilization. In the context of VM migration a PM can be

either a potential source PM pmsource where VMs already residing or a target PM pmdest

for VM migration. All PMunder and PMover are members of pmsource set, whereas all PMs

except PMover are members of pmdest set. The proposed WWO-VMC algorithm creates set

of tuples T, where each tuple t in T consists of three elements t = (pmsource,vm, pmdest)

where pmsource is the source host, vm is the selected VM for migration and pmdest is

destination host machine. Our proposed algorithm aims to minimize the number of active

PMs needed to host all VMs without compromising their performance. This can be done

by enforcing the VM consolidation algorithm.

In this work, we redesign the original WWO algorithm for VM Consolidation to minimize

energy consumption. As every solution in WWO is a migration plan or set of migrations,

hence, we considered every solution as a wave x. A wave has a set of three-parameter tuple

t, height h and wavelength λ (initially height is constant hmax and wavelength is 0.5). The

fitness of x depends on the number of migrations (M) and the number of sleeping hosts or

PM (Ps): As the number of migrations increase, fitness decreases, and as the number of

sleeping hosts increases, fitness also increases.

We initialize the population as a set of migration plans as in the original WWO algorithm

and apply the three operators wave propagation, refraction, and breaking. Which evolve the

population up to the termination state is satisfied continually. However VM consolidation

is a combinatorial problem, therefore WWO cannot be directly applied for energy-efficient

VM Consolidation, so we have to redefine its operator’s propagation, refraction, and

breaking as discussed in the following sections.
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5.5.1 Propagation for Energy Efficient VMC

In the propagation operator, we can see wavelength λ of solution as the probability for

mutation, and we will decide whether to mutate or not using: for a good solution and small

probability of mutation the value of λ will be small; on the other hands, a bad solution will

have a large λ value, and hence will have a considerable probability of being mutated.

Each wave x generates another wave x’ if its wavelength is greater than a randomly

generated value r between 0 and 1, by this method –

If r < λ then for each tuple t in wave x, we will randomly either add a new tuple or replace

the current tuple (with a tuple from the set of all tuples excluding the tuples from current

wave x) or we will remove the current tuple from current wave x; If the fitness of the current

wave x is less than the fitness of the newly generated wave x′ then replace x by x′(with

h = hmax) else set h = (h−1) for the current wave x. After each generation, x updates its

wavelength using equation (5.1).

λ = λ ·α−( f (x)− fmin+ε)/( fmax− fmin+ε) (5.1)

where, f (x) is fitness function, f (x) = Pγ
s + 1/(ε + M), Ps is the number of sleeping

hosts(PM), M is the number of migration, γ is a parameter defining the relative importance

of Ps, α is wavelength reduction coefficient, fmin and fmax are minimum and maximum

fitness of the current solution (Migration plan). To avoid division by zero, we choose a

small value for ε .

5.5.2 Refraction for Energy Efficient VMC

The purpose of Refraction in WWO is if we know that a solution is bad, then we try to

improve the solution by giving it some good features of the known best solution. Technically

If height h of some wave/solution x becomes zero, then x is replaced by new solution x’
which will be centered between x and global best solution x∗.

In our case, our solution is the migration plan having some tuples showing each migration.

So whenever the height of the solution vanishes, to make the current solution (migration
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plan) better, we add or replace some tuple (migrations) with tuples from the global best

solution so far i.e. x∗.

We set the height of the new solution to hmax, and update the wavelength :

λ
′ = λ · f (x)

f (x’)
(5.2)

where f (x) and f (x′) is the fitness of old solution and new solution respectively.

5.5.3 Breaking for Energy Efficient VMC

If the propagated solution is better than the known global best solution so far, i.e., f (x) >
f (x∗), then we check in the neighborhood of the solution x for a better solution than x, and

if we find a solution better than x say x’, then the global best solution is updated as x∗ = x’
otherwise update x∗ = x.

We will find the neighborhood solution and update the global best solution using the

following way: For k in (1,kmax) do: Choose some tuples from solution x, and for each

of those chosen tuple either add or replace the tuple with a tuple from the set of all

tuples excluding the tuples from current wave x, or remove the tuple from solution x. if

f (x)> f (x∗) then update x∗ = x. where kmax is a predefined number whose value is 12.

5.5.4 Algorithm framework

In this section, we presented our proposed algorithm and discussed time complexity. The

main focus of our algorithm is to maximize the inactive machines, in other words, minimize

the active machines to conserve energy. The pseudo-code for the proposed WWO-VMC

algorithm is given in Algorithm 5. It initializes the population randomly (line 1) and creates

tuples with three elements each t = (pmsource,vm, pmdest) where pmsource is the source

host, vm is the selected VM for migration and pmdest is destination host machine. The

number of tuples keeps changing according to the algorithm whenever to add or remove

the tuple step comes. The three operators used in this algorithm are propagation, refraction,

and breaking. Propagation (lines 5-14) enables to accept tuple or create a new tuple based
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on the fitness of the population. For better wave propagation we consider parameters r1

and r2. Based on the series of preliminary experiments we tuned r1 and r2 to 0.28 and 0.64

respectively. The breaking operator (lines 17-19) enables an exhaustive search for selecting

a source for migration. Finally, the refraction (lines 21-24) avoids early convergence by

improving population diversity.

Algorithm 5 WWO-VMC algorithm
1 Randomly initialize a population P of migration plans;
2 while iterations < max number o f iterations do
3 for each wave x in population P do
4 initialize x’ = x
5 for each tuple t in x do
6 r = rand(0,1)
7 if rand()< x.λ then
8 if r < r1 then
9 add new tuple in x’
10 else if r < r2 then
11 replace t by new tuple in x’
12 else
13 remove t from x’
14 end for
15 end for
16 if f (x’)> f (x) then
17 if f (x’)> f (x∗) then
18 perform breaking operation (Section 5.5.3)
19 update x with x’
20 else
21 x.h = x.h−1
22 if x.h == 0 then
23 perform refraction operation (Section 5.5.2)
24 update wavelength based on equation (5.1)
25 end while
26 return x∗.

Our proposed WWO-VMC algorithm framework is clear and easy to understand. The

algorithm performs well with fewer populations. We consider the recommended values of

control parameters for the algorithm such as the maximum wave height hmax, the number

of breaking directions k, wavelength reduction coefficient α as in [128]. The WWO-VMC

algorithm minimizes the number of active PMs to reduce the energy consumption of data

centers while preserving the QoS requirements.
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Let n be the number of waves in the population, m be the number of physical machines

(PM), v be the number of Virtual Machines (VM). Our algorithms have three types of

operation in a single iteration over the population. Propagation: The time complexity of

propagation is linear in the number of tuples in n waves of the population. The worst

case of the number of the tuples in a wave is O(m2 ∗ v) which implies the worst-case time

complexity of this operation is O(n ∗m2 ∗ v). This is the costliest operation in a single

iteration. Breaking: Let k be the coefficient of breaking. The time complexity of breaking

is O(k ∗m2 ∗ v). Refraction: It has the same worst-case complexity as that of propagation

operation. Let I be the number of iterations in the algorithm. So, the overall time complexity

of the WWO-VM Consolidation algorithm is O(I ∗n∗m2 ∗V ).

5.6 Experimental setup and results

The technology stack used for the simulation of results is JAVA language and the framework

used was CloudSim Plus. Moreover, our target is IaaS clouds which provide unlimited

resources to cloud users on a payment basis. Conducting repeatable experiments on such

infrastructure is expensive, so we used the simulation model. CloudSim Plus is a toolkit

with a full-featured and flexible simulation framework. It enables users to model cloud

scheduling applications for simulation, and experimentation. Users are allowed to focus

on specific system modeling issues to be explored, without regarding the functional level

characteristics related to data center infrastructure and Services. CloudSim Plus framework

has all the basic classes required for the simulation of various processes of the cloud. It

allows one to extend the basic classes to implement the modified algorithms for the specific

simulation. We have extended the basic VM allocation with migration to implement our

WWO based VM allocation with migration. For the simulation of our algorithm, we have

used the open data, provided by Numerical Aerodynamic Simulation (NAS) Systems

Division at NASA Ames Research Center. The workload was logged for three months from

October 1993 in a 128-node iPSC/860 hypercube [132].

We used the cleaned and converted log in Standard Workload format.

SwfWorkloadFileReader class in Cloudsim Plus was used to read and build cloudlets using

this file. Each cloudlet was assigned a suitable VM, and correspondingly hosts were

created according to the requirements of VMs at the initial simulation. For our hosts, we
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TABLE 5.1: Parameters in the WWO-VMC approach.

γ ε r α λ k
5 0.00001 (0, 1) (1.001, 1.01) 0.5 (1, 12)

TABLE 5.2: Amount of energy consumption of HP G3 server at different load levels.

Load Levels(%) Energy Consumption (Watts)
0 105
10 112
20 118
30 125
40 131
50 137
60 147
70 153
80 157
90 164

100 169

selected one HP ProLiant ML110 G3 server (with the configuration of (1 x [Pentium D930

3000 MHz, 2 cores], 4GB)). To evaluate the performance of our implemented algorithm,

we considered two metrics energy consumption and the number of migrations. The WWO

parameters and values which we were obtained in a series of preliminary experiments and

that were used in the proposed WWO-VMC approach present in Table 5.1.

5.6.1 Simulation Results

The energy consumed in the whole energy utilized by the physical machines while running

the VMs during the simulation. The objective function was designed in such a way that

energy consumption is minimized by our algorithm. The energy consumed by a single

physical machine depends on the utilization of resources of a machine like CPU, memory,

and bandwidth. It has been noted that power consumption by the utilization of CPU exceeds

the other factors by a margin. So most of the approaches to calculate energy are based on

modeling of energy based on the utilization of CPU. The SPECpower benchmark is the

real-world workload that we used to evaluate our algorithm on CloudSim Plus. The energy

consumption of the HP G3 server at different workload levels illustrated in Table 5.2.
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FIGURE 5.2: 15 Cloudlets

FIGURE 5.3: 20 Cloudlets

We have compared our WWO-VMC algorithm with three well-known heuristic methods for

dynamic VM reallocation in [127]. These algorithms keep and use CPU utilization between

upper and lower thresholds. When a PM is underutilized then its VMs are consolidated

for load balancing and when the PM is overutilized (exceeds a threshold) then its VMs

are reallocated for load-balancing. To estimate the PM utilization these heuristics adapt

the utilization threshold dynamically based on LR (Local Regression), MAD (Median

Absolute Deviation), and IQR (Interquartile Range).

We used different workloads to evaluate the performance of our proposed approach. The
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FIGURE 5.4: 30 Cloudlets

FIGURE 5.5: 60 Cloudlets

simulation results are depicted in Figures 5.2 to 5.7 and it is clear that results show that our

proposed WWO-VMC approach surpassed the other algorithms in energy saving. And a

significant energy saving observed for large workloads.
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FIGURE 5.6: 90 Cloudlets

FIGURE 5.7: 120 Cloudlets

5.7 Conclusion

Cloud providers use different energy management strategies to maximize ROI.

Energy-efficient VM consolidation is one such strategy to minimize monitoring costs of

clouds. In this chapter, we present a dynamic efficient technique to place virtual machines

on cloud servers by minimizing energy consumption. Our proposed WWO-based VM

consolidation algorithm consumed 10 percent less energy compared to the standard
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dynamic migration algorithms like MAD, IQR, and LR. This algorithm has the scope of

optimizations in the parts of modification of parameters and definition of operations of

refraction, propagation, and breaking. Further, the runtime of the algorithm can be

optimized so that the convergence of the algorithm is faster.


