
Chapter 4

A heuristic-based scheduling algorithm
for energy and reliability optimization

This chapter1proposes a heuristic for workflow scheduling called energy-efficient and

reliability-aware workflow task scheduling (EERS) in clouds. The EERS addresses

objectives such as energy consumption and system reliability. It consists of five

sub-algorithms such as task rank calculation, task clustering algorithm, sub-target time

distribution, cluster-VM mapping, and slack algorithm. The EERS provides a trade-off

between energy utilization and reliability. The efficiency of the algorithm is evaluated

using WorkflowSim tool and well-known scientific workloads like CyberShake and

Montage. The experimental results show that it surpassed the related state-of-the-art

works in terms of energy-saving and reliability.

4.1 Introduction

Most of the business and complex scientific applications have been using workflows to

analyze complex data sets and conduct simulation experiments constructively [7]. A

scientific workflow involves individual data transformations and analysis steps, and

1This chapter is derived from: Medara, Rambabu, and Ravi Shankar Singh. ”Energy Efficient and
Reliability Aware Workflow Task Scheduling in Cloud Environment.” Wireless Personal Communications
(2021): 1-20.

83

Chapter 4. A heuristic for energy and reliability optimization 84

mechanisms to link them according to the data dependencies among them [104]. Several

scientific applications comprise numerous tasks with precedence constraints and are highly

complex with various sizes of tasks. Therefore, scientific workflow management mostly

deals with large volumes of data. Such complex workflow applications demand high

computing power and high system reliability. With the rapid proliferation of accessing

scientific applications, it is necessary to focus on developing the energy-aware workflow

scheduling model in a cloud environment.

The scheduling of workflow tasks in distributed platforms such as grids and cloud

environments has been extensively considered for many years. Researchers have developed

algorithms geared towards different environments: from small-scale homogeneous clusters

to large-scale community grids, to the contemporary paradigm, heterogeneous,

utility-based, and resource-rich cloud computing [7]. Clouds provide unlimited computing

power which is a more relevant platform to execute complex workflow applications. But

the computational systems in cloud data centers are not failure-free and any type of fault

may be critical to the running application [105]. Particularly, the transient faults increase

by the DVFS approach. Such failures may impact the execution nature of the program and

provoke unpredictable results [106]. In this work, we proposed an efficient heuristic for

energy efficiency and reliability aware workflow tasks scheduling in a cloud environment

(EERS) which maximizes the reliability for workflow tasks while conserving energy.

The rest of the chapter is organized as follows. The related work is discussed in Section 4.2.

We propose system architecture and models in Section 4.3. Then Section 4.4 presents the

five sub-algorithms and EERS algorithm implementation. Section 4.5 gives the algorithm

performance evaluation and finally conclusion and future work discussed in Section 4.6.

4.2 Related work

In the past few years, notable attention has been paying to develop the scheduling and

energy-efficient resource management models for workflow execution in cloud

environments. This problem’s efficiency depends on various factors like the arrival rate of

the user requests, resource availability, and workloads.

Chapter 4. A heuristic for energy and reliability optimization 85

Numerous scheduling algorithms for the cloud environment aimed to optimize the

makespan and cost of workflow applications. A fuzzy dominance-based HEFT algorithm

to address the cost and makespan of workflow applications in clouds [107], which uses

real-world pricing and resource models. A cost-aware large-scale workflow scheduling

approach in [108] with DAG splitting mechanism reduces the monetary cost of application

by maximizing the VM utilization. A list-based heuristic called Heterogeneous Earliest

Finish Time (HEFT) [92] approach gives the best makespan. A heuristic called Jaya

algorithm in [109] used to reduce both the computation and communication costs while

scheduling the workflow tasks in the cloud environment. A Case Library and Pareto

Solution-based hybrid Genetic Algorithm (CLPS-GA) [110] has focused on two objectives

such as makespan and energy conservation while scheduling the workflow tasks. It relies

on a case library and multiparent crossover operator to effectively ensure the stability,

diversity, and convergence in the solution. An approach in [111] has employed an immune

genetic algorithm to resolve the QoS constraint satisfaction by considering five objectives

for workflow scheduling in the cloud environment. The deadline-based workflow

scheduling algorithm [112] employs the Particle Swarm Optimization (PSO) technique to

diminish the overall execution cost while scheduling the scientific workflow applications

in the Infrastructure-as-a-Service (IaaS) clouds without violating the deadline constraints.

However, these works are not considered either energy or reliability objectives.

A green energy-efficient scheduling approach [113] employs the DVFS technique which

enables the computing processors to run the task at low voltages and low frequencies. It

effectively utilizes the cloud data center resources through task to-VM allocation based on

the task dependencies of an application to reduce energy consumption and makespan. An

energy-efficient heuristic is proposed in [50] to schedule real-time workflow applications

in clouds. It saves energy by effectively utilizing the schedule gaps using per-core DVFS

and approximate computations. Similar work in [46] addressed energy, monetary cost,

and quality of service objectives. A polynomial-time multi-objective heuristic proposed

in [49] to schedule time-constrained tasks on the cloud environment, which optimize

energy, cost, and resource utilization while maintaining Service Level Agreements (SLAs).

Stackelberg game based Game-Score simulator developed in [114] to schedule the tasks in

the cloud environment, which trade-off between energy consumption and schedule length

of a workflow. A load balancing-based approach for scheduling tasks in a distributed

cloud environment in [44], optimizes resource utilization by estimating task execution time

Chapter 4. A heuristic for energy and reliability optimization 86

based on the cloud status and queuing model used to improve response time. A PSO-based

multi-objective approach for workflow scheduling in clouds optimizes cost, schedule length,

and resource utilization while considering system reliability [115]. From the review of the

existing state-of-art scheduling strategies, it is observed that most of these strategies focus

on multi-optimization without considering the reliability of the system.

4.3 System models

This section presents the system models such as the cloud datacenter model, application

model, power model, and reliability model.

4.3.1 Datacenter Model

The cloud data center is assumed having M heterogeneous physical machines (PM) PM =

{pm1, pm2,, pmM}. Every PMs is DVFS enabled and can operate at varying frequency

(f) levels (f1, f2,, fk), where k is the number of frequency levels. The switching time

among these frequency levels approximately takes 10–150µm which is insignificant [47].

The DVFS approach operates processor frequencies under various voltage levels. Every PM

is describing with different types of resources such as CPUs, memory capacity, bandwidth,

network I/O, and the storage size. These physical machines virtualized into v number

of virtual machines (VMs) each of which considered operating at a different frequency

level (DVFS enabled) and PM operating frequency attribute to its VMs. A VM can be

characterized with maximum computing performance in a Million Instructions Per Second

(MIPS), bandwidth (B) etc. Hence, the cloud workflow scheduler has distinct possibilities in

selecting the suitable VM to execute a task by meeting workflow constraints. Generally, we

consider computing performance relates to the processor frequency. A kth virtual machine

vmk at some level of operating frequency represented as f k
op.

Chapter 4. A heuristic for energy and reliability optimization 87

4.3.2 Application Model

In general, a workflow W with dependencies among tasks Tw = {t1, t2,tn} is modeled

as a DAG. A DAG W = (Tw,C) where C is the set of edges or directed arcs represents the

dependencies among tasks. An edge ci j is the dependency from ti to t j where ti is one of the

parents of t j and t j is one of the children of ti. A task without a parent(s) or predecessor(s)

is called an entry task tentry and a task without child(s) or successor(s) is called exit task

texit . A task is prompt to execute when all required resources of its available. When the

job ti completes its execution and its generated output transfers to its children. The data

transferred (in MB) from task ti to its child t j has represented the weight on the edge ci j as

w(ci j). We denote the overall execution time of workflow (makespan) as TM and associated

workflow deadline as TD. For any workflow execution deadline TD is describe as a time

constraint and is user-defined.

The data communication time T (ti j) between two precedence constraint tasks is calculated

as in equation (4.1)

T (ti j) =
w(ci j)

B
(4.1)

where B is the bandwidth and w(ci j) is the data (in MB) communicated between tasks ti
and t j. The execution cost of any task ti calculated as in equation (4.2)

T (ti,vmk) =
wi

f k
max

+T (ti j) (4.2)

where T (ti,vmk) is the task ti execution time on vmk and it includes effective execution

time and data communication time. The mean execution time of task ti is the mean of

execution times on various available VMs and is calculated as follows

T (ti) =
n

∑
k=1

T (ti,vmk)

n
(4.3)

where n is the number of VMs. The earliest start time EST and as well as earliest finish

time EFT of task ti are calculated as follows

EST (ti) =

0 if ti = tentry

maxtp∈parent(ti)EFT (tp) otherwise
(4.4)

Chapter 4. A heuristic for energy and reliability optimization 88

EFT (ti) = EST (ti)+T (ti,vmk) (4.5)

The EFT (texit) is the minimum makespan of the W minTM = EFT (texit). Without loss of

generality, we consider user defined deadline TD should be greater than the minTM i.e. TD

> minTM.

4.3.3 Power Model

The power utilization of computational servers of cloud data centers is due to CPU, memory,

network interfaces, storage disks, and other underlying circuits. In comparison with other

computing resources, the CPU dominates energy consumption. For this work, we have used

the energy model discussed in Section 3.3.4. The energy consumption of a specific task ti
with computation cost wi, executing on vmk with operating frequency fmax calculated as

follows

E(f i,k
op) =

(
Pind +Ce f fV 2

(
f i,k
op

))
.T (ti,vmk) (4.6)

and the total energy consumed for the application given by the sum of the energies of

individual tasks in application and is calucted using the following equation.

ETotal =
n

∑
i=1

E
(

f i,k
op

)
(4.7)

For simplicity, we considered only dynamic energy consumption in this work.

4.3.4 System Reliability

During the execution of an application, faults may occur due to hardware breakdown,

software failures, cosmic ray radiation, etc. As the frequency of transient faults significant

than permanent and intermittent faults [47] [102], we focused on transient faults in this work.

Cloud provides shareable heterogeneous computing resources. The computing resource

failures are inevitable and have conflicting effects on application performance and energy

consumption. Processors failures are discrete events and assumed to follow a Poisson

process [116]. The operating frequency of CPU influence the fault arrival rate λ [47]. This

Chapter 4. A heuristic for energy and reliability optimization 89

fault arrival rate λ influences the performance of a node where a computation-intensive

application running and hence the reliability of such node is essential.

We assume that the transient faults happen while individual tasks are in execution. However,

with the effect of DVFS, the systems operating frequency can influence the error arrival

rate and its corresponding supply voltage. Therefore, the fault rate is represented as in

[102] is given in equation (4.8).

λ (f k
op) = λ0g(f k

op) (4.8)

where λ0 is the initial fault arrival rate at f k
max, f k

op is operating frequency of vmk, g(f k
op) is a

decreasing function and g(f k
max) = 1. Generally, equation (4.12) is known as an exponential

relation between the λ and the circuit’s critical cost. In our scheduling approach and

experimental analysis, we assume the model proposed in [102] and afterward used in [47]

expressed as exponential model as in equation (4.9).

λ (f k
op) = λ0g(f k

op) = λ010
d(1− f k

op)

1− f k
min (4.9)

where λ0, f k
op and g(f k

op) are same as mentioned before. The positive constant d stands for

the faulty rate dependency on frequency scaling and corresponding voltage. It can be easy

to perceive exponential increase in λ with frequency scaling for energy saving, i.e. λ is

maximum at the minimum allowed CPU frequency.

λmax = λ010d, for f k
op = f k

min (4.10)

Considering the transient fault model in [102] [47], which follows Poisson distribution

model, the reliability R of a task ti running on vmk is calculated as follows:

R(f i,k
op) = e

−λ (f k
op)

T (ti,vmk)

f k
op (4.11)

where f i,k
op is the operating frequency of the node where task ti running. The reliability of

application W with n number of tasks is the product of individual task reliability.

RW =
n

∏
i=1

R(f i,k
op) (4.12)

Chapter 4. A heuristic for energy and reliability optimization 90

4.3.5 Problem Specification

The main aim of the proposed approach is to reduce energy utilization while maximizing

system reliability. By considering the system models discussed in Sections 4.3.1 to 4.3.3 we

have formulated the mathematical optimization specifications of the scheduling problem as

follows:

Energy: Minimize (ETotal)

Reliability: Maximize (RW)

4.4 Algorithm implementation

The proposed EERS approach is capable of minimizing energy consumption and

maximizing system reliability while meeting the user-defined deadline. It includes four

sub-algorithms, such as task rank algorithm, task clustering algorithm, sub-target time

distribution algorithm, and cluster-VM mapping algorithm, which reduce energy

consumption and maximize the system reliability. This section presents an implementation

of these sub-algorithms precisely.

4.4.1 Task rank calculation algorithm

Workflow tasks rank order is established in this stage to fulfill the requirement of task

scheduling. The task ranks are established in such a way to meet the precedence constraints

and finds a topological order for scheduling. To prioritize tasks in W without disturbing

dependencies, each task ti is assigned a rank rank(ti), that can be computed recursively

staring with the exit task texit [47] as follows

Step-1: The exit tasks rank initialized to its average computing time

rank(texit) = T (texit) (4.13)

Chapter 4. A heuristic for energy and reliability optimization 91

FIGURE 4.1: Clustering of Tasks

Step-2: For each task compute rank recursively according to the following expression

rank(ti) = T (ti)+maxt j∈child(ti)rank(t j) (4.14)

where T (ti) is the average computation time of ti on different VMs. Estimate ranks of all

tasks by repeating the above steps for each task in workflow.

4.4.2 Task clustering algorithm

Once the parent task completes execution, its generated output transfers to its child tasks.

If both are scheduled on different VMs, then communication energy consumption incurs.

A large amount of data communication energy is consumed during inter-processor

communication. We can avoid this energy consumption by grouping the tasks and then

schedule on the same machine. Consider three tasks ti, ti+1 and ti+2 with the dependency

shown in Figure 4.1, the task ti+2 has two parents, ti and ti+1 with communication costs 3

and 5, respectively. Communication energy can be saved by grouping ti+1 and ti+2 to

schedule on the same VM.

We adopt the clustering approach in [47] for the work proposed in this chapter and we

extended it to minimize communication energy as follows:

Step-1: Staring from the entry task ti = tentry, for every task ti, if task ti not yet earmark for

any cluster, then make a new cluster cll

Step-1a: add ti to cll and sort the children of ti

Step-2: For each child t j of ti, if cluster not been assigned and parents are assigned to a

cluster

Chapter 4. A heuristic for energy and reliability optimization 92

Step-2a: if a task t j has more than one parent, then check its parents which transfers more

data to it. Such parent can find as follows

tk = maxtk∈parent(t j)wk j, (4.15)

if EFT (t j)≤ EST (t j−next) then ti �tk , goto Step2

Step-2b: ti �t j

Repeat Step 2 for the entire graph W, until each task assigned to some cluster.

4.4.3 Sub-Target Time Distribution algorithm

The target time to complete each task is based on the TD is distributed to each task of

the workflow. It is a proportionate increase in the effective execution time (makespan)

of individual tasks and hence the application. This makespan extension can be done by

reducing the frequency of the processor where it is running; hence, we can save energy. To

implement sub-target time distribution we suggested a simple algorithm that can compute

in polynomial time and steps for the sub-target time distribution algorithm are as follows

Step-1: Each task ti in a given workflow, calculate the sub-target time using equation (4.16).

The sub-target time is the deadline to complete execution of task ti.

Tsub−target(ti) = T (ti)
TD

minTM
(4.16)

where T (ti) is the effective execution time of task ti, TD and minTM are deadline and

minimum makespan of application respectively.

Step-2: For each task ti update EST and EFT using equations (4.4) and (4.5), respectively.

Every task is set with a new deadline or target completion time by repeating the above

steps for each task in a workflow.

Chapter 4. A heuristic for energy and reliability optimization 93

4.4.4 Cluster-VM mapping algorithm

Different from the clusters and utility grid computing environment, in a cloud environment,

as long as the service available, then the cloud scheduling approach can provide a time slot

to map the task to avail the service [38]. However, the cloud has inexhaustible resources,

and it can offer VMs with different characteristics for users. But it is not always good to

meet several optimization constraints. Therefore, in this section, we propose cluster-VM

mapping to execute cluster tasks to maximize system reliability and minimize energy

consumption. The steps to select a more appropriate VM for a cluster to execute its tasks

as follows.

Step-1: For each task ti (where ti ∈ cll), calculate the optimal frequency for energy

conservation on different available VMs using the equation (4.6).

Step-2: Calculate reliability of each task ti (where ti ∈ cll), on each VM using equation

(4.11)

Step-3: Map the tasks of cluster cll to the highest reliable VM vmopt
k to complete its

execution; we denote it as cll → vmopt
k .

Step-4: If vmopt
k is idle or if it executes in communication mode then scale down its

operating frequency to its minimum i.e. f i,k
op = f i,k

min

We can map each cluster to the most suitable VM for energy conservation and maximize

task reliability by repeating the above steps for all the clusters.

4.4.5 Slack algorithm

Consumption of electrical energy has developed into one of the primary interests of the

cloud-data centers. In the context of workflow application scheduling, there is some idle

time slots associated with VMs (slack time) while executing non-critical tasks. We can

redeem this slack associated with non-critical tasks by scaling the supply voltage and

frequency of the task, to conserve energy [38]. First, we need to estimate the latest start

time (LST) of each task before we introduce the slacking algorithm. The LST of task ti

Chapter 4. A heuristic for energy and reliability optimization 94

LST (ti) is specified as follows

LST (ti) =

TD−T (tentry) for ti = texit

mintp∈child(ti)(LST (tp)−T (tp)) otherwise
(4.17)

The slack time of task ti is computed by

Tslack(ti) = LST (ti)−EST (ti) (4.18)

A critical task ti has no room to reclaim i.e. Tslack(ti) = 0, and for non-critical tasks

Tslack(ti)> 0. To reduce the frequency f i,k
op of a non critical task ti to conserve energy, we

used the following four steps:

Step-1: Calculate the slack time of the task ti using equation (4.18) and mark all critical

tasks as ‘defined’ as no idle slot to reclaim.

Step-2: Select a task ti to change the frequency, which has the longest Tpath, and its parents

are marked ‘defined’, where Tpath is the sum of the execution time of the tasks on the path

from ti to the ‘defined’ task.

Step-3: Reduce task frequency to extend the execution time and save energy as follows

f i,k
op =

(
f i,k
max

) Tpath

Tpath +Tslack(ti)
(4.19)

Step-4: Update execution time of ti and mark it ‘defined’.

Repeat the above steps for the entire DAG W until all tasks are marked ‘defined’.

4.4.6 EERS Algorithm

We propose the EERS algorithm, which enables the cloud scheduler to get through less

energy cost to complete an application and also maximizes system reliability while meeting

the user-defined deadline. The EERS algorithm comprises five sub-algorithms which were

Chapter 4. A heuristic for energy and reliability optimization 95

FIGURE 4.2: The pseudo-code of the EERS algorithm

introduced in the above sections. We schedule a task to a specified VM when all of its

predecessors finish i.e a task becomes schedulable when all of its predecessors complete

their execution. When a current task completes execution then its successor tasks become

schedulable. We specified a sub-deadline for every task before mapping it to the most

appropriate VM. Thus, each task can be complete its execution within its target time, and

the entire application can be completed within a specified deadline.

The pseudo-code for our EERS algorithm is presented in Figure 4.2. Firstly, the EERS

algorithm calls the task rank calculation algorithm at line 2 in Figure 4.2, to realize a

reasonable order of tasks to execute without loss of precedence constraints of workflow. At

line 3 in Figure 4.2, the task clustering algorithm is called to minimize the communication

cost which reduces energy consumption. Then sub-target time distribution algorithm for

energy conservation by decreasing the task frequency while meeting user-defined quality

parameter(deadline) in line 4. The cluster-VM mapping algorithm to select optimal VM to

conserve energy and maximize task reliability is called at line 6 in Figure 4.2. Finally, a

slack algorithm is called at line 7 in Figure 4.2 to reclaim the slack of non-critical tasks

to further reduce the energy consumption. The clustering algorithm, task-VM mapping

algorithm, and task slacking algorithm reduce energy consumption without compromising

the performance.

Chapter 4. A heuristic for energy and reliability optimization 96

TABLE 4.1: Simulation Environment Parameters

VM Parameter Value(s)

CPU frequency level (fmax) 2.0 GHz - 2.4 GHz
Computing capacity (MIPS) 1000 - 3000
RAM 512 MB
Bandwidth 1000 Mbps
Number of cores 1
Voltage supply (Vmax) 220 V

4.5 Performance evaluation

This section presents the performance of the EERS scheduling technique by conducting

a series of simulation runs. We assume that the cloud data center has DVFS enabled

virtual machines (VMs) and each VM has its computing resources, and bandwidth is

constant between VMs instances. The computing performance of VMs and other simulation

parameters present in Table 4.1 and are self-defined. The other parameter such as failure

rates are 10−5 to 10−7 failures/s as in [47]. For ease, we suppose that the frequency

of VM is directly proportional to its computing performance, which is realizable from

the experimental point of view. Moreover, every VM operates at different levels of the

frequency with minimum and maximum thresholds, and the DVFS takes advantage of

these frequency levels to scale the task’s operational frequency to conserve energy.

To simulate a cloud environment, the WorkflowSim tool is used. The strength of the EERS

algorithm is evaluated using two real workflows: Montage and CyberShake. Both Montage

and CyberShake applications have been represented as a workflow that can be executed

in Grid environments and are mostly used benchmarking datasets for testing workflow

optimization algorithms in clouds. The topological organization of these four scientific

workflows is depicted in Figures 1.3 and 1.4 respectively.

The main focus of experimental results is on reliability and energy utilization. These will

change with the varying workloads (number of tasks in workflow) and a varying number of

VMs to execute the selected workload. To expose the strength of our proposed scheduling

algorithm on reducing energy consumption and assured reliability the simulation results

were compared with other existing works. We perform three well-known scheduling

approaches HEFT [92], EES [63], and REEWS [47] to compare with our algorithm. The

Chapter 4. A heuristic for energy and reliability optimization 97

FIGURE 4.3: a) Energy consumption and b) Reliability for various workloads on
CyberShake Workflow

FIGURE 4.4: a) Energy consumption and b) Reliability for diffrent number of VMs on
CyberShake Workflow

HEFT approach is a prominent list-based heuristic for workflow application scheduling to

optimizing the makespan. In every step, HEFT chooses the highest priority (rank value) task

to assign a processor, which reduces the EFT (earliest finish time) with an insertion-based

approach. The EES (Enhanced Energy-efficient Scheduling) algorithm is a HEFT-based

approach to conserve energy while meeting the quality parameters. The fundamental idea

of the EES method exploits the slack time on non-critical tasks and globally allocates them

to minimize energy. The REEWS is a heuristic algorithm to maximize the application’s

reliability and minimize energy consumption while meeting user-defined quality constraints.

The REEWS algorithm works in four stages: 1) task priority calculation to preserve

dependencies; 2) task clustering to minimize communication cost; 3) distribution of

target time (user-defined deadline), and 4) mapping the cluster to VM with appropriate

frequency/voltage levels.

Chapter 4. A heuristic for energy and reliability optimization 98

FIGURE 4.5: a) Energy consumption and b) Reliability for various workloads on Montage
Workflow

4.5.1 Performance Evaluation with different workloads

First, we evaluated the performance of our algorithm for different workloads i.e by varying

the number of tasks as 30, 50, 75, 100, 150, and 200 on CyberShake and 75, 100, 125,

150, 175, and 200 on Montage real-world scientific workflows. The simulation results for

energy consumption and system reliability are depicted in Figures 4.3 and 4.4 respectively.

In energy objectives, our proposed EERS consistently reduced energy concerning the

workloads. It saved more energy as compared to the HEFT, EES, REEWS as the fact that

the EERS is efficient in allocating resources to the tasks in such a way to reduce energy

consumption. Moreover, EERS efficient in clustering the tasks to reduce the communication

costs and hence saves energy. Finally, the EERS used a task reclaiming approach to take the

advantage of the DVFS techniques to reduce energy utilization by lowering the task’s supply

voltage and frequency. The REEWS algorithm is an efficient technique in maximizing the

system reliability which outperformed the state-of-the-art techniques such as RHEFT and

PALS in reliability objective. Our proposed EERS gives better reliability with HEFT and

on par with REEWS but in every case, our proposed EERS approach consumed less energy

compared with the other approaches.

4.5.2 Performance Evaluation with different number of VMs

Further, we evaluated the performance of the EERS approach for different numbers of

VMs on both CyberShake and Montage workflows. We considered 5, 10, 15, 20, and 25

VMs on CyberShake and 15, 18, 20, 24, and 28 VMs on Montage. The simulation results

for energy consumption and system reliability on CyberShake and Montage workflows are

Chapter 4. A heuristic for energy and reliability optimization 99

FIGURE 4.6: a) Energy consumption and b) Reliability for diffrent number of VMs on
Montage Workflow

depicted in Figures 4.5 and 4.6 respectively. Based on energy consumption and reliability

the EERS algorithm efficient in selecting the number of VMs and as well as the type of

VMs. Hence, in this case, our EERS algorithm saved more energy on both workflows

compared to other approaches. With varying numbers of processors/VMs also our approach

maintained good reliability this is because the EERS algorithm considers failure rate before

selecting resources for mapping tasks to that resources.

4.6 Conclusion

Recently, the need for energy conservation and maximizing system reliability has become

important research. In this work, we considered scientific real-world workflows to

schedule in the cloud environment. We present Energy Efficient and Reliability-Aware

Scheduler (EERS) for scheduling workflow tasks in Cloud Computing to minimize energy

consumption and maximize the application reliability while satisfying user-defined

deadline constraints. Our proposed EERS approach comprises of five sub-algorithms i)

task rank calculation algorithm, ii) task clustering algorithm, iii) Sub-target time

distribution algorithm iv) cluster-VM mapping algorithm, and v) slack algorithm. We

discussed our EERS performance in Section 5 by performed considerable simulation runs

on the WorkflowSim toolkit and evaluated our algorithm on real-world scientific

workflows CyberShake and montage for different numbers of virtual machines and

different workloads. We compared the performance of our EERS algorithm with popular

workflow scheduling techniques such as HEFT, EES, and REEWS. It was observed from

the simulation experimental results that our proposed approach consumed less energy with

Chapter 4. A heuristic for energy and reliability optimization 100

maximizing the system reliability in all the cases. We can conclude that the time

complexity of the proposed sub-algorithms is polynomial. Simulation experiments’

outcomes reveal that our EERS approach surpasses other algorithms in both energy

consumption and reliability. It showed 37.46%, 19.75%, and 26.91% energy saving with

Montage workload and 23%, 19.68% and 200% energy saving with CyberShake workload

compared to REEWS, EES, and HEFT algorithms respectively.

