
Chapter 3

A heuristic-based energy-efficient and
cost-aware scheduling algorithm with
deadline constraints

This chapter1proposes a deadline constraint-based scheduling algorithm called ECWS

for workflows in a cloud environment. The ECWS is HEFT based heuristic for cloud

schedulers that address different objectives such as energy utilization, monitoring cost, and

resource utilization. It comprises three sub-algorithms such as ratio of effectiveness (RE)

Calculation, RE threshold selection, and slack algorithm. The efficiency of the algorithm is

evaluated using WorkflowSim toolkit and four different scientific workloads like CyberShake,

Montage, SIPHT, and LIGO. The simulation experimental results show that it outperformed

the related well-known algorithms in terms of reducing energy utilization, cost savings,

and maximizing resource utilization.

1This chapter is derived from: Medara, Rambabu, Ravi Shankar Singh, and Mahesh Sompalli. ”Energy
and cost aware workflow scheduling in clouds with deadline constraint.” Concurrency and Computation:
Practice and Experience: e6922.

59

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 60

3.1 Introduction

Workflow is regarded as a set of computing tasks that are handled in a sequence to realize

real-world applications [82]. It is a familiar and effective way of modeling various scientific

problems in parallel and distributed systems [38]. DAG model is common for scheduling

workflows in a cloud environment. A DAG represents the characteristics of workflow,

which include task execution times, the amount of data communicated between tasks,

and the dependencies among the tasks. The scientific workflows are computationally

intensive, data-intensive, and hence usually take many hours to execute. Cloud technology

offers various benefits for scientific applications over traditional computing such as rapid

resource provisioning, elasticity to scale resources dynamically, collaboration efficiency,

and cost-saving. To take advantage of the cost-effectiveness and scaling flexibility of cloud

computing it is essential to perform computational-intensive workflows on the cloud [83].

Cloud computing has been better known for its flexibility, reliability, and security. It has

become a leading technology industry and has seen a massive expansion in the last decade.

Due to this, some leading global tech giants have created large cloud data centers across

the globe for facilitating cloud services. These datacenters use diverse sets of advanced

machinery and equipment to function, which in turn requires enormous energy in the form

of electricity. The study of the energy problem in clouds has become one of the major

challenging issues. In the wake of the persistent growth rate for cloud-based services, there

has been substantial demand for energy utilization in cloud data centers. As a consequence,

an increase in cloud operating costs and as well carbon discharge into the environment

[84].

Various benefits of using cloud technologies, such as rapid elasticity, scalability,

availability, ubiquitous access, and reliability, have made the cloud an attractive stand-in

for conventional Information Technology (IT) infrastructures [85]. Cloud computing has

developed as a favorable computing model for public and private research institutes and

industries to deal with the ever-growing demand for computing and storage.

Cloud resources support the execution of computationally intensive workflow applications.

The workflow scheduling in the cloud environment is a well-known NP-complete problem

[34]. There is no capping on the amount of cloud resources access to schedule workflow

applications. Moreover, the cloud providers charge users based on the leased time unit rather

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 61

than the actual resource used for computing. Therefore, users need to pay for the whole

leased time unit. Most of the cloud vendors provide different types of virtual machines

(VMs) at different prices. Therefore, to take advantage of these pricing models, efficient

workflow task scheduling is required for maximal resource utilization during the leased

period.

This chapter introduces an energy and cost-aware workflow scheduling (ECWS) approach

for cloud schedulers to reduce energy utilization and the execution cost of the scientific

workflows.

The rest of this chapter is structured as follows. Section 3.2 presents the related work

and the proposed system models are described in Section 3.3. Then Section 3.4 gives the

four sub-algorithms of the proposed ECWS algorithm. The experimental setup and results

analysis demonstrated in Section 3.5. In the end, the conclusion and future scope of work

are addressed in Section 3.6.

3.2 Related work

Over the last few years, researchers have been paying considerable attention to

energy-aware cloud resource management and establishing models to contribute to

workflow task scheduling. Workflow scheduling efficiency and effective cloud resource

management rely on different factors including user request arrival rate, accessibility and

reliability of the data center resources, and the workloads of the tasks.

Many of the recent works for workflow task scheduling in cloud computing considered

different performance objectives like schedule length, VM utilization, and cost. A hybrid

multi-objective scheduling algorithm in [86] addresses the cost and makespan of the

application by considering the budget and workflow deadline constraints. It uses a recently

introduced spider monkey optimization algorithm with a budget and deadline constraints

approach. A two-phase list-based approach investigated in [87] to address various QoS

parameters but it is a simple heuristic to trapped into local optima. Another multi-objective

algorithm [88] for makespan and cost used an improved PSO. A relative distance-based

VM allocation algorithm [89] which effectively improved both VM utilization and

makespan. Another cost-effective approach in [90] schedules tasks from multiple

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 62

workflows to effectively utilize the idle time slots of VMs for saving cost. Deng, Kefeng,

et al. [91] proposed an efficient scheduler for scientific workflow applications that group

similar tasks and datasets. It used a data staging mechanism to avoid tasks overlapping. A

list-based heuristic called HEFT [92] approach gives the best makespan. A mathematical

scheduling model proposed by [93] optimizes the cost of workflows while satisfying a

deadline constraint. A HEFT-based multi-objective approach (MOHEFT) developed by

Durillo and Prodan [94] computes a set of Pareto-based solutions. Another multi-objective

approach proposed in [95] addressed the multiple conflicting objectives such as server

workload, schedule length, load-balancing, and reliability using the firefly algorithm.

Some evolutionary algorithms effectively reduce the cost and schedule length. Tsai et. al

[96] have combined the Taguchi method with the Differential Evolution algorithm

resulting in the IDEA algorithm. This algorithm is well balanced on both exploration and

exploitation. It is examined that these works ignored the energy objective.

Reducing the energy consumption of data centers is a major concern these days. Numerous

competent scheduling approaches to minimize energy consumption have been researched.

It proposes task clustering and slacking approaches for energy saving. An energy-aware

heuristic in [46] addresses energy, monetary cost, and quality of service objectives. The

above two works not minimizing the number of active machines. A HEFT-based slack

room reclaiming algorithm called an enhanced energy-efficient scheduling (EES) technique

is proposed to minimize the energy consumption while preserving the workflow makespan

[63] but it only used slack algorithm to reduce energy consumption. A Dynamic Voltage and

Frequency Scaling (DVFS) technique was used by Cao and Zhu [37] to scale down the CPU

operating frequencies of VMs considering the workflow deadline. However, they ignore

the cloud datacenter pricing models as the VM instances are charged by an hourly-based

pricing model. Two list-based energy-aware task scheduling algorithms proposed in [61],

called the Enhancing HEFT (EHEFT) and the Enhancing Critical Path on a Processor,

addresses the energy-efficient and schedule length in workflow scheduling. But these

two approaches, only find power inefficient processors to reduce energy consumption. A

multi-objective approach to minimize the energy consumption of the application proposed

in [97] uses the Genetic Algorithm (GA) and a gap scheduling is used to maximize the

resource utilization. Although, most of the works reduce energy consumption but are not

considered the monetary cost objective.

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 63

3.3 Problem Modeling

Our problem comprises scheduling the scientific workflow applications in clouds in a

manner that the energy consumption and monetary cost are reduced while meeting the

user-specified deadline. This section describes the system models such as workflow model,

cloud datacenter model, cost model, and energy model used in the proposed approach.

3.3.1 Datacenter Model

We consider cloud datacenter with k types of virtual machines

V M = {vm1,vm2,vm3,,vmk−1,vmk}. These VMs are charged based on time unit

(hourly pricing model). Using the fact that the recent processors support DVFS techniques,

that enable every processor to scale the voltage and frequency at runtime to reduce power

utilization [98], we consider that all VMs in the cloud data center support DVFS. For

example, Amazon EC2 A1 provides six types of VM instances [99]: a1.medium, a1.large,

a1.xlarge, a1.2xlarge, a1.4xlarge and a1.metal. Each V M considered in this work is

assumed to run at different levels of frequencies (f1, f2,, fl−1, fl). The switching time

between frequencies roughly between 10 and 150µm which is insignificant. The

computing resources (VMs) are characterized by computing capacity in a million

instructions per second (MIPS), bandwidth (BW), etc. Therefore, the cloud scheduler has

the potential in choosing the VMs to run the tasks to satisfy workflow constraints. A kth

VM operating at some level of frequency (op) denote as f k
op.

3.3.2 Application Model

It is common to model a workflow W with precedence constraints among a set of tasks

Tw = {t1, t2,, tn−1, tn} as Directed Acyclic Graph (DAG). A DAG W = (Tw,C) where

C is the set of communication arcs between tasks. An arc between ti and t j (ti, t j ∈ Tw)

represents the dependency and is denoted as ci j (i, j ∈C and i 6= j) where ti is predecessor

of t j and t j is immediate successor of ti. A task with zero predecessors is an entry point tentry

and a task with zero successors is an exit point texit . If all required computing resources are

allotted for a task then it prompts to execute. After finishing the ti its output data transferred

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 64

(in MB) to its immediate successors and it is marked as the edge weight between ti and t j

as w(ci j). The total execution time of W is denoted as TM and deadline as TD. The deadline,

TD is a user-specified time constraint for workflow applications. The data transfer time

between ti and t j is T (ti j) and is calculated using equation (3.1).

T (ti j) =
w(ci j)

BW
(3.1)

where BW and w(ci j) are bandwidth and amount of data tranffered from ti to t j respectively.

The effective execution time of any task includes its execution cost and data communicated

to its immediate successors. For eaxapmle, the effective execution time of ti is on kth virtual

machine is T (ti,vmk) and is estimated as in follows equation:

T (ti,vmk) =
wi

f k
max

+T (ti j) (3.2)

In the context of scheduling analysis, it is common to looks for the latest and earliest points

of the task’s ending and beginning. The earliest start time (EST) and earliest finish time

(EFT) of task ti are measured using equations (3.3) and (3.4) respectively.

EST (ti) =

0 if ti = tentry

maxtp∈parent(ti)EFT (tp) otherwise
(3.3)

EFT (ti) = EST (ti)+T (ti,vmk) (3.4)

The minimum schedule length is the earliest completing point of the exit task of the

workflow EFT (texit) i.e., minTM = EFT (texit). Without loss of assumption, the

user-specified deadline for completing the workflow must be not less than the minimum

makespan TD ≥ minTM.

3.3.3 Cost Model

We consider a pay-as-you-go cost model where the VM instances are being leased for the

applications in an hourly-based manner. So we have defined the cost of all the VMs available

on an hourly basis. Hence, the monetary cost of any task executing on a leased machine is

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 65

simply the hourly price of that VM instance. Hence the overall cost of application Cost(W)

is the sum of the costs of all the tasks.

3.3.4 Energy Model

The cloud server’s power consumption results from different components such as CPU,

memory, network interfaces, storage disks, and other underlying circuits. Among these, the

CPU is the major contributor. While executing workflow applications in a cloud platform

we can see three components of power consumption that include independent, dynamic,

and static. The independent power utilization Pind is free from the processor frequency

and voltage whereas the dynamic power consumption PDynamic depends on the processor’s

supply frequency. Different components such as memory, storage, input-output devices,

etc., come under independent power utilization and this component can be minimized by

keeping the system in sleep mode [100]. The static power utilization PStatic is to remain the

clock running, to maintain the basic circuits, etc.. and it can be avoided by shutting down

the circuit. The power utilization is estimated by the product of the supply voltage (V) and

current (I) of the circuit as in equation (3.5).

PStatic =V ∗ I (3.5)

PDynamic is the dominant among the three components of power consumption. It is expressed

as the sum of the transient capacitive-load power utilization [101]. We used the power

model to estimate PDynamic suggested [102]

PDynamic =Ce f fV 2 f =Ce f f f 3 (3.6)

where Ce f f is the effective-load capacitance, and f and V are frequency and voltage

respectively. A CPU with clock speed (frequency) of f and supply voltage V, f is directly

proportional to V. To emphasize the cloud server power consumption by considering both

PDynamic and PStatic power components, this work considers the power model used in [103].

The server power consumption when it is active (h=1) is calculated using equation (3.7)

and it can be rewriting as in equation (3.8).

P = PStatic +h(Pind +PDynamic) (3.7)

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 66

P = PStatic +h(Pind +Ce f fV 2 f) (3.8)

Note h is set to zero to specify that the server is not in an active state. Because the PDynamic

component is the most compelling, hence the other components are not considered in this

work. Further, the energy consumption of any active server is a product of power utilization

and service time as in equation (3.9).

E = P∗ t (3.9)

The energy utilization of any task ti on vmk calculated using equation (3.10).

E(f i,k
op) =

(
Pind +Ce f f

(
f i,k
op

)3)
.T (ti,vmk) (3.10)

The overall energy utilization for the workflow execution is the summation of energies of

all tasks in W and it can be measured using equation (3.11).

ETotal =
n

∑
i=1

E
(

f i,k
op

)
(3.11)

3.3.5 Scheduling Model

Considering the system models discussed in the above Sections 3.3.1 to 3.3.4 the workflow

scheduling problem deal with many conflicting optimization objectives such as cost, energy,

and resource utilization can be formulated as mathematical models as follows:

Cost: Minimize Cost(W)

Energy: Minimize ETotal

Resource utilization: Maximize Util(%)

Note: the resource utilization model Util(%) discussed in Section 3.4.3.

3.4 Proposed Methodology

The proposed ECWS algorithm is efficient in minimizing energy consumption and cost by

considering the user-specified deadline constraint. The ECWS runs in four phases

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 67

(sub-algorithms), such as initial task scheduling with the HEFT algorithm, identification of

inefficient processors by evaluating the RE metric, removal of identified inefficient

processors by selecting an ideal RE threshold to minimize the monetary cost and energy

consumption. Finally, task slacking algorithm to reclaim slack period associated with

non-critical tasks for further energy saving. In this section, we introduce the

implementations of these phases precisely as follows.

3.4.1 Task Scheduling with HEFT algorithm

Initially, the workflow tasks are scheduled using HEFT [92], which is an efficient approach

to get a short schedule length. The HEFT is a well-known list-based heuristic scheduling

algorithm for minimizing the schedule length in workflow applications. The HEFT

algorithm runs in two phases, such as task prioritization to calculate the upward rank of

tasks and processor selection to map the task to VM based on upward rank, which

optimizes EFT using an insertion-based approach. We calculated energy consumed Ehe f t

using equation (3.11) and we used it in Algorithm 2 as baseline energy. A workflow with n

number of tasks, the HEFT algorithm has time complexity O(n2 + vn), where v is the

number of processors (V Ms).

3.4.2 Calculate Ratio of Effectiveness (RE) Values

Generally, the cloud is viewed as virtually boundless resources that could provision

on-demand, however, the cloud data center offers different virtual machine instances to the

users for scheduling tasks. In this work, we considered a bounded number of

heterogeneous VMs as in [92] for processing the application. But these VM instances,

always not suitable to process tasks, mainly when a task wastes a considerable amount of

its leased time. As the scientific workflows are very big, they usually demand more

computing hours. It is essential to select the optimal VM to lower cost and energy

utilization. In this phase, we identify the inefficient processors that consume energy and

incur monetary charges while sitting idle most of the time. A processor is marked as

inefficient based on the metric, called Ratio of Effectiveness (RE) defined between any

two processors. The metric RE is estimated based on the mutual/common time between

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 68

FIGURE 3.1: Mutual time between two VMs.

any two tasks. The mutual time between two processors vmi and vm j is the total amount of

time both VMs are executing simultaneously as shown in Figure 3.1. It is clear that except

for common time (ct), vm j is idle while vmi is busy processing a task and vice versa.

Hence removing one of these VMs from the set of specified VMs v makes a little bit of a

difference in makespan which is not significant but we can save energy and cost. The

mutual time can be calculated by comparing every event happening on vmi with every

other event taking place on vm j. Occurrence of an event refers to the execution period of a

task, hence it is associated with a start and finish times of a task. Let the events

{e1,e2, . . . ,en} take place on vmi. Without loss of generality assume event ek takes place

before event e j for all j > k. And assume schedules on vmi skd[vmi] and vm j skd[vm j]

contain set of events, say {e1Ue2U. . .Uen}. Then the mutual/common time between any

two VMs calculated as follows:

Read the schedules of two VMs say vmi and vm j. For each event ei happening on vmi and

e j happening on vm j, the common time between these events starts when either ei starts

while e j is running or e j starts when ei is running. And the common time ends when one

of the events finishes its execution. The common time between any two events ei and e j

estimated using one of the two cases as follows:

Case 1:

If ST (ei)≥ ST (e j) and ST (ei)< FT (e j) then
commonT (ei,e j) = min(FT (ei),FT (e j))−ST (ei)

Case 2:

If ST (e j)≥ ST (ei) and ST (e j)< FT (ei) then
commonT (ei,e j) = min(FT (ei),FT (e j))−ST (e j)

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 69

where ST (ei) and FT (ei) are start time and finish times of event ei respectively. Similarly,

ST (e j) and FT (e j) are start time and finish times of event e j respectively. In the first case,

Case 1: event ei started while event e j was executing and common time between these two

events lasts till either ei finishes or e j finishes. The second case, Case 2: event e j started

while event ei was executing and common time between these two events lasts till either e j

finishes or ei finishes. The RE of any two processors (vmi,vm j) is denoted as REi j, and it

is calculated as in equation (3.12).

REi j = ∑
ei∈skd[vmi] and e j∈skd[vm j]

commonT (ei,e j)

makespan
(3.12)

where commonT (ei,e j) is the common time betwen events (ei,e j), makespan is the total

schedule length, and skd[vmi] and skd[vm j] are schedules on vmi and vm j respectively. The

ratio of effectiveness between any two processors can be calculated to prepare the set of

REs using the pseudo code in Algorithm 1.

Algorithm 1 RE Calculation
1: procedure RE CALCULATION(v)
2: for Each vmi do
3: for Each vm j do i 6= j
4: Calculate RE(vmi,vm j) using equation (12)
5: end for
6: end for
7: end procedure

We assume ti number of tasks scheduled on vmi, similarly t j number of tasks on vm j. Hence

the common time can be estimated in O(ti + t j), where i, j = 1,2,3. . . .,n. Hence, the time

complexity of the RE calculation approach is O(vn+ vn) or simply O(vn), where n is the

number of tasks and v is the number of virtual machines.

3.4.3 Selecting RE Threshold

In this phase, ideal RE threshold values are calculated dynamically based on the workflow

deadline to switch off inefficient VMs. By removing the inefficient VMs we can minimize

energy consumption and cost. A threshold value is selected so that after switching off the

inefficient VM(s) the makespan of workflow should be less than or equal to the specified

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 70

deadline i.e. TM ≤ TD. It provides the best energy value than other threshold values that

satisfy the condition TM ≤ TD. All the VMs with RE value less than the threshold are

inefficient in task execution and consume most of the energy by sitting idle. By switching

off such inefficient VMs we can save energy and cost. We chose inefficient VMs to remove

from the VMs list based on RE values and power efficiency.

The power efficiency of vmi is the ratio of its MIPS to its voltage. For all the VM pairs

with RE value less than the threshold, a VM is removed from each pair based on power

efficiency. An optimal threshold saves energy consumption while makespan is less than the

deadline. If the chosen deadline is never met the condition (TM ≤ TD) then it uses all VMs

to give the best makespan.

Algorithm 2 gives the pseudo-code for the RE threshold selection that first runs the

application with the HEFT scheduler using a set of the specified VMs v. The HEFT

scheduler does not consider the power inefficiency of the processors to minimize energy.

Thus, removing some inefficient processors vmine f there is the possibility of minimizing

energy consumption while meeting the application deadline. So, Algorithms 2 calls the RE

calculation algorithm and removes some inefficient VMs based on RE threshold and power

efficiency. The RE threshold value is set dynamically so that it can minimize the number

of active processors to save energy without failing the workflow’s deadline constraint. To

select an ideal RE threshold value we consider threshold in increments of small value δ .

The smaller the δ precise the value of the threshold is, and then schedule the application

again with HEFT scheduler on v’ processors. Where v’ is defined as in equation (3.13).

v′ = v− vmine f (3.13)

where vmine f is the number of identified inefficient VMs. After rescheduling the application

with v’ processors if the schedule length is less than the deadline then Algorithm 2 returns

a new set of VMs v′ otherwise an initial set of VMs v is used for scheduling the application.

After removing the inefficient processors using threshold selected in the Algorithm 2, the

scheduler maps the tasks to the new set of v’ VMs and saves energy by maximizing the

CPU resource utilization. The CPU resource utilization of a processor or a vmi is calculated

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 71

Algorithm 2 RE Threshold selection
1: procedure RE THRESHOLD SELECTION(W , TD, v)
2: rm vms = 0;
3: re threshold = 0;
4: δ = 0.01;
5: best energy = Ehe f t ;
6: while (re threshold ≤ 1) do
7: HEFT SCHEDULE();
8: RE CALCULATION();
9: Remove power inefficient vms;

10: rm vms= removed vms;
11: Update new set of VMs v′ = v− rm vms;
12: Reschedule W with HEFT Scheduler using new

set of VMs v’;
13: TM = getMakespan();
14: Calculate energy using Equation (3.11);
15: if (TM ≤ TD and energy < best energy) then
16: best energy = energy;
17: end if
18: re threshold+= δ ;
19: end while
20: Return v′

21: end procedure

using the equation (3.14).

Util(vmi) =
Tactive(vmi)

Tactive(vmi)+Tidle(vmi)
(3.14)

where Tactive(vmi) and Tidle(vmi) are the active time and the idle time of vmi respectively.

The overall percentage of resource utilization for the application calculated using equation

(3.15).

Util(%) = ∑
i∈v′

Tactive(vmi)

makespan∗ v′
∗100 (3.15)

where v′ is the reduced number of V Ms using RE threshold values. The Algorithm 2

removes possible inefficient VMs based on RE values, hence the time complexity depends

on the number of VMs v and the number of tasks n. In 6th and 7th steps, we are calling HEFT

schedule twice and RE calculation algorithms which have time complexity O(n2 + vn)

and O(vn) respectively. In step 8 removes inefficient processors, for this purpose pick a

pair of V Ms with least RE values in O(v2) time. The time complexity for removing one

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 72

of the V Ms from this pair based on power efficiency is O(n2 + vn+ v2). Since we check

for all V Ms, we keep removing one vm at a time. As there is a set of v VMs, the total time

complexity for Algorithm 2 is O((n2 + vn+ v2)v).

3.4.4 Slack reclaiming

Attention needs to pay to the energy consumption in cloud data centers. Many works

[38] [63] have successfully proven that energy consumption can be reduced by reclaiming

the slack time of VMs in connection with workflow task scheduling while executing

non-critical tasks. By reclaiming the slack connected with such tasks significant energy can

be saved. A popular method called the DVFS technique is used to reclaim such slack by

lowering the supply frequency and voltage of the VMs where non-critical tasks are running

[38] [63]. To estimate slack time connected with any task we calculated LST (latest start

time). The LST of task ti LST (ti) is estimated as in equation (3.16) and then slack of any

task ti using equation (3.17).

LST (ti) =

TD−T (tentry) for ti = texit

mintp∈child(ti)(LST (tp)−T (tp)) otherwise
(3.16)

Tslack(ti) = LST (ti)−EST (ti) (3.17)

There is no idle time periods associated with critical task ti to reclaim it i.e. Tslack(ti) = 0.

But in the case of non-critical tasks, the slack must be non zero Tslack(ti)> 0. To reclaim

the slack period, the execution time of a task ti extended without affecting the EST of its

child tasks. This can be achieved by reducing the frequency and voltage of task ti. The

entire process is called slack reclaiming which further reduces the overall energy utilization

of the application without compromising the performance. The pseudo-code for a slack

algorithm is given in Algorithm 3. It calculates the LST and slack of each task ti using

Equations (3.16) and (3.17) respectively and if slack is associated with any task then a new

deadline Tsub−deadline(ti) set to that task by considering its successors EST. A new deadline

is calculated for a task ti using equation (3.18) if ti and its successors are scheduled on the

same processor. In the case of ti and its successors scheduled on different processors then a

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 73

new deadline of ti is set using Equation (3.19).

Tsub−deadline(ti) = max(LST (ti),ESTj∈successor(ti)(t j)) (3.18)

Tsub−deadline(ti) = max(LST (ti),min(ESTj∈successor(ti)(t j),EST (ti−next))) (3.19)

where EST (ti−next) is the earliest start time of the next task to the task ti scheduled on

processor vmi. Processor operating frequency and voltage are reduced to extend the task

execution time using equations (3.20) and (3.21) respectively.

f i,k
op =

(
f i,k
max

) T (ti,vmk)

Tsub deadline(ti)+T (ti,vmk)−EFT (ti)
(3.20)

V i,k
op =

(
V i,k

max

) T (ti,vmk)

Tsub deadline(ti)+T (ti,vmk)−EFT (ti)
(3.21)

where f i,k
op and V i,k

op are the operating frequency and voltage respectively to execute task ti
on virtual machine vmk, and Tsub deadline(ti) is the new deadline of the task ti after extension

of task execution time and is estimated as in Algorithm 3.

The time complexity of the slack algorithm depends on searching the tasks on the graphs.

The worst time complexity for searching tasks on the graph takes O(n2), where n is the

number of vertices in a graph. Hence the worst-case time complexity of the slack algorithm

is O(n2).

3.4.5 ECWS Algorithm

We present the ECWS algorithm which runs in four phases introduce in the above sections.

The ECWS algorithm reduces the energy consumption and also enables the cloud

scheduler to disburses fewer prices to finish a workflow. The proposed algorithm

completes workflow such that the execution time must not exceed the defined deadline.

Our algorithm maps each task ti to an appropriate VM type. Even the task extension in the

slacking algorithm to reclaim the slack time does not affect the overall makespan as we

have specified a sub-deadline for each task. Consequently, each task can be completed

within its sub-deadline. Therefore, the entire workflow will be finished on time. Algorithm

4 gives the pseudo-code for the ECWS approach.

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 74

Algorithm 3 Slack algorithm

1: procedure SLACKALGORITHM(W , TD, v′)
2: Calculate LST and Slack of each task ti using

equations (3.15) and (3.16) respectively;
3: while (TSlack(ti)> 0) do
4: for each virtual machine vmi do
5: for each task ti on vmi do
6: Tsub−deadline(ti) = LST (ti);
7: for all child tasks o f ti do
8: Set new deadline for task ti using

Equation (3.17);
9: end for

10: if the next task t j to be schedule on vmi
is not the successor of the current
task then

11: Set new deadline for task ti using
Equation (3.18);

12: end if
13: Update frequency and voltage of task ti

using equations (3.19) and (3.20)
respectively;

14: Update execution times of task ti;
15: end for
16: end for
17: end while
18: end procedure

Algorithm 4 The ECWS Algorithm
1: procedure ECWS ALGORITHM(W , TD, v)
2: HEFT SCHEDULE();
3: RE CALCULATION();
4: RE THRESHOLD SELECTION();
5: while the W is not complete do
6: if a task has a slack i.e. Tslack(ti)> 0 then
7: SLACKINGALGORITHM();
8: end if
9: Calculate resoureces utilization using

Equation (3.14);
10: end while
11: end procedure

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 75

TABLE 3.1: The ECWS algorithm summary

RE Calculation RE Threshold Selection Slack Algorithm
Minimize cost - Yes -
Minimize energy - Yes Yes
Maximize resources
utilization - Yes -
Time complexity O(vn) O((n2 + vn+ v2)v) O(n2)

We consider the first task tentry as a schedulable task and map the schedulable tasks to the

specified efficient VMs. Once completed the currently executing task then its successors

(child) may become the schedulable tasks. The process repeats until the completion of the

entire workflow W . The functions of each sub-algorithm used in the ECWS algorithm

along with their time complexities shown in Table 3.1. We find that each algorithm has

polynomial time complexity. We conclude that the RE threshold selection and slack

algorithms reduced significant energy consumption. The RE Threshold selection algorithm

reduced the monetary cost and maximized resource utilization.

3.5 Performance Evaluation

The efficiency of the ECWS method was evaluated by conducting a series of experiments to

study energy utilization, cost savings, and resource utilization. This work presumes that the

cloud resources (VMs) have DVFS enabled and each VM has attributed different resources

to accomplish task execution as discussed in section 3.3.1. Table 3.2 lists the VM instance

specifications such as cost per hour, computing capacity, and frequency range. For ease,

we suppose the processor’s frequency is directly proportional to its computing discharge

[38], and it is convincing from the experimental perspective. Further, each processor runs

at various levels of frequency by fixing the lower and upper threshold values. We can get

benefit from these levels of frequencies in reducing energy utilization by using the DVFS

technique, which scales the running frequency of tasks for energy-saving.

For the purpose of simulating cloud environment, the WorkflowSim tool is used in this work,

which is a toolkit that enables the users to model and simulates Infrastructure-as-a-Service

(IaaS) cloud. The IaaS cloud provides virtualized computing resources (VMs) to perform

workflow applications. To evaluate the performance of the ECWS approach we have

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 76

TABLE 3.2: VM parameters

Type Cost
($/h)

Computing
capacity (MIPS)

CPU frequency
(GHz)

Minimum Maximum
1 0.10 1000 0.50 1.00
2 0.20 1500 0.75 1.50
3 0.32 2000 1.00 2.00
4 0.46 2500 1.25 2.50
5 0.58 3000 1.50 3.00
6 0.73 3500 1.75 3.50
7 0.90 4000 2.00 4.00
8 1.05 4500 2.25 4.50
9 1.21 5000 2.50 5.00

10 1.40 5500 2.75 5.50

selected real workflows from four different scientific areas: Montage, CyberShake, SIPHT,

and LIGO. Usually, all these workflows use large-scale datasets and memory. Every

workflow that has been considered in this work has its unique requirements for data and

computing power. The complete representation of these scientific workflows is introduced

by [17]. The topological organization of these four scientific workflows is depicted in

Figures 1.3, 1.4, 1.6, and 1.7 respectively.

In our experiments, we have focused primarily on three objectives including energy

utilization, monetary cost, and resource utilization. These three parameters are studies and

presented with varying workflow deadlines. To acknowledge the effectiveness of the

proposed ECWS algorithm on reducing energy utilization, cost-saving, and maximizing

resource utilization this work performs three popular scheduling algorithms HEFT, EES,

and EHEFT, and results compared with our algorithm. A notable list-based scheduling

approach HEFT is a heuristic for workflow applications that optimizes the makespan. The

HEFT selects tasks based on ranks at each step and assigns a processor for achieving the

best EFT with an insertion-based technique. The EES algorithm is a makespan retaining

HEFT-based enhanced energy-efficient workflow scheduling approach to minimize energy

utilization. The basic thought of the EES algorithm is to exploit the slack associated with

the tasks on the non-critical paths and globally allocate them to reduce energy utilization.

Enhancing the HEFT approach algorithm is also a HEFT-based workflow task scheduling

technique to minimize energy consumption.

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 77

FIGURE 3.2: Self-comparison in cost.

3.5.1 Self-comparison

Our proposed approach has sub-algorithms, we have compared experimental results for

energy and cost by taking the RE calculation algorithm as a baseline. It should be

emphasized that the RE Threshold selection algorithm contains two sub-algorithms such

as the HEFT schedule and RE Calculation algorithms. The experimental results of RE

Calculation, RE threshold selection, and slack algorithms for the cost and energy

objectives of four scientific workflows are shown in Figure 3.2 and Figure 3.3 respectively.

Compared to the RE calculation algorithm, it is clear that the RE threshold selection

algorithms saving more cost and energy. It is because the RE threshold selection algorithm

efficient in identifying and switching off the inefficient processors to reduce energy

consumption and cost-saving. Moreover, with the increase of the workflow’s deadline the

energy consumption and cost decrease because based on the deadline the algorithms

further removes some inefficient processors. Further, energy reduction with the slack

algorithm. It reclaims the slack identified in non-critical tasks by reducing the task running

frequency and voltage. But there is no cost reduction with the slack algorithm as it

continues with the same leased period of the VM.

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 78

FIGURE 3.3: Self-comparison in energy.

3.5.2 Results comparison with others

The simulation experimental results on the cost of the four different algorithms for four

different scientific workflows are shown in Figure 3.4. It is easy to see that the financial

costs associated with different algorithms are varied. Among the four algorithms, our

proposed ECWS approach has the minimum cost expense. The percentage of cost-saving

of the ECWS algorithm over the HEFT, EES, and HEFT on four different workflows is

given in Table 3.3. Whereas the performance of the HEFT approach is worst. The EES

and EHEFT algorithms have better than the HEFT algorithm. The HEFT and the EES

algorithms are independent of the workflow’s deadline TD. Hence, Figure 3.4 has consistent

results for the HEFT and the EES algorithms. The reason for this is that the cloud data

center has different types of VMs and each type could provide an unlimited number of

VM instances to the users. To optimize the overall schedule length of the workflow the

scheduling approaches in both HEFT and EES algorithms greedily allocate the computing

resources with the highest performance. Consequently, this greedy resource allocation to

the workflow tasks regardless of the VM instance type pricing models. Hence it results in

excessive monetary costs and is even not influenced by the workflow deadline TD.

We have evaluated the energy-saving potential of our ECWS algorithm and compared it

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 79

FIGURE 3.4: Comparison with others in cost.

FIGURE 3.5: Comparison with others in energy consumption.

with three other algorithms. The simulation experimental results for the energy optimization

of the four algorithms for four different scientific workflows are shown in Figure 3.5. It

is prominent that the ECWS algorithm consumes less energy among the four algorithms.

Whereas the performance of the HEFT approach is worst, it consumes the highest energy

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 80

TABLE 3.3: Cost-efficiency of ECWS over other algorithms

Workflow EHEFT EES HEFT
CyberShake 15.83463 25.33365 25.33365
Montage 22.90583 43.68706 43.6398
LIGO 17.98869 22.43403 22.43403
SIPHT 43.74099 32.84699 32.84699

than the other three. The EES consumes less energy compared to the HEFT algorithm.

this is because it reclaims the slack measured in non-critical tasks by applying the DVFS

technique. Medium level energy is consumed by the EHEFT algorithms as it finds and

switches off power-inefficient processors. Similar to the cost performance HEFT and

the EES algorithms are independent of the workflow’s deadline TD. Hence, Figure 3.5

has consistent results for the HEFT and the EES algorithms. The reason behind this the

heterogeneous nature of the cloud data center resources (VMs). As discussed in the cost

analysis the HEFT and the EES algorithms map the task to the processor (VM instance)

having the maximum computing performance without considering the power-efficiency

of the VM instance type. This greedy mapping results in the highest power consumption

hence energy consumption is not affected by the workflow’s deadline TD. The overall

energy saving of the proposed approach over the three considered algorithms (HEFT, EES,

and EHEFT) on different workflows are present in Table 3.4. Note that all the values in

Table 3.4 are in percentage.

The energy-saving is more with the ECWS algorithm because it efficiently evaluates the

ratio of the effectiveness of the processors and selects the best energy giving processors

by considering the workflow’s deadline along with the slack reclaiming. Moreover, we

observed that the ECWS algorithm saves more energy by maximizing resource utilization.

The utilization of different components (resources) in a cloud data center impacts power

utilization, among them the CPU utilization impacts more on power consumption. The

resource utilization performance of the ECWS algorithm is compared with three algorithms

as shown in Figure 3.6. We evaluated the percentage of CPU resource utilization of a

processor vmi using the equation (3.14) and the overall percentage of resource utilization

for the application using equation (3.15). Similar to energy and cost performance, HEFT

and EES algorithm’s resource utilization is stable and overlapped in Figure 3.6. The

EHEFT performed differently on different workflows as the workflow structures and tasks

computing requirements made it switch off more or less number V Ms compared with the

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 81

FIGURE 3.6: Comparison experiments in resource utilization.

TABLE 3.4: Energy-efficiency of ECWS over other algorithms

Workflow EHEFT EES HEFT
CyberShake 12.19052 32.72157 32.93524
Montage 35.63741 56.79459 58.58622
LIGO 19.05413 35.83956 43.73791
SIPHT 13.88375 32.71772 40.76495

proposed approach. As an example, the EHEFT algorithm performed well in identifying

power inefficient V Ms with SIPHT workload and maximized resource utilization on active

processors as shown in Figure 3.6. But the ECWS algorithm saved more energy compared

to EHEFT on SIPHT workload as shown in Figure 3.5, this is because the ECWS approach

effectively reclaimed the slack period associated with non-critical tasks. The average

percentage of resource utilization on four workflows over the three other algorithms is

depicted in Figure 3.7. In a word, our proposed ECWS algorithm outperformed other

approaches in reducing cost, energy-saving, and maximizing resource utilization.

Chapter 3. Energy-efficient and cost-aware scheduling with deadline constraints 82

FIGURE 3.7: Average resource utilization.

3.6 Conclusion

In this work, we introduce energy and cost-aware workflow scheduling approach for cloud

schedulers. It is efficient in reducing both the monetary cost and the energy consumption

and maximizes resource utilization by complying with the user-specified deadlines. Our

proposed ECWS algorithm consists of four sub-algorithms. First, the scheduling tasks with

the HEFT algorithm for better makespan estimation. Then, RE calculation methods are used

to identify the inefficient processors. To switch off the inefficient processors we proposed

the RE threshold selection algorithm which effectively switches off inefficient processors

considering the application deadline. Lastly, we used a task slacking algorithm to reduce

more energy by the DVFS technique. In short, the RE threshold selection algorithm can

lower the monetary cost and energy consumption of workflow applications competently.

Further, the slacking algorithm and RE threshold selection algorithm can save considerable

energy. Experimental results revealed that significant cost and energy saving over EHEFT,

EES, and HEFT algorithms. The complete quantitative measurements of the proposed

algorithm in cost and energy savings over others with four different workloads are listed in

Tables 3.3 and 3.4 respectively.

