
Chapter 2

Review of Scheduling Approaches for
Workflows in Clouds

This chapter1presents an extensive review of the existing energy-aware workflow

scheduling algorithm in a cloud environment. We have studied and presented the

state-of-the-art algorithms from different perspectives and presented their key ideas,

strength, and limitations. We have provided some future directions to further improve the

existing works.

2.1 Introduction

Due to the increasing amount of data worldwide, most business organizations today are

adopting cloud technology. Most consumers and businesses are using the cloud because

it is convenient, adaptable, massive-scalable, and secure. Exceptionally, high availability

and scalability features of cloud infrastructure attracting the end-users. Cloud computing

practices have evolved the ways we use computers and have magnified the power of

the internet more than ever. Due to the ever-increasing cloud applications, there is a

massive increase in computing demand on data centers [24]. Gartner, Inc, a Global leading

research firm predicted a 23% increase in public cloud user spending in the year 2021.

1This chapter is derived from: Medara, R., Singh, R.S. A Review on Energy-Aware Scheduling Techniques
for Workflows in IaaS Clouds. Wireless Pers Commun (2022). https://doi.org/10.1007/s11277-022-09621-1
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Consequently, data centers become unsustainable because of higher energy utilization,

which results in higher energy costs and substantial carbon footprints. Global data centers

use approximately 416TW (4.16 x 1014W) of electrical power, which is around 3% of the

whole power-producing on the planet [26], and this consumption is expected to double

every four years [27]. Consequently, data centers releasing green gases into the environment.

The Global data center’s CO2 emissions are approximately equal to the CO2 emissions of

the aviation industry [28], which accounts for 2% of global human-made CO2 emissions.

The ICT (information and communications technology) services are expected to utilize

20% of global electrical power by 2025 and discharge nearly 5.5% of all carbon emissions

in the world [29]. Due to the higher energy consumption of cloud data centers, the service

providers experience high operating costs, resulting in increased ”cost of ownership.” In

addition to economic damages, the greenhouse gases (GHGs) released by data centers

affecting the environment, along with the current rate of CO2 emissions of data centers,

are expected to surpass airline industry emissions soon. It is predicted that the total carbon

footprint of the ITC sector will account for as much as 14% of the entire world’s emissions

by 2040 [30].

Energy efficiency is essential for the cloud data center for two reasons 1) data center

operational cost optimization and 2) to improve the environment. Optimization of energy

consumed by the cloud-related infrastructure is the major research deal in recent years. The

IT infrastructure is the main contributor to the energy consumption in a data center which

includes servers and other IT components. The cloud application scheduling is extensively

used as a productive energy conservation method. An efficient scheduling mechanism is

required to 1) optimize the cloud resources 2) provide the end-users high efficiency and

3) be able to provide high-quality client service. The server’s energy consumption can

appreciably be reduced by consolidating cloud applications as on few servers as possible

and shut down idle servers [31].

Most of the business and complex scientific applications used workflows to analyze the

complex data sets and to conduct simulation experiments effectively [7]. The scheduling

of workflow tasks in distributed platforms such as grids and cloud environments has been

extensively considered for many years. Researchers have developed algorithms geared

towards different environments: from small-scale homogeneous clusters to large-scale

community grids, to the contemporary paradigm, heterogeneous, utility-based, and

resource-rich cloud computing [7]. This chapter focuses on cloud computing platforms; it
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surveys algorithms developed to coordinate the execution of energy-aware workflow jobs

in cloud computing environments, specifically, IaaS clouds.

The rest of this chapter is organized as follows: the overview of the workflows introduced in

Section 2.2. Section 2.3 discusses a cloud workflow management system and the workflow

applications scheduling problem in a cloud environment. Section 2.4 provides a relatively

comprehensive review of literature on the existing energy-aware workflow scheduling

techniques and presents a new classification. Finally, in Section 2.5, we discussed the

conclusions of the survey.

2.2 Overview of Workflow

The origin of the workflow concept and five real-world workflows from different scientific

fields are introduced in Section 1.1.2. A workflow can be described as a sequence of

computational tasks together with dependencies. In scientific or business applications these

task dependencies perform data communication. As an example, Figure 1.1 shows a simple

workflow with ten nodes. Each vertex represents a task and the edge between vertices is the

task dependency. The outcome of one task becomes the input file to another task. A task

has its computing characteristics such as CPU-bound, memory-bound, or I/O-intensive (or

even a combination of three).

The various works considered in this chapter and the further proposed new algorithms

mostly used DAG-based workflow models. Most of the works used the application model

defined as follows:

A workflow application with a group of tasks Tw = t1, t2, t3, . . . ..tn while their

dependencies can be modeled as a DAG W = (Tw,E) where E is the set of edges

represents the dependencies among tasks. An edge ei j is the dependency from ti to t j

where ti is the parent of t j and t j is the child of ti. A task without a parent(s) or

predecessor(s) is called entry task (tentry) and a task without child(s) or successor(s) is

called exit task (texit).
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2.3 Workflow Scheduling in Clouds

To preserve the dependencies among tasks in workflow applications while executing on

distributed environments such as clouds, we need to consider the individual task mapping

to the resources and orchestrating their performance [32]. This mapping problem needs to

satisfy the functional and non-functional Quality of Service (QoS) requirements. The QoS

indicates the levels of performance, reliability, and service availability offered by an

application and by the platform or infrastructure that hosts it [33]. Large-scale scientific

workflows execution experience increase in system randomness and unpredictable

workloads such as execution time, variable cost factors, etc., [34] and oscillating

workloads make this problem computationally intractable [35], which makes this problem

to be in the class of NP-hard problems.

The workflow application execution plan considers two steps. The first one is the resource

provisioning, which is to select the suitable resources to execute the workflow tasks, the

second one is the task allocation or actual scheduling phase to optimally dispatch the

workflow tasks to the selected resources [7] [36]. Execution time, overall financial cost, and

energy consumed by the workflow application are all affected by the selected resources;

hence, the heuristics that were used in the first step are capable of selecting the number of

VMs, VMs types, and when to start them and when to shut them down.

2.3.1 Cloud Workflow Architecture

The aim of this survey is to study the various energy-efficient techniques for scheduling

workflow applications in a cloud environment. Note that the works in [37] [2] [38] proposed

cloud system architecture for implementing workflow applications in an energy-efficient

way and [7] [39] proposed a reference architecture for Cloud Workflow Management

System (CWfMS) which empowers establishment, and execution of workflows. Based

on these works, we offer a reference architecture for an energy-aware Cloud Workflow

Management System, which is shown in Figure 2.1. The various components depicted are

standard for most of CWfMSs.

User Interface enables the users to set up, modify, submit, and track their applications.
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FIGURE 2.1: Workflow management architecture

Workflow Engine is the essential component of the eCWfMS and is accountable for the

execution of workflow application for this it can have various sub-components such as

a) Workflow Parser is responsible for converting high-level workflow descriptions such as

XML to internal specifications such as objects, tasks, parameters, and dependencies which

are accessed by the scheduler component. b) Cloud Scheduler works with the c) resource
provisioning modules for planning the execution of the actual workflow algorithm. The

overall performance of the system, total financial cost, and energy consumption are depends

on the efficiency of the scheduler. For the cost and energy efficient workflow execution, it

needs to interact with different components such as:

Service analyzer- to analyze the service requirements of an application.

Energy and other objectives designer to minimize the energy consumption and some other

optimization objectives such as execution cost, system reliability, etc. The cost optimizer

includes Pricing model - is to calculate the execution cost of the application in accordance

with the pricing model of the VMs.
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Service scheduler- to allocate the request to computing resources such as leased VMs

and takes decision when to start or stop service of VMs And often interacts with the VM

Manager to update the status of VMs and as well as to provision new VMs across the

physical machines of cloud infrastructure.

Administration and monitoring tools include monitoring modules for tracking the

status and performance of workflow tasks, continuously and dynamically and enables

leased resource management such as VMs. The collected data by these can be stored in

historical databases, which can be useful for performance predictions of the system.

Cloud Information Service (CIS) provides information about different cloud service

providers, their resource types such as VM types including pricing models. For example,

Amazon EC2 giving different kinds of instances (a virtual server) for various instance

families such as small, medium, large and xlarge (extra-large). The computing capabilities

such as CPU computing power, memory, and storage depends on the instance type.

Cloud Service Provisioning APIs are the gateway to enable cloud services directly or

indirectly for user requests. The APIs allow provision or de-provision of the computing

resources on-demand. It also tracks and maintains the status of the provisioned resources

including network configurations. These APIs can enhance the cloud experience by

allowing the integration of applications and different workloads with cloud services and

enable cross-cloud compatibility, which allows the tenants to access resources of

secondary cloud providers as well, along with primary ones. The leading interoperability

cloud API platform creators are Apache (Citrix) CloudStack, Amazon Web Services API

and Eucalyptus, Google Compute Engine, Simple Cloud, OpenStack API, and VMware

vCloud API.

2.4 Survey

We have done an extensive study on various techniques [40] to [65] developed for

“Energy-Aware Workflow Scheduling in Cloud Computing Environment.” Our
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investigation focused on different perspectives such as algorithm evaluation environment,

workflows used, application model, scheduling model, resource model, energy

optimization techniques, and comparison of energy-aware methods.

2.4.1 Workflows used and evaluation environment

This section presents whether the algorithms were evaluated on a real cloud or simulation

environment and also gives whether the algorithms were evaluate using the real-world

scientific workflows discussed in section 1.1.2, any other specific application, or randomly

generated. The summary of the algorithm evaluation environment and used workflow(s) of

the surveyed algorithms summarized in Table 2.1.

Various challenging issues need to be overcome in the cloud computing field such as load

balancing, and energy constraints, task scheduling, computation offloading, cost

constraints, and security issues. It is costly to set up the live cloud for individuals and

small companies to test their cloud applications; hence, most of the researchers selected

simulation environments to test their application performance. The simulators are that they

can provide users with practical feedback when designing real-world systems. The

Cloud-Simulators are a possible way to review the cloud components’ behavior and

performance against distinctive situations and workloads. These can assist an analyst to

model numerous sets of cloud applications by creating data centers, VMs, and other

utilities which can be combined to configure it, so building it is very simple to analyze.

Khalil, Khaled M., et al. [66] discussed the typical architecture of cloud-simulators in

evaluation studies of the different types. “Cloud-Simulators.”

2.4.2 Application Model

Cloud workflow application models are presented in this section which contains all

instances of workflow processes. The scheduling techniques discussed in this survey differ

in their workload scheduling ability. The algorithms able to schedule, a single workflow, or

multiple workflows simultaneously.
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The algorithms in this survey were used to schedule different workflow models such as

single, multiple, and ensemble. The type of workflow used in the surveyed algorithms is

summarized in Table 2.2.

Single workflow In this category, algorithms are designed to optimize the schedule

of a single workflow. This model can be used in different parallel environments such

as grid computing, cluster computing, and as well as is well suited for cloud computing.

The scheduling techniques can optimize makespan, cost, and energy by meeting QoS

requirements.

Workflow ensembles The algorithms in [62] use workflow ensembles. Large-scale

applications, in particular, the inter-related scientific workflow applications are usually

grouped into ensembles. Usually, ensemble workflows have a similar structure but have

different input data, task sizes, and numbers of tasks in workflows. Along with workflow

parameters, the priorities of workflows in an ensemble may differ the number of workflow

instances in an ensemble known in advance to the scheduler.

Multiple workflows Unlike workflow ensembles, here the workflows need not be

interrelated and might vary in parameters. The scheduler has no knowledge of the type of

workflow and the number of workflows in advance. Moreover, the workload is constantly

changing, so we can view this model as a dynamic process. In this model, each type of

workload may have its QoS requirements. Techniques dealing with multiple workflows

must have capable of dealing with the dynamic nature of this model to meet the QoS

requirements.
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TABLE 2.1: Workflow(s) used and evaluation environment

Algorith(s) used
Evaluation Strategy

Montage CyberShake Epigenomics SIPHT LIGO
Randomly

Generated
Other

Simulation Real cloud

Alaei, Mani,

et al. [40]

√ √ √ √ √

Ranjan,

Rohit, et al. [41]

√ Google cluster-

usage traces

RMFW [42]
√ √ √ √ √

Li, Chunlin,

et al. [43]

√ √

SPTS [44]
√ Real live video

application

OWS-MRL [45]
√ √ √ √

GL Stavrinides

and H D

Karatza [46]

√ √

REEWS [47]
√

GE

Basit Qureshi

[48]

√ √
Broadband

CEAS [38]
√ √ √ √ √
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Table 2.1 continued from previous page

Algorith(s) used
Evaluation Strategy

Montage CyberShake Epigenomics SIPHT LIGO
Randomly

Generated
Other

Simulation Real cloud

Monire Safari

and Reihaneh

Khorsand [49]

√ √

EDF-DVFS-AC [50]
√ √

EICB [51]
√ √

MHRA [52]
√

Embarrassingly

Parallel, Matrix

multiplication

Scatter–Gather

MSMOOA [53]
√ √ √

EnReal [54]
√ Swinburne

astronomy

ERUETB [55]
√ √

EAS [56]
√ √

DEWTS [57]
√ √

ESFS [58]
√ √ √ √

GTI [59]
√ √ √ √

AIRSN, SDSS

ERAS-D [37]
√ √
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Table 2.1 continued from previous page

Algorith(s) used
Evaluation Strategy

Montage CyberShake Epigenomics SIPHT LIGO
Randomly

Generated
Other

Simulation Real cloud

DVFS-MODPSO

[60]

√ √
Neuroscience

& protein

annotation

EHEFT [61]
√ √

ECPOP [61]
√ √

SPSS-EB [62]
√ √ √ √

SPSS-ED [62]
√ √ √ √

EES [63]
√ √

GE

Lizhe Wang [64]
√ √

pSciMapper [65]
√ √ GLFS, Volume

Rendering
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2.4.3 Algorithm Scheduling Paradigm

There were many comprehensive studies on the taxonomy of task scheduling algorithms

in distributed environments. As an example, a classification of scheduling algorithms in

general-purpose distributed computing systems introduced in [67], Yu et al. [68] studied

the workflow scheduling problem in grid environments, while Kwok and Ahmad [69]

established a static scheduling algorithms taxonomy for allocating directed task graphs

to multiprocessors, and M A Rodriguez and R Buyya [7] extensively studied scheduling

scientific workflow algorithms on Infrastructure-as-a-Service (IaaS) clouds. The scheduling

models presented by [7] [66] [67] [68] [69] are most relevant to this survey problem and

hence, are identified and considered; summary of surveyed algorithms given in Table 2.3.

This study finds the scheduling models such as task-VM mapping dynamicity, resource

provisioning strategy, scheduling objectives, and optimization strategies.

Task-VM mapping is the process of mapping workflow tasks to available VMs. It can

be done in two ways, either statically or dynamically. In dynamic mapping, the scheduler

maps the tasks to VMs in real-time with constraints at a running time whereas, in static

mapping, the scheduler maps the tasks to VMs before task execution.

Resource provisioning is the allocation of cloud resources and services to

user-submitted applications. On IaaS clouds, this can consider the pricing model, VM type,

and task parallelism. Resource provisioning can be done dynamically or statically. The

dynamic resource allocation techniques provision the resources at run-time with

considering the performance constraints, whereas static resource allocation techniques

calculate and prepare the provision of resources before the execution of the application.

Scheduling objectives Energy optimization is the common objective of the studied

algorithms. Further, along with the energy optimization algorithms considered few other

optimization objectives such as makespan, workload, monetary cost, reliability, CO2

emissions, resource utilization, result precision, and service level agreements (SLAs). The

scheduling objectives covered in this survey are presented in Table 2.3.
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TABLE 2.2: Algorithm classification for the application model

Algorithm(s) used
Workflow Dynamicity

Single Multiple workflows Ensemble
Alaei, Mani, et al. [40]

√

Ranjan, Rohit, et al. [41]
√

RMFW [42]
√

Li, Chunlin, et al. [43]
√

SPTS [44]
√

OWS-MRL [45]
√

GL Stavrinides and H D Karatza [46]
√

REEWS [47]
√

Basit Qureshi [48]
√

CEAS [38]
√

Monire Safari and Reihaneh Khorsand [49]
√

EDF DVFS AC [50]
√

EICB [51]
√

MHRA [52]
√

MSMOOA [53]
√

EnReal [54]
√

ERUETB [55]
√

EAS [56]
√

DEWTS [57]
√

ESFS [58]
√

GTI [59]
√

ERAS-D [37]
√

DVFS-MODPSO [60]
√

EHEFT [61]
√

ECPOP [61]
√

SPSS-EB [62]
√

SPSS-ED [62]
√

EES [63]
√

Lizhe Wang [64]
√

pSciMapper [65]
√
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TABLE 2.3: Scheduling model

Algorithm(s)

used

Task-VM mapping

dynamicity

Resource Provisioning

Strategy Scheduling objective(s)
Optimization

strategy
Static Dynamic Static Dynamic

Alaei, Mani,

et al. [40]

√ √
energy, makespan, cost, reliability Metaheuristic

RMFW [42]
√ √

makespan, resource utilization,

energy consumption, cost,

availability, security

Heuristic

Ranjan, Rohit,

et al. [41]

√ √ makespan, execution time, fault-

tolerance, energy consumption
Heuristic

Li, Chunlin,

et al. [43]

√ √ makespan, energy, resources

utilization
Heuristic

SPTS [44]
√ √ makespan, system response time

resource utilization, load balancing
Heuristic

OWS-MRL [45]
√ √ makespan, cost, energy,

resources utilization
Heuristic

GL Stavrinides

and H D

Karatza [46]

√ √ energy, SLA, monetary

cost, results precision
Heuristic

REEWS [47]
√ √

deadline, energy, reliability Heuristic

Basit Qureshi [48]
√ √

resource utilization, energy Heuristic



C
hapter2.A

review
ofthe

energy-aw
are

scheduling
algorithm

s.
29

Table 2.3 continued from previous page
Algorithm(s)

used

Task-VM mapping

dynamicity

Resource Provisioning

Strategy Scheduling objective(s)
Optimization

strategy
Static Dynamic Static Dynamic

CEAS [38]
√ √

cost,energy, deadline Heuristic

Monire Safari

and Reihaneh

Khorsand [49]

√ √
deadline, SLA, energy Heuristic

EDF DVFS AC [50]
√ √

results precision, SLA, energy Heuristic

EICB [51]
√ √

deadline, energy Heuristic

MHRA [52]
√ √

makespan, energy Heuristic

ERUETB [55]
√ √

resource utilization, energy Heuristic

MSMOOA [53]
√ √

makespan,cost, energy Metaheuristic

EnReal [54]
√ √

resource utilization, energy Heuristic

EAS [56]
√ √

Deadline and Energy Heuristic

DEWTS [57]
√ √

deadline, energy Heuristic

ESFS [58]
√ √

Deadline and Energy Heuristic

GTI [59]
√ √

deadline, energy Heuristic

ERAS-D [37]
√ √ deadline, cost, energy, CO2

emmisions
Heuristic

DVFS-MODPSO [60]
√ √

makespan, cost, energy Metaheuristic

EHEFT [61]
√ √

makespan, energy Heuristic
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Table 2.3 continued from previous page
Algorithm(s)

used

Task-VM mapping

dynamicity

Resource Provisioning

Strategy Scheduling objective(s)
Optimization

strategy
Static Dynamic Static Dynamic

ECPOP [61]
√ √

makespan, energy Heuristic

SPSS-EB [62]
√ √

deadline, workload, energy Heuristic

SPSS-ED [62]
√ √

deadline, workload, energy Heuristic

EES [63]
√ √

deadline, cost, energy Heuristic

Lizhe Wang [64]
√ √

makespan, energy Heuristic

pSciMapper [65]
√ √

makespan, energy Heuristic



Chapter 2. A review of the energy-aware scheduling algorithms. 31

i) Energy minimization: This chapter aims to study the energy-aware workflow scheduling

techniques in a cloud environment. The public and private organizations globally have

been developing increased attention to reduce the ecological footprint. This issue has not

attracted the cloud field to create various techniques to minimize the energy consumption

of cloud data centers. As we discussed in Section 2.1, the need for energy conservation in

this field is attracting research.

ii) Monetary Cost: While scheduling workflows in a cloud environment, the financial cost

of the workflow executions is the price that users need to pay to the cloud service providers

(CSPs) because of using cloud resources and is concerned by both the customers and CSPs

[70]. This represents the restriction on the overall cost of executing all tasks. The algorithms

we considered in this survey balance the cost while considering some performance or

non-functional concerns objectives such as energy consumption and reliability.

iii) Makespan: The makespan of the workflow is stated as the length of the schedule from

the start of the workflow entry task(s) to finish the exit task. As with the cost, it is concerned

by both the customers and CSPs [70]. In most of the surveyed algorithms, it minimized by

defining some time limit set by the user or user-defined deadline.

iv) Reliability-Aware: Reliability is the capability of a system or component to perform

its defined functions according to the declared conditions for a prescribed period. The

overconsumption of energy in data centers leads to system reliability issues while increasing

operational costs and CO2 emissions. The aim of some of the algorithms in this survey is

to maintain dependency constraints, minimizing energy consumption, and maximizing the

reliability of the workflow execution while meeting the user-specified QoS constraint.

v) CO2 Emissions-Aware: Due to the increasing deployment of cloud data centers across the

world, consuming massive amounts of electrical energy makes data centers unsustainable.

As stated in Section 2,1, it is essential to reduce CO2 emissions for data centers to make

them environment-friendly.

vi) Maximize resource utilization: The cost-aware, energy-aware, and workload

optimization algorithms indirectly address this objective by scheduling the idle gaps of

leased VMs. The empty time slots on leased VMs not uncommon for workflows

applications due to dependencies and performance requirements.
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vii) Results precision: Real-time workflow applications have strict timing and performance

needs. The algorithms which aim to provide timeliness and energy efficiency divide each

task into the mandatory part that produces near the result of the minimum tolerable precision

and optional part to enhance the results of the mandatory part [71].

viii) Workload optimization: The scheduling techniques that are capable of dealing with

workflow ensembles strive to maximize the number of workflows executed, which is a

constraint with user-defined deadlines and budgets.

ix) Service-Level-Agreements (SLAs): Cloud services are interrelated with SLAs. In general,

SLAs include a set of services the provider will deliver to customers. These include a

comprehensive definition of each service, accountability of the provider to the consumer,

a metric system to measure each service whether the provider is offering the services

as ensured, and a service auditing mechanism. Remedial measures are available to the

consumer and the provider if the contractual terms are not satisfied, and state how the SLA

will change over time.

Optimization Strategy Due to ample solution space, it takes a long time for finding

the best possible solution, hence scheduling problems in clouds is NP-hard and even

it is expensive for optimal solution small-scale problems [7]. Casavant and Kuhl [67]

identify four optimization techniques for task scheduling in distributed environments a)

solution space enumeration and search b) graph theoretic c) mathematical programming

and d) queuing theoretic. Mathematical programming, queuing theoretic, and solution space

enumeration and search are the most appropriate model for our problem. We identified

three scheduling strategies in the surveyed algorithms such as heuristic, meta-heuristic, and

hybrid algorithms.

Heuristic approach: When classic approaches are too time-consuming to find a solution to

a scheduling problem, then the heuristic approach is a good solution. It is simply a set of

rules to find an optimal solution to an individual problem [72]. The rules are designed in

such a way that they very particular to the problem and can produce an acceptable solution.

The heuristics for the scheduling considered in this work use the characteristics of cloud

resources and workflow problems to discover a scheduling technique to minimize energy

consumption by meeting the QoS requirements. The benefits of the heuristic approach are
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easy to implement, performs, produces a near-optimal solution within a time limit, and

predictable in nature.

Meta-Heuristic approach: Unlike heuristics, meta-heuristic approaches are general-purpose

techniques developed to solve optimization problems [72]. These higher-level policies are

used for finding near-optimal results by implementing a problem-specific heuristic . Unlike

heuristics, these are computationally intensive and take more time to run the application

but produce desirable solutions. In particular, for workflow problems, meta-heuristic-based

algorithms ensure near-optimal solutions [73].

Hybrid algorithms: Originally, researchers focused on developing heuristic scheduling

strategies to deal with the workflow applications executed in distributed environments.

However, due to the limitations of heuristics in getting near-optimal solutions and the

uncertain amount of time required, researchers focused on meta-heuristics. Further, to

meet the workflow scheduling challenges, hybrid approaches were introduced. Hybrid

approaches are better in performing many-objective workflow scheduling problems in

clouds due to their convergence speed and accuracy. Meta-heuristic and heuristic strategies

perform better to solve the workflow scheduling problems. By one of the combinations,

the solution accuracy will be improved: i) two meta-heuristics and ii) a heuristic with some

pre-defined rules and meta-heuristics.

Originally, the researchers are fascinated in developing the heuristic scheduling strategies

to deal with the workflow applications to execute in distributed environments. But, due to

limitations of heuristics in getting a near-optimal solution and uncertain time getting such

solution researchers focused on meta-heuristics. Further, to meet the workflow scheduling

challenges hybrid approaches were introduced. The hybrid approaches are better in

performing many-objective workflow scheduling problems in clouds due to their

convergence speed and accuracy. Meta-heuristic and heuristic strategies perform better to

solve the workflow scheduling problems. By one of the combinations, the solution

accuracy will be improved: i)two meta-heuristics and ii) a heuristic with some pre-defined

rules and meta-heuristic.
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2.4.4 Resource model

In this section, we discussed the leased VMs (resource) model considerations and

assumptions of surveyed algorithms and summarized them in Table 2.4. We included

different concerns of resource (VMs) model such as leasing, type, pricing, delays, and core

count. The algorithms in this work not considered VM delays and assumed a static pricing

model.

VM Leasing model The algorithms assumed that the CSPs provide unlimited VMs

or they have a cap (limited) on the number a user is allowed to lease. With an unlimited

VM provisioning method, applications should have an efficient scheduling mechanism to

manage this plethora of resources. Whereas with limited, resource provisioning problem is

simple.

VM Type equality As discussed in Section 3.1, the CSPs provide various VM instances.

To simplify the scheduling process algorithms consider a single type VM, which

unsuccessful in getting benefited from the heterogeneous nature of cloud resources, while

algorithms with multiple VM typeleasing strategies produce efficient results.

VM Pricing model In the surveyed algorithms, a static VM pricing model is considered.

The pricing of the VMs varies from provider to provider. General pricing schemes we

found such as dynamic is the real-time pricing model, static the service provider sets the

price and remains constant, time unit VMs are charged per unit time, such as Amazon

charges per hour, subscription-based price based on the subscription period and hybrid

pricing where price changes according to the job queue wait times (static/dynamic) [74].

VM Delays The VM provisioning delays are estimated by the algorithms to make

accurate scheduling. This process is very much essential in the case of real-time workflow

applications where applications demand good response times. Many factors affect this

delay in a cloud environment, such as the virtualization layer due to a large number of

machines running on the same physical machine (PM). These delays are non-negligible

and highly inconsistent. The VM provisioning policy affects the scheduling objectives such
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TABLE 2.4: Techniques classification based on resource model

Algorithm(s) used
VM Leasing model VM type equality VM core count
Limited Unlimited Single Multiple Single Multiple

Alaei, Mani, et al. [40]
√ √ √

Ranjan, Rohit, et al. [41]
√ √ √

RMFW [42]
√ √ √

Li, Chunlin, et al. [43]
√ √ √

SPTS [44]
√ √ √

OWS-MRL [45]
√ √ √

GL Stavrinides and H D
Karatza [46]

√ √ √

REEWS [47]
√ √ √

Basit Qureshi [48]
√ √ √

CEAS [38]
√ √ √

Monire Safari and
Reihaneh Khorsand
[49]

√ √ √

EDF DVFS AC [50]
√ √ √

EICB [51]
√ √ √

MSMOOA [53]
√ √ √

EnReal [54]
√ √ √

MHRA [52]
√ √ √

ERUETB [55]
√ √ √

EAS [56]
√ √ √

DEWTS [57]
√ √ √

ESFS [58]
√ √ √

GTI [59]
√ √ √

ERAS-D [37]
√ √ √

DVFS-MODPSO [60]
√ √ √

EHEFT [61]
√ √ √

ECPOP [61]
√ √ √

SPSS-EB [62]
√ √ √

SPSS-ED [62]
√ √ √

EES [63]
√ √ √

Lizhe Wang [64]
√ √ √

pSciMapper [65]
√ √ √
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as cost and makespan of the workflow applications [75, 76]. The VM de-provision delays

affect the execution costs of workflows applications if not shut down the VM within the

billing period (VM time unit).

VM Core-count This classification refers to algorithms assumed to get provisioned

single-core VMs or multi-core VM to schedule single tasks or multiple tasks

simultaneously on them. With single-core machine algorithms capable of scheduling one

task at a time which makes the scheduling policy simple. Whereas multi-core VMs

algorithms schedule multiple tasks simultaneously, which possibly reduces cost, energy,

and free from intermediate data transfer. At the same time, this simultaneous scheduling of

tasks competes for the shared resources which results in performance degradation.

2.4.5 Energy optimization techniques

In this section we discussed various energy optimization methods which we identified in the

survey such as Sequences tasks merging, Parallel tasks merging, VM reuse, Task slacking,

DVFS, Per-core DVFS, Task Migration, Clustering of Tasks/ Workloads, VM power utility,

VM Placement, Limiting CPU utilization, PM mode switch, and Pareto optimality. The

summary of the energy optimizations techniques is tabulated in Table 2.5.

2.4.5.1 Sequences tasks merging

In a workflow, any two sequence tasks such as ti and ti+1 where ti is the only predecessor

of ti+1 and ti+1 is only successor of ti can be mapped to different VMs of vmi and vmi+1

respectively. We can merge tasks ti and ti+1 into single task to map onto an optimal VM of

type vmk. This process have threefold benefits: 1) the merged tasks won’t affect the tasks’

precedence constraints; 2) significant reduction in execution times of tasks; 3) We still

merge the tasks even if execution cost of ti and ti+1 on vmk is equal to the sum of execution

times of ti on vmi and ti+1 on vmi+1 as we do not need to transfer big dataset in some cases,

which can save a large amount of valuable energy along with the communication time. The

process of sequence task merging is shown in Figure 2.2.
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FIGURE 2.2: The process of sequence task merging

FIGURE 2.3: The process of parallel task merging

2.4.5.2 Parallel tasks merging

Workflow as it may be a complex structure for this reason workflow scheduling in

distributed environment is a difficult problem. We regard any two or more tasks with the

same predecessors and successors as the parallel tasks. Usually, the parallel tasks start

their execution at the same time but might finish at different times. As an example,

consider three parallel tasks ti, ti+1 and ti+2 with execution times 30, 20 and 60 minutes

respectively and the predecessor task ti−1 and successor task ti+3. As ti, ti+1, and ti+2 are

parallel tasks hence task ti+3 cannot start its execution until the longest task ti+2 completes

its execution. If we execute ti and ti+2 sequentially on optimal VM then the execution time

is 50 minutes which is less than the execution time of ti+2, and separate VM is used for

ti+2, the whole process will not delay the start time of ti+3. If we merge and execute tasks

ti and ti+1 as in sequences tasks merging, then we can achieve the same benefits as in

Sequences tasks merging [38]. The process of parallel task merging depicted in Figure 2.3.
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2.4.5.3 VM Reuse

The cloud providers such as Amazon offer different VM instances to the customers such as

small, medium, large, and x.large. These instances vary in computing and storage capacities

hence available at a different price per unit of time. For simplicity, consider VM lease unit

time is one hour, i.e., if a VM used more than 60 minutes and less than 120 minutes, then it

will be charged for two hours. If tasks are computed on a VM that takes 70 minutes, then

service will be charged for two hours. Here, the remaining gap is 50 minutes of unused VM

that still must be paid to the provider. Active but in an idle state the processors consume up

to 70% of the power of its peak load [77]. Most heuristics can try to utilize this idle gap to

schedule the new tasks which are fit to the idle gap [46, 38, 49, 57, 61] and in some cases

leased time will be extended to schedule long tasks to minimize the computing cost and as

well as energy consumption [38].

2.4.5.4 Task slacking

In the context of workflow scheduling, non-critical tasks have slack time (the idle time

slots of leased VMs). During the slack time, VMs consume a significant amount of power.

Reclaiming the slack time by dynamically reducing the operating voltage and frequency is

the most used technique in workflow scheduling to lower the unnecessary energy

consumption of leased VMs.

2.4.5.5 DVFS

Dynamic Voltage and Frequency Scaling (DVFS) is a widely-known approach that has

commonly been used to make the processor energy-efficient [78]. The DVFS technique

allows the processors to scale the supply voltage and as well operating frequency

dynamically, based on the workload conditions. Most of the modern processors are DVFS

enabled.
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2.4.5.6 Per-core DVFS

It is similar to DVFS, but here the concept is applied to multi-core systems. Modern

processors with multi-core architectures have integrated voltage regulators for each of its

core, enabling per-core DVFS [79]. That is, each core of the processor can operate at a

different voltage and frequency level than the other cores of the same processor. While

this provides flexibility and better energy efficiency, it involves great control complexity,

particularly in the case of clouds where the heterogeneous physical resources are virtualized

and managed by the hypervisor (Virtual Machine Monitor – VMM) such as Xen, Hyper-V,

and VMware ESXi.

2.4.5.7 Task Migration

Task migration enables effective resource utilization, improved performance through load

balancing, and energy efficiency. Inefficient processors are identified by evaluating the

performance metric called the ratio of effectiveness (RE) of the assigning task on the

processor. RE can define as the ratio of the active time slot, which runs a specific task

on the selected processor to the scheduled length of all the tasks (makespan). Processors

with low RE are wasting energy with idle slots are shutdown and tasks assigned to it are

migrated to better RE processors which are power efficient.

2.4.5.8 Clustering of Tasks/ Workloads

A complex workflow application contains many tasks which are mapped to different

processors or VMs to perform their job. These tasks need to communicate with each other

by transferring a huge amount of data, which consumes a lot of energy and as well as incurs

communication costs. Clustering of tasks or workloads is the technique that reduces these

inter-process communication energy overheads [47]. Clustering is performed to group the

tasks (workloads) which execute a similar job, and these tasks need to communicate with

each other while executing, and hence clustering saves the loads of transmitting the data.
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2.4.5.9 VM Power utility

The power utility concept of cloud resources is considered by some researchers to address

the energy consumption optimization problem of cloud workflow scheduling applications.

The power utility of computing resources (VMs) can be defined as the workload finished

per unit of energy. The power utility of any task ti on VM of type k is the ratio of the

workload (wi) of ti to the total energy consumed by the task ti to execute on vmk. The task

consumes less power on the selected vm if the power utility factor is more; we can call

such vm as optimal. The scheduling heuristic used to map the tasks to the resources can

select the optimal vm if it meets QoS requirements.

2.4.5.10 VM Placement

The process of selecting the most suitable Physical Machine (PM) for the VM is called

VM Placement. The mapping of VMs on PM allowed changing according to the workload,

or it fixed throughout the process. The first one, called dynamic VM placement, and the

latter is static VM placement. The successful placement of VMs on PMs can improve

the performance of the cloud, resource utilization, and reduced energy consumption. The

effective VM placement heuristics maximize the active PMs which save energy [48].

2.4.5.11 Limiting CPU utilization

The energy consumption for PMs is composed of CPU, memory, disk, power supply, etc.

Various research results in the literature show that CPU utilization significantly affects

energy consumption [80]. The relationship between CPU utilization and energy

consumption is non-linear. Energy consumption of CPU at full workload is more than

twice 50% of CPU workload. We can get benefited from energy saving if we limit the

CPU utilization under some threshold.
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2.4.5.12 PM mode switch

Underutilized Physical Machines of data center consumes a significant amount of power.

Each PM can be operated in one of the three different modes such as active mode, low-power

mode and sleep mode. By switching the underloaded PMs to the low-power mode or sleep

mode, we can minimize energy. Depending on the hosted application service time, Xu et

al. [54] propose two power modes for the PMs with all idle VMs i.e., low-power and sleep

modes.

2.4.5.13 Pareto optimality

Getting feasible solutions to the multi-objective problem is a challenging task. One of

the ways to find such solutions is the Pareto efficiency. The “Pareto solutions” states that

optimization in one objective might occurs with the worsening of solutions of at least one

of the remaining individuals. Therefore, rather than a unique solution, a set of Pareto points

is preferable for multi-objective problems [81].
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TABLE 2.5: Techniques used to optimize energy

Algorithm(s) used
Tasks merging

DVFS
Task VM Limiting

CPU
utilization

PM
mode
switch

Pareto
optimality

Others
Sequence Parallel Slacking Migration Clustering Reuse

Power
utility Migration

Alaei, Mani, et al. [40]
√ Adaptive fault detector

design based on improved
(IDE) algorithm.

Ranjan, Rohit, et al. [41] Containerized virtualization.
RMFW [42]

√ √ √

Li, Chunlin, et al. [43]
√

SPTS [44] Shortest path algorithm.

OWS-MRL [45]
Resource provisioning using
reinforcement learning.

GL Stavrinides and
H D Karatza [46]

√ √

REEWS [47]
√ √

Basit Qureshi [48]
√ √

CEAS [38]
√ √ √ √ √

Monire Safari and
Reihaneh Khorsand [49]

√ √ √

EDF DVFS AC [50]
√ √

EICB [51]
√ √ √

MHRA [52]
√ √

MSMOOA [53]
√

EnReal [54]
√

ERUETB [55]
√ √

EAS [56]
√ √

DEWTS [57]
√ √

ESFS [58]
√ √

GTI [59]
√

ERAS-D [37]
√

DVFS-MODPSO [60]
√ √

EHEFT [61]
√ √

ECPOP [61]
√ √

SPSS-EB [62]
√

SPSS-ED [62]
√

EES [63]
√

Lizhe Wang [64]
√ √

pSciMapper [65]
√
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2.4.6 Summary of surveyed algorithms and future directions

In this section, we evaluated and reviewed the algorithms, to highlight the key idea,

advantages, and trade-offs of each technique. We suggested future research directions for

each algorithm. As discussed in Section 2.3, the common main objective of the algorithms

is to reduce energy consumption for scheduled workflow without compromising the

performance and considering other objectives such as cost, deadline, reliability, etc. The

methodology used for an efficient schedule of tasks and resources to meet certain

objectives is summarised under the key idea of the algorithm. The possible further

enhancement of algorithms to make it more efficient along with the key idea, advantages,

and disadvantages summarized in Table 2.6.
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TABLE 2.6: Comparison of Energy-Aware Techniques

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

Alaei, Mani,

et al. [40]

2021

A multi-objective fault-

tolerant framework:

1. Monitor to collect tasks

and resource load

2. Future workload analyzer

3. A fuzzy planner to map

tasks to efficient resources

with proactive and reactive

fault-tolerance

4. Planner used IDE

algorithm

1. A higher degree of fault

tolerance

2. Optimal makespan,

energy consumption, and

task fault ratio

3. Reduces overall cost.

This work considered

only the VM faults.

However, the reliability

issues can be caused by

many other factors

like network and I/O.

More energy can be

saved by switching

off underloaded and

idle hosts

Ranjan,

Rohit, et al.

[41]

2020

1. A CaaS model is

proposed for energy-efficient

workflow scheduling

2. Containers are created

and used to execute

different tasks

1. Containers require fewer

system resources because

they don’t include opera-

ting system images

2. Low migration overheads

3. Great increase in appli-

cation scalability

1. Placing dependencies

on containers that can

limit portability betwe-

en servers

2. Incurs an expensive

performance overhead

System performance

can be improved by

introducing predicti-

on method and perf-

ormance modeling

for microservice

based applications
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

RMFW

[42]

2020

1. Multiple reinforcement

learning (RL) agents prop-

osed on a framework that

cooperates for better task

scheduling and resources

utilization

2. DVFS used for powers-

aving

1. Cooperative RL-based

agents improve the execut-

ion time by avoiding a gre-

edy approach in scheduling

2. Load-balancing

3. Lower costs and energy

consumption by increasing

resource utilization.

The lower threshold

used for resource utiliz-

ation is very low

Energy-saving can

be improved by usi-

ng evolutionary alg-

orithms for VM con-

solidation.

Li, Chunlin,

et al. [43]

2020

1. Queuing model-based job

scheduling for better

response times

2. Load-balancing for geogr-

aphically distributed clouds

3. Shortest path algorithm

for energy saving

1. M / M / C queue model

gives better response and

reduces resources wastage

2. Significant energysaving

1. Job arrival queue ra-

te is not predictable. It

may discourage other jo-

bs from entering into it

2. The shortest path

algorithm always not

find the best path

By considering dive-

rse VM types might

observe increased

performance in ener-

gy consuption
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

SPTS [44] 2020

1. Workflow task partition-

ing algorithm used based on

hypergraph partitioning

2. Task scheduling problem

is modeled as the shortest

path problem (SPP)

3. SPP solved by using

Dijkstra algorithm

Significant saving in com-

pletion time and energy

consumption

The shortest path algo-

rithm always not find

the best path

Cost and energy co-

nsumption can be

further reduced by

reusing the virtual

machines in the

leased clusters

OWS-MRL

[45]

2020

1. Clustering of resources

for mapping to appropriate

workflows

2. Reinforcement learning

method used to allocate

resources to tasks

3. Limiting the use of reso-

urces

1. Multi-agent environment

achieved a global optimal

solution

2. Significant saving in

cost and power utilization

Operating the resources

at minimum frequency

induce transient errors

An agent which han-

dles the resources al-

location to workflow

should maintain a t-

rade-off policy betw-

een power utilizati-

on and quality of a

schedule
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

G L

Stavrinides

[46]

2019

1. Tasks prioritized based

on the Earliest Deadline

First (EDF)

2. Priority ties beaked using

the highest average comput-

ing cost

3. Tasks mapps to per-core

DVFS enabled VMs

1. Energy efficient because

of per-core DVFS VMs

2. Assured QoS using EDF

-based Task priority

3. Cost-effective utilizing

idle time of VMs

1. If a task has many

parents with input err-

or, then it may produce

unacceptable results

2. Tasks may not fit in

schedule gaps of VMs

Result precision can

improve by conside-

ring the tardiness

tolerance situations.

REEWS

[47]

2019

1. Task prioritization

2. Clustering tasks

3. Deadline distribution

4. Applied DVFS to reduce

energy consumption

1. Communication cost

minimized

2. Crucial tasks given high-

est priority in scheduling

3. Rescues the tasks starv-

ing from the higher priority

More than one scheduli-

ng order possible beca-

use of topological order

of tasks

1. Make more ener-

gy efficient using

per-core DVFS

2. Improved system

reliability through

load-balancing
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

Basit

Qureshi

[48]

2019

1. Task ranks calculated ba-

sed on earliest finish time

and lowest price of jobs

in a queue

2. Tasks are mapped to

VMs in priority order

1 Efficient VM placement

2. Load balancing

3. Maximization of idle

VMs for energy efficiency

4. Polynomial time

Limited to CPU inten-

sive workloads

Better cost estimat-

ion includingthe lat-

ency of network,

memory and storage

CEAS [38] 2018

1. Optimal VM selection

2. Task merging

3. VM reuse

4. Task slacking

1. Improved makespan.

2. Reduced execution cost.

3. Energy-efficient

4. Polynomial time

5. Suitable for a commerci-

al multi-cloud environment.

1. In VM reuse still

chances for an unused

time slot

2. Extensive coding

1. Cost saving consi-

dering VM delays

2. Enenrgy saving by

effectively utlizating

gap between make-

span and deadline

Monire

Safari and

Reihaneh

Khorsand

[49]

2018

1. Sub-deadline distribution

to sub-workflows

2. Ordered tasks based on

distributed deadlines are

mapped to VMs

3. A proper frequency is set

for the selected resources

1. Guaranteed optimal

execution time.

2. Assured SLAs irrespect-

ive of a number of tasks

3. Polynomial-time

heuristics

1. Insignificant energy

saving with less number

of processors

2. Inefficient resource

utilization with less nu-

mber of processors.

We can minimize

energy by optimizing

data communicating

processors
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

EDF DVFS

AC [50]
2018

1. Tasks prioritized based

on the EDF

2. Priority ties beak using

the highest average

computational cost

3. Optimal VMs selected

for execution

4. If schedule gaps then

apply DVFS to save energy

1. To fill schedule gaps us-

ed per-core DVFS on the

underlying heterogeneous

environment

2. Improved SLA violations

3. Improved energy saving

A slight loss in result

precision of computati-

onally intensive tasks

Better energy saving

with live VM migra-

tion and improve

system reliability

EICB [51] 2018

1. Grouping instances for

batch processing

2. Resource monitoring by

calculating the resource

usage ratio VM to PM

3. Resource allocation in

energy-efficient way

1. More energy reduction

with increased task

instances

2. Increased response with

load-balance

3. Reliable for real-world

applications

If the CPU threshold is

low then the loss of

energy by opening

large PMs. Care should

take to set threshold.

To save more energy

a) Applying DVFS

on newly opened

idle resources

b) Considering VM

core-level threshold
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

MHRA

[52]

2018

Minimizes energy and exec-

ution time by considering:

1. Sequence setup times

between tasks

2. VM setup and down time

3. System architecture

energy profile

4. Resource energy perfor-

mance factor

1. Polynomial time Multi-

heuristic resource alloca-

tion algorithm

2. A subgroup of depende-

ncy free tasks executed in

parallel

1. Drastic makespan

increase If importance

factor >+.7

2.Execution environme-

nt not open for research

3. VM idle times not

considered

More energy saving

using DVFS for VM

idle slots

MSMOOA

[53]
2017

1. A manager adopted to

manage the resources of

the data center

2. Multi-swarm is used to

find personal best, global

best and swarm best

1. The adopted resource

manager avoids the influe-

nce of unstable resources

2. Efficient in searching

non-dominated solutions

in a cloud-environment

Not using the scalable

nature of cloud and wo-

rks with stable resources

1. Workload migrat-

ion to achieve stable

resources

2. Select optimal

swarm by making

the manager server

dynamic
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

EnReal [54] 2016

Live VM migration from

the under-loaded PMs

and PM mode switching

1. Resource utilization bet-

ter than existing works

2. Excellent performance

with increased workflow

dynamicity

Live migrations increase

memory cost

Memory optimiza-

tion can save energy

and cost

ERUETB

[55]
2016

1. Cloud module consolida-

tion by setting the thresh-

old to VMs and allowing

concurrent execution

2. Workload migration to

achieve stability

3. VM reuse

1. Avoids placement of new

VMs by concurrent execut-

ion of modules

2. Efficient resource usage

3. Inprove energy saving

Forward procedure ma-

pping schemes suffer fr-

om poor resource util-

ization ratio compared

to backward scheduling

Minimizes unnecess-

ary workload migra-

tions by making VM

threshold cap dy-

namic

EAS [56] 2016

1. Tasks-VMs map based on

power utility factor by con-

sidering the deadline

2. Merging sequential tasks

with common successor

3. Map such task to a VM

Sequential task merging

and mapping to common

VM will reduce energy and

communication cost

1. Tasks with less power

utility the factor will

fail to meet deadlines

2. VM idle times

Better power utility

factor estimation by

distributing sub-de-

adline to tasks
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

DEWTS

[57]

2014

1. Prioritizes tasks and

makespan using HEFT

2. Merging inefficient VMs

3. Slack estimation to apply

DVFS

1. VMs optimization reduc-

es energy consumption

2. Leased time slot reuse

Smaller DAG length

with higher parallelism

but in reality workloads

unpredictable

Parallel task mergi-

ng can save energy

and cost

ESFS [58] 2014

1. Initial assignment with

HEFT

2. Scales the assigned freq-

uencies

3. Slack distribution in an

energy-efficient way

1. Proper resource utiliz-

ation irrespective of the

number of hosts

2. The balance between

execution time and energy

consumption

1. Comparatively, make-

span is more with less

number of hosts (<16)

on LIGO

2. Task’s frequency sca-

ling does not necessarily

bring energy efficiency

1. Job sensitivity

consideration towar-

ds frequency scaling

2. Considering netw-

orks characteristics

to minimize commu-

nication cost

GTI [59] 2014

1. For idle hosts scale the f-

requency to the lowest level

2. Measuring energy saving

ratio

3. Used HEFT makespan

while operating at minimum

frequency as deadline base

1. Energy-efficient ignoring

settings of various hosts

and deadline constraints

2. Communication to com-

putation ratio (CCR) effec-

tively works to reduce cost

3. Assured QoS

The energy reduction

not significant with

deadline ratio 0.7and

0.8 on SDSS

workflow

Performance evalu-

ation on real DVFS-

enabled processors
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

ERAS-D

[37]
2013

Optimal resource utilization

through backward task

scheduling and DVFS

1. Decreased energy cost,

energy consumption, and

CO2 emission

2. Improves provider profit

A separate algorithm

developed for compare

results

1. Workload migrat-

ion to increase syst-

em reliability

2. CPU mode switc-

hing to improve ene-

rgy saving

DVFS-

MODPSO

[60]

2013

Provides non-dominated

(Pareto) solution through

1. Voltage and frequencies

(swarm) initialized with

random values

2. HEFT applied to mini-

mize makespan

3. For each particle new pa-

rameters like velocity and

position calculated then

updated tili termination

Averts the compromise

between performance and

energy consumption by

handling various QoS

requirements.

Significant improvement

in cost and energy con-

sumption but not in

makespan

Deadline distribution

to sub-workflows to

achieve improvement

in makespan for

synthetic workloads
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

EHEFT

[61]
2013

Inefficient processor shutd-

own by calculating the

performance metric RE

(Ratio of Effectiveness)

1. Reduce time and energy

in parallel applications

2. Works well for commun-

ication and computation-

intensive applications

Load balancing issues.

Some resources overlo-

aded while some idle

1. Workload load

balancing

2. Can make more

energyefficient using

DVFS processors

ECPOP

[61]
2013

Inefficient non-critical VM

shutdown by calculating the

performance metric RE

(Ratio of Effectiveness)

1. Reduce time and energy

in parallel applications

2. Works well for commun-

ication and computation-

intensive applications

Slack peroids of VMs

not effectively used

Can make more ene-

rgy efficient using

DVFS processors

SPSS-EB

[62]
2013

Static Provisioning-Static

Scheduling (SPSS) model

ensured energy and deadline

constraints using SPSS-EB

and SPSS-ED algorithms

respectively

1. A small number of VM

selection

2. Efficient resource utiliza-

tion for energy constraints

3. Resources provision for

the ensemble allows better

resource utilization

1. VM migration not

supported

2. VM limitations

3. Not support for hete-

rogeneous computing

1. Communication

cost consideration

2. Considering heter-

ogeneous nature of

cloud resources
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

SPSS-EB

[62]
2013

Static Provisioning-Static

Scheduling (SPSS) model

ensured energy and deadline

constraints using SPSS-EB

and SPSS-ED algorithms

respectively

1. A small number of VM

selection

2. Efficient resource utiliza-

tion for energy constraints

3. Resources provision for

the ensemble allows better

resource utilization

1. VM migration not

supported

2. VM limitations

3. Not support for hete-

rogeneous computing

1. Communication

cost consideration

2. Considering heter-

ogeneous nature of

cloud resources

EES [63] 2012

1. Slack room study

2. Achieve global optimality

by schedule slack tasks on

nearby VM which running

on uniform frequency

1. Reduced energy of data

centers running parallel

applications

2. Assured QoS

3. Used real heterogeneous

processors

The original methods

selected for results, a

comparison is not

suitable for hetero-

geneous computing.

1. VM reuse to min-

imize cost and energy

2. Communication

cost reduction

through task merging
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Table 2.6 continued from previous page

Algorithm Year Key Idea Advantages Limitations
Future Research

Direction

Lizhe Wang

[64]
2010

Reduces the energy consu-

mptio by extending the

execution time for the non

-critical tasks based on the

analysis of the slack time

without extending the

overall execution time

Green SLA-based approach

1. Increased task exec-

ution time

2. Little bit increase in

communication cost

3. Chances of idle time

of VMs

1. Task merging to

minimize communi-

cation cost

2. VM reuse to red-

uce cost

pSciMapper

[65]
2010

1. Study of power consum-

ption by resource usage

2. Correlation investigation

of workloads, power, and

performance

(dimensionality reduction)

1. >50% power saving with

nominal performance down

2. pSciMapper practical

even large-scale workflows

3. Scheduling overheads

are less

1. 10-15% performance

slowdown not accepta-

ble in some applications

2. Real power values

not measured

Performance increa-

sing by mapping

tasks to optimal

VMs
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2.5 Conclusion

Cloud computing is the key technology in digital transformation. Nearly every online

end-users use it directly or implicitly. Nevertheless, the customers and cloud service

providers face challenges such as energy consumption, monetary cost, QoS, security, load

balancing, and SLA compliances. Energy efficiency is one major challenge due to the

enormous power consumption of cloud data centers and the emission of greenhouse gases

into the environment. This chapter studies various state-of-the-art techniques developed for

workflow task scheduling in cloud computing environments to minimize energy

consumption by meeting certain objectives. More particularly, its emphasis on techniques

considering workflow applications modeled as “DAGs” and where resources are modeled

as in the public clouds. The existing works in “energy-aware workflow scheduling” are

studied and classified in a way that a reader can get more insight. We believe that this

survey will help to shape the future research direction in the field of energy-efficient

workflow scheduling in cloud computing.

Several factors such as storage cost, resource latency, network characteristics, and energy

consumption by other ITC equipment such as the disk, memory, and thermal parameters

needed to consider for a better estimation of the cost and energy consumption.


