List of Figures

1.1	Yield strength versus year of introduction of aluminium alloy [2]	2
1.2	Engineering properties required for main structural components [4]	5
1.3	Primary types of aluminium alloys [8]	8
1.4	Variation of resistance to SCC and strength with aging time [12]	11
1.5	Variation of hardness during RRA heat treatment [12]	12
1.6	Effect of particle diameter and CRSS on dislocation-precipitate interac-	
	tion [1]	14
1.7	Distribution of precipitates within the matrix in (a) T6, (b) RRA and (c)	
	T7 temper respectively [17]	15
1.8	Distribution of grain boundary precipitates in (a) T6, (b) RRA and (c) T7	
	temper respectively [17]	16
1.9	Dispersoid of $Al_{12}Mg_2Cr$ in alloy 7075 [9]	18
1.10	(a) Schematic of USSP chamber and (b) repeated impact creating surface	
	layer with high strain [28]	20
1.11	Schematic illustration of grain refinement via DDW and DT [37]	22
1.12	Schematic illustration of grain refinement by mechanical twins and dislo-	
	cations resulting from SMAT [37]	23
1.13	Microstructure evolution of USSP treated AA7075 at different depths of	
	(a) 8 μ m, (b) 40 μ m, (c) 60 μ m and (d) SADP corresponding to fig. c [39]	25
1.14	S/N curves of different SMATed samples and SMATed samples combined	
	with annealing [58]	28
1.15	Variation of fatigue life with plastic strain amplitude [61].	30

1.16	Coffin-Manson plot of high nitrogen stainless steel for the un-shot peened	
	and 10 min shot peened specimens [62]	31
2.1	Schematic of the retrogression and reaging heat treatment of AA7075	36
2.2	The peening head (left) and the central unit (right) of the ultrasonic shot	
	peening device.	37
2.3	Geometry of the flat tensile specimen with dimensions in mm	40
2.4	Schematic of the cylindrical LCF specimen with dimensions in mm	41
2.5	Dimensions of the specimen used in the SSRT test with dimension in mm.	43
3.1	Optical micrographs showing microstructure of the AA7075 in RRA con-	
	dition	46
3.2	Surface topography of the AA7075 samples in (a) un-USSP condition &	
	USSP treated respectively for different durations (b) 15 s, (c) 30 s, (d) 60	
	s, & (e) 300 s	47
3.3	Cross-Sectional SEM image of the AA 7075 USSP treated for different	
	durations: (a) 15 s, (b) 60 s and (c) 300 s	48
3.4	Bright field TEM micrographs of the AA7075: (a) PA-unUSSP, (b)	
	HRTEM image of GP-zone, (c) corresponding IFFT pattern of framed	
	region in Fig. b, (c) HRTEM image of η' precipitate, (e) corresponding	
	IFFT pattern of framed region in Fig.c, HAADF-STEM image and EDS	
	mapping of Al,Zn, Mg and Cr of (f) η -phase and (g) E-phase respectively.	50
3.5	HRTEM micrographs of η -phase and its corresponding FFT (a) spherical	
	and (b) needle morphology in PA-unUSSP condition	51
3.6	Bright field TEM micrographs and their corresponding SAD patterns from	
	the top surface regions of the AA7075 in different USSP treated condi-	
	tions: (a) USSP 15, (c) USSP 30, (e) USSP 60, (g) USSP 180 and (i)	
	USSP 300	53
3.7	Bright field TEM micrographs showing microstructure evolution at dif-	
	ferent depths of the AA7075, USSP treated for 30 seconds	55

3.8	Bright field TEM micrographs showing microstructure evolution at dif-	
	ferent depths of the AA7075, USSP treated for 300 seconds	57
3.9	IQ maps of the AA7075 in different conditions (a) un-USSP, (b) USSP	
	30, (c) USSP 180 and (d) USSP 300	58
3.10	Auto grain maps of the AA7075 in different conditions (a) un-USSP, (b)	
	USSP 30, (c) USSP 180 and (d) USSP 300	59
3.11	Thickness of the different types of microstructure layers	60
3.12	Grain boundary misorientation maps of the AA7075 in different condi-	
	tions (a) un-USSP, (b) USSP 30, (c) USSP 180 and (d) USSP 300	61
3.13	Variation of grain boundary misorientation of the AA7075 in different	
	conditions (a) un-USSP, (b) USSP 30, (c) USSP 180 and (d) USSP 300.	61
3.14	XRD patterns of the 7075 Al alloy in the un-USSP condition and USSP	
	treated for different durations of time.	63
3.15	(a) Variation of average crystallite size and mean micro-strain and (b)	
	Variation of dislocation density and lattice parameter with treatment time	
	of USSP in the AA7075	64
3.16	XRD patterns of the AA7075 in different conditions.	65
3.17	Variation of the residual stress along the depth from the surface of the	
	AA7075, USSP treated for different durations.	67
3.18	Distribution of residual stress in the AA7075 in different conditions	67
3.19	Variation of average surface roughness of the AA7075 with duration of	
	USSP	68
3.20	Variation of microhardness from the surface towards interior of the	
	AA7075, USSP treated for different durations	69
3.21	Variation of microhardness of the AA7075 in the different conditions	70
3.22	Schematic illustration showing microstructural evolution process of the	
	AA7075 treated with USSP.	73

4.1	DSC thermograms of the AA7075 in the un-USSP and USSP treated con-	
	ditions obtained at heating rate of 10°C/min	81
4.2	Variation of microhardness of the USSP treated AA7075 with the duration	
	of annealing at different temperatures	82
4.3	XRD profiles of the USSP treated sample and the USSP treated samples	
	annealed at different temperatures for 30 minutes	83
4.4	XRD profiles of the as USSP treated sample and the USSP treated samples	
	following annealing at (a) 150°C, (b) 250°C and (c) 350°C for varying	
	periods of time.	84
4.5	Variation of (a) Crystallite size, (b) Microstrain and (c) Dislocation den-	
	sity of the USSP treated AA7075 with duration of post annealing treat-	
	ment at different temperatures.	85
4.6	Bright field TEM micrographs and respective SAED patterns of the USSP	
	treated samples annealed at (a) 150°C, (b) 200°C, (c) 250°C, (d) 300°C	
	and (e) 350°C for 30 minutes.	87
4.7	Plot of ln k vs 1000/T for the estimation of activation energy for grain	
	growth of the USSP treated AA7075	94
5.1	Cyclic Stress response curves of AA7075 in different conditions (a) un-	
	USSP, (b) USSP 30, (c) USSP 60, (d) USSP 180 and (e) USSP 300	103
5.2	Variation of cyclic hardening factor with number of cycles for the un-	
	USSP and the samples USSP treated for different durations, at the total	
	strain amplitude $\Delta \epsilon_t/2$ of ±0.38%.	104
5.3	Dependence of fatigue life on total strain amplitude for the different con-	
	ditions.	104
5.4	Dependence of fatigue life, number of reversals to failure $(2N_f = 1)$ on	
	the plastic strain amplitude for the un-USSP and different USSP treated	
	conditions	105
5.5	Variation of plastic strain energy density in un-USSP and different USSP	
	treated conditions.	106

5.6	SEM fractographs showing morphology of fractured surfaces of the un-
	USSP sample, tested at the total strain amplitudes of (a) ±0.60%, (b)
	$\pm 0.45\%$, (c) $\pm 0.38\%$ and the USSP 180 samples tested at the total strain
	amplitude of (d) $\pm 0.60\%$, (e) $\pm 0.45\%$, (f) $\pm 0.38\%$
5.7	Compressive residual stress in surface region of the USSP 180 specimen
	in the as-USSP treated condition and following LCF at different total
	strain amplitudes up to half of their LCF life $(N_f/2)$
5.8	SEM fractographs showing fracture surfaces of the specimens tested at the
	total strain amplitudes of $\pm 0.38\%$, $\pm 0.60\%$ respectively: (a, b) un-USSP
	and (c, d) USSP 180
5.9	Variation of interstriation spacing at different total strain amplitudes for
	the un-USSP and USSP 180 specimens
5.10	SEM micrograph of the USSP 300 sample tested in LCF at the total strain
	amplitude of $\pm 0.38\%$. (a) Surface morphology of the circumferential sur-
	face close to fracture end and (b) longitudinal section of the tested sample
	showing crack profile
6.1	Bright field TEM micrograph of the AA7075: (a) PA-USSP condi-
	tion with its corresponding SADP, (b) GP-zones and η^\prime precipitates, (c)
	HRTEM of η -phase and (d) HRTEM of E-phase
6.2	Bright field TEM micrograph of the AA7075: (a) PA-USSP-SR condition
	with its corresponding SADP, (b) GP-zones and η' precipitates, and (c)
	showing coarse η and E-phase precipitates
6.3	Bright field TEM micrograph of the AA7075: (a) ST-USSP-PA condi-
	tion with its corresponding SADP, (b) GP-zones, η' precipitates and (c)
	HRTEM of η' precipitates
6.4	Engineering stress-strain curves of the AA7075 in different conditions 123
6.5	Cyclic stress response curves of the AA7075 in different conditions (a)
	PA-USSP, (b) PA-USSP-SR and (c) ST-USSP-PA

6.6	Dependence of fatigue life, as reversals to failure, on plastic strain ampli-
	tude
6.7	Dependence of fatigue life on total strain amplitude for different conditions. 126
6.8	Variation of the number of cycles for crack initiation (N_i) and for crack
	propagation (N_p) for the AA7075 tested in LCF at different total strain
	amplitudes
6.9	SEM fractographs showing overall fracture surfaces and fatigue striation
	in the specimens tested at the total strain amplitude of $\pm 0.45\%$: (a) PA-
	USSP, (b) PA-USSP-SR and (c) ST-USSP-PA
6.10	HRTEM micrographs and corresponding IFFT images of dislocation dis-
	tribution around precipitates in (a) PA-USSP, (b) PA-USSP-SR and (c)
	ST-USSP-PA
7 1	Detertion demonstration engine of the up LICCD and the different
/.1	USSP tracted complex in 2.5 wt% NeCl solution following exposure of
	20 minutes 122
7.0	S0 Infinites 130 FIG. slats of an USCD and different USCD treated counder in 2.5 and 0
1.2	EIS plots of un-USSP and different USSP treated samples in 3.5 wt.%
	mach solution recorded at their respective open circuit potentials for im-
7.0	144
7.3	Equivalent electrochemical circuit of CPE model
7.4	Anodic polarization curves of the un-USSP and USSP treated samples
	after 360 h of exposure in 3.5 wt.% NaCl solution
7.5	Variation of weight gain of the 7075 Al alloy with duration of immersion
	in 3.5 wt.% NaCl solution for the un-USSP and different USSP treated
	samples
7.6	Corrosion rate of aluminium alloy 7075 in different USSP conditions after
	60 days of immersion in 3.5 wt.% NaCl solution
7.7	X-ray diffractograms of the 7075 Al alloy after exposure in 3.5 wt.% NaCl
	solution for 15 days in the un-USSP and different USSP treated condi-
	tions

7.8	SEM micrographs of the 7075 Al alloy after exposure in 3.5 wt.% NaCl	
	solution for 15 days: (a) un-USSP, (b) USSP 15, and (c) USSP 300 con-	
	ditions	149
7.9	EDX results of the 7075 Al alloy following immersion in 3.5 wt.% NaCl	
	solution for 15 days: (a) un-USSP, (b) USSP 15 and (c) USSP 300	151
8.1	Volta potential map (a, c) and linear distribution of potential (b, d) for	
	un-USSP and USSP 15 samples respectively.	160
8.2	Potentiodynamic polarization curves in 3.5 wt% NaCl solution, after 30	
	minutes of their exposure	162
8.3	EIS plots of the un-USSP and different USSP treated samples in 3.5 wt%	
	NaCl solution recorded at their respective open circuit potentials for im-	
	mersion duration of (a-c) 24 h and (d-f) 360 h respectively	167
8.4	Equivalent electrical circuit	169
8.5	Potentiodynamic polarization curves of the un-USSP and USSP treated	
	specimens after 360 h of exposure in 3.5 wt.% NaCl solution	170
8.6	XPS Al2p spectrum of different samples: (a) un-USSP, (b) un-	
	USSP+360h of exposure, (c) USSP 15 and (d) USSP 15+360h of exposure.	171
8.7	Stress-Strain curves of un-USSP and USSP specimens in Air and 3.5 wt.%	
	NaCl solution at slow strain rate of $10^{-6} s^{-1}$.	173
8.8	Time to failure of SSRT tests for the un-USSP and USSP conditions	174
8.9	Morphology and the corresponding EDS of the AA7075 after potentiody-	
	namic polarization in 3.5 wt% NaCl solution (a) un-USSP and (b) USSP	
	15	176
8.10	Schematic showing surface morphology of (a) un-USSP and (b) USSP	
	treated specimen.	178
8.11	Fracture surfaces of the SSRT samples in un-USSP condition tested in (a)	
	air, (b) 3.5 wt% NaCl solution and in USSP condition tested in (c) air and	
	(d) 3.5 wt% NaCl solution.	186

8.12	SEM micrograph of longitudinal section of SSRT tested samples in 3.5	
	wt.% NaCl (a) un-USSP and (b) USSP conditions	187