Abbreviations

ASTM American Society for Testing and Materials

CPE Constant Phase Element

CRSS Critically Resolved Shear Stress

DT Damage Tolerance

EBSD Electron Back Scattered Diffraction

EDS/EDX Energy **D**ispersive **X**-ray **S**pectroscopy

EIS Electrochemical Impedance Spectroscopy

FCC Face Centered Cubic

FESEM Field Emission Transmission Electron Microscope

GNS Gradient Nano Structure

GP Guinier Preston

HAADF High Angle Annular Dark Field

HCF High Cycle Fatigue

HCP Hexagonal Close Packing

HPT High Pressure Torsion

HRTEM High Resolution Transmission Electron Microscope

IFFT Inverse Fast Fourier Transform

IQ Image **Q**uality

LCF Low Cycle Fatigue

MB Micro Band

OCP Open Circuit Potential

PA-USSP Peak Aging followed by Ultra Sonic Shot Peening Treatment

PA-USSP-SR Peak Aging & Ultra Sonic Shot Peening Treatment & Stress Relieved

PD Potentio Dynamic

RPM Rotation Per Minute

SADP Selected Area Diffraction Pattern

SC Secondary Cracks

SCC Stress Corrosion Cracking

SFE Stacking Fault Energy

SSP Sever Shot Peening

SSRT Slow Strain Rate Tensile

SSS Supersaturated Solid Solution

ST-USSP-PA Solution Treated & Ultra Sonic Shot Peening Treatment & Peak Aging

TEM Transmission Electron Micrographs

USSP Ultra Sonic Shot Peening

XRD X- Ray **D**iffraction

Symbols

°C Degree Centigrade

 μ m Micrometer

nm Nanometer

 α Alpha

 θ Theta

Wt.% Weight Percent

kHz Kilo Hertz

mHz Mili Hertz

mg Mili Gram

mm Mili Meter

ml Mili Liter

t Time (h)

A Area (cm²)

a Lattice parameter

B Line Broadening

D Average crystallite Size

- D_0 Initial Grain Size
- k Temperature dependent rate constant
- n Grain growth constant
- R Ideal gas constant
- Q Activation Energy
- g Gram
- cm Centimeter
- h Hour
- s Second
- K Constant (8.76 x 10⁴)
- W mass loss (mg)
- KN Kilo Newton
- > Greater than
- < Less than
- b Burger Vector
- λ Wavelength
- ε Root mean square of micro-strain
- β Beta
- η Equillibrium precipitate
- η ' Non-equillibrium Phase
- MPa Mega pascal
- R_a Average surface roughness

H_v	Hardness
T_t	Transition temperature
v	Poisson's Ratio
$2N_f$	Number of reversals to failure
$\epsilon^{'}{}_{f}$	Fatigue ductility coefficient
$\mathbf{W'}_f$	Plastic strain energy density coefficient
N_i	Number of cycles to crack initiation
N_p	Number of cycles to crack propagation
I_{corr}	Corrosion current
E_{corr}	Corrosion potential
E_{pit}	Pitting potential
R_p	Polarization resistance
β_a	Anodic tafel slope
β_c	Cathodic tafel slope
\mathbf{Y}_0	Constant phase element impednce

 R_u

Solution resistance between solution and reference electrode