
Chapter 5

Occlusion Handling in Image-based

Person Re-Identification

In the previous two chapters, we develop person re-identification approaches that are

suitable for application in only constrained scenarios devoid of any occlusion. The

approach discussed in Chapter 3 averages normalized silhouettes before carrying out

feature extraction in the spatial domain. This method cannot be applied in occluded

situations since the presence of occlusion is likely to degrade the quality of image frames

which will also drastically affect the effectiveness of the spatial-domain features. Sim-

ilarly, the temporal-domain features derived in Chapter 4 using an ensemble of three

time-series Neural Network models will be effective for re-identification only if the

frames of the input sequence are devoid of occlusion.

As already explained in Chapter 2, a few recent work [153–156] attempt to solve the

problem of re-identification in the presence of occlusion and illumination variation.

Among these, Zhuo et al. in [153] considered the separate occluded/unoccluded classi-

fication and person re-identification tasks as a combined task, and does not provide any

separate module for carrying out the occlusion reconstruction. In another work [154], He

et al. proposed a background-foreground classifier to remove the background clutters.
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Gao et al. [155] proposed a pose-guided Visible Part Matching (PVPM) model to learn

attentions with discriminative part features. In [156] a cross-graph embedded-alignment

(CGEA) layer has been used to embed topology information to local features and pre-

dict similarity scores for matching. Although these approaches have shown satisfactory

results, it appears that the effectiveness of re-identification can be improved if two sep-

arate dedicated networks are used for occlusion reconstruction and re-identification,

which we study in this chapter.

In this chapter, we focus on real-life surveillance scenarios where person images can

get partially occluded due to the presence of other objects, such as tree leaves, cars,

persons, etc. The presence of occlusion makes capturing of a clean walking sequence of

individuals by surveillance cameras very difficult. Developing an effective algorithm to

reconstruct the occluded/missing frames is expected to improve the re-identification ac-

curacy. Here, we will specifically focus on developing effective algorithms for occlusion

reconstruction in image-based person re-identification by exploiting the spatial infor-

mation from the images using robust Deep Neural Network-based generators. Once the

occluded frames in a sequence are reconstructed, person re-identification is carried out

using any baseline network. The overall framework of the re-identification approach is

given in Figure 5.1.
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Figure 5.1: Overall framework of the re-identification approach: (a) Occlusion recon-
struction, and (b) Re-identification
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5.1 Synthetic Occlusion Generation for Training Deep Neural

Network Models

As mentioned above, we use Deep Neural Networks to predict the unoccluded versions of

input occluded frames. Since training any Machine/Deep Learning model requires the

availability of ground truth, we need to prepare an extensive data set of occluded image

frames along with their corresponding unoccluded counterparts and, henceforth, train

a neural model to map occluded images to their corresponding unoccluded versions.

Generation of this training data can be done by considering any unoccluded data set

and applying synthetic occlusion at random positions within the frames present in this

data set. The objects used for creating synthetic occlusion are everyday objects such as

table, stool, tree, lamp, dog, etc. For each unoccluded image frame, we randomly decide

the maximum percentage of pixels to occlude and superimpose certain occluding objects

(randomly scaled) at randomly selected positions in the frame such that the number

of pixels altered does not exceed the decided maximum percentage of occlusion. The

percentage of occlusion can be defined as:

Percentage of Occlusion =
No. of occluded pixels in a frame

Total no. of pixels in a frame ∗ 100. (5.1)

During implementation, the maximum percentage of occlusion in each frame is varied

between 0 to 50%, and a synthetically occluded re-identification data set is constructed

by corrupting each frame with a certain percentage of synthetic occlusion. A few

examples of corrupting images with synthetic occlusion are shown in Figure 5.2. In

this figure, the first image is an original image from the CUHK_03 data, and the next

three images are synthetically occluded versions of the first image. The yellow borders

shown in the next three images only highlight the synthetically occluded regions, and

these borders are not present in the generated synthetically occluded data.
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Figure 5.2: An original frame from the CUHK_03 data and the corresponding oc-
cluded frames generated by adding varying degrees of synthetic occlusion

5.2 Occlusion Handling in Image Frames

To reconstruct the occluded frames, we study the applicability of two different Neural

Network-based models, namely, OHGAN and Autoencoder both of which exploit the

spatial information from the image frames. These two approaches are discussed in

Sections 5.2.1 and 5.2.2, respectively.

5.2.1 OHGAN-based Reconstruction

An insight view of OHGAN is shown in Figure 5.3. With reference to this figure,

the generator of the OHGAN learns a non-linear projection function to map an input

occluded image to the corresponding occlusion-free image by rendering the occluded

pixels with appropriate colors. This generator is based on the popular U-Net [157] ar-

chitecture and has a layered configuration consisting of convolution and de-convolution

layers (see Table 5.1). The convolution layers encode the basic spatial information from

the input image while eliminating the occlusion and provide feature representations to

the de-convolution layers, which then restore the input image by decoding the feature

vectors from the encoded samples. The discriminator of the OHGAN is a Siamese
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Figure 5.3: Occlusion Handling GAN (OHGAN) architecture

network that computes a similarity metric between the original image and the occlu-

sion reconstructed image produced by the generator. Table 5.1 shows the layer types,

filter sizes, and the number of filters in each layer of the discriminator. As seen in the

table, there are five convolutional layers followed by a fully connected layer that out-

puts a similarity score between the original and the reconstructed image and classifies

the image as real or fake by using a Sigmoid function. Additionally, in the genera-

tor architecture, there are skip connections between every convolutional layer and the

corresponding de-convolutional layer. These skip connections are used to pass features

from the encoder path to the decoder path in order to recover spatial information lost

during down-sampling.

The training of the OHGAN is done using the synthetically occluded data (explained

in Section 5.1). Adam optimizer [128] is used for network weight updation by fixing

the momentum and learning rate to 0.5 and 0.0001, respectively. The OHGAN model

is trained for a maximum of 20 epochs or till the loss values in two successive epochs

do not undergo significant change. The L2 loss function has been used to train this
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Table 5.1: Layer specification of the OHGAN architecture
Network Layers Filter size No. of filters

Downsampling
Conv2d_1 3×3 8
Conv2d_2 3×3 16
Conv2d_3 3×3 32

Generator Conv2d_4 3×3 64
Upsampling

Deconv_4 3×3 64
Deconv_3 3×3 32
Deconv_2 3×3 16
Deconv_1 3×3 3
Conv2d_1 5×5 20
Conv2d_2 5×5 25

Discriminator Conv2d_3 5×5 25
Conv2d_4 3×3 25
Conv2d_5 3×3 25

Fully Connected 500 -

generator. If this generator loss is denoted by LG, then,

LG =
1

CHW

C∑
c=1

H∑
h=1

W∑
w=1

||Ge(I)−Ro||2. (5.2)

Here C, W, and H respectively represent the channel number, width, and height, Ge(I)

stands for the OHGAN generated reconstructed image and Ro represents the original

image. The discriminator of OHGAN is a binary classifier that distinguishes between

real and fake images (i.e., those generated by the generator), which is trained using

binary cross-entropy loss.

As explained before, the generator of the OHGAN is based on a modified U-Net that

consists of a multi-layer architecture of convolution and de-convolution layers with skip

connections from the encoder to the decoder (refer to Table 5.1). However, the use of

the skip connections may tend to retain traces of occluded patches on the generated

images, thereby affecting the effectiveness of frame reconstruction. Hence, we also study

the applicability of a Deep Convolutional Autoencoder network that does not possess

any skip connections in generating these reconstructed frames. The Autoencoder-based

occlusion reconstruction algorithm is explained next in Section 5.2.2.
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5.2.2 Autoencoder-based Reconstruction

As with any Neural Network-based generator, an Autoencoder also consists of two sub-

networks, one each for the encoder and the decoder. The encoder (refer to Figure 5.4)

first encodes the image into a lower-dimensional latent representation, and next the

decoder decodes the latent representation back to an image. In this work, we employ

a Convolutional stacked Autoencoder due to its demonstrated effectiveness in handling

image translation tasks. Similar to that of OHGAN discussed in Section 5.2.1, here also

the input to the Autoencoder is the occluded image, and the output is the reconstructed

unoccluded image.
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Figure 5.4: An insight view of an Autoencoder

The Autoencoder architecture used in this work consists of six layers with ReLU ac-

tivation function except for the last layer in which Sigmoid activation has been used.

The layer-wise detailed configuration of the Autoencoder is shown in Table 5.2. With

reference to the table, the initial four layers of the Autoencoder are convolution layers

with the same padding, kernel size of 3×3, and the number of filters in these layers are

128, 64, 64, and 32, respectively. The fifth layer is the ConvTranspose layer with the

same padding, stride of 2, kernel size of 3×3, and the number of filters in this layer is

32. Finally, the last layer is a Conv2D layer with the same padding, three filters, and a
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kernel size of 3×3. The model is trained using the same synthetically occluded data set

that was used to train the OHGAN, as described in Section 5.1. Here, we use binary

cross-entropy loss and Adam optimizer to update the parameters of the network. The

Autoencoder model has been seen to achieve convergence in 1000 epochs.

Table 5.2: Layer-wise configuration of the Autoencoder

Network Layer Filter Size, Stride No. of Filters
Conv2d_1 3×3, 1 128
Conv2d_2 3×3, 1 64

Encoder Max_Pooling2d 2×2 -
Conv2d_3 3×3, 1 64
Conv2d_4 3×3, 1 32

Decoder Conv2d-Transpose 3×3, 2 32
Conv2d_1 3×3, 1 3

5.2.3 Reconstruction Results Using OHGAN and Autoencoder

The effectiveness of both the reconstruction models (i.e., OHGAN and Autoencoder)

in generating occlusion-free images is evaluated using the Dice Similarity Coefficient

(DSC) [158] (refer to Section 2.4.3 of Chapter 2). As already explained before, this

metric computes the degree of spatial overlap between the two images. The DSC

metric provides a value between 0 to 1, with value 1 corresponding to the highest

similarity and value 0 corresponding to the highest dissimilarity. First, we prepare

the gallery set for training each of the occlusion reconstruction models by considering

80% training images corresponding to each subject in the CUHK_01, CUHK_03, and

Market1501 data sets (refer to Table 2.2 in Chapter 2), and corrupting these images by

varying levels of synthetic occlusion. The process of construction of the synthetically

occluded data has already been discussed in Section 5.1. On completion of the training

phase, we obtain quite high DSC scores (>0.90) for each image used in training. The

effectiveness of the trained occlusion reconstruction models on unseen data is evaluated

using three other data sets, namely, Occluded ReID, Partial ReID, and Partial iLIDS
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(refer to Section 2.4.1 of Chapter 2 for data set details). From these data sets also,

we consider 80% images per class and corrupt these with varying levels of synthetic

occlusion. We compute the DSC scores between the generated occlusion reconstructed

images and their corresponding ground-truth occlusion-free images for each data set

for the different margin values (i.e., 5, 10, 20), and report the averaged DSC score

in Table 5.3 for both the OHGAN and Autoencoder. The margin value (m) indicates

the maximum allowable pixel intensity difference for determining if a pixel is correctly

predicted or not. Based on this, the area of overlap between the predicted and ground-

truth unoccluded images is computed as per Equation 2.1 given in Chapter 2. It

Table 5.3: Dice scores obtained from the two reconstruction models at different margin
values for different data sets

Data Set Name OHGAN Autoencoder
m=5 m=10 m=20 m=5 m=10 m=20

Occluded ReID 0.61 0.72 0.83 0.69 0.82 0.90
Partial ReID 0.69 0.76 0.88 0.75 0.89 0.94
Partial iLIDS 0.60 0.65 0.71 0.68 0.82 0.89

is observed from the table that the Autoencoder performs better than the OHGAN

in terms of reconstruction capability for all the different margin values and also for

the different data sets. The reason is skip connections present in the OHGAN tend

to retain the occluded patches on the generated images as also explained in the last

paragraph of Section 5.2.1, thereby reducing the DSC scores to a certain extent. It can

be inferred from the results that if the degree of occlusion in an image is very high then

the Autoencoder-based reconstruction will be more effective and provide more realistic

results than the OHGAN -based reconstruction.

A qualitative comparison of the results given by the two occlusion reconstruction models

has been shown in Figure 5.5. In this figure, sample synthetically occluded images are

shown in the first row, whereas the OHGAN and Autoencoder-generated images are

shown in the second and third rows, respectively. Visual comparison of the results
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Figure 5.5: Images in the first row represent the synthetically occluded samples while
the respective images in the second and third row show the generated images from the
OHGAN and Autoencoder

show that the Autoencoder-based reconstruction results are better in terms of replacing

the occluded pixels with the appropriate colors. OHGAN generated outputs preserve

faded impressions of the occluding objects which are not present in the Autoencoder-

generated outputs. However, the Autoencoder-generated outputs still contain some

artifacts and noise especially at the edges of the objects in the images. To fine-tune the

results further and generate more realistic occlusion reconstruction results, we propose

to pass the output image from the Autoencoder through a Deep Convolution GAN

(DCGAN) [159].

5.2.4 Fine-Tuning Reconstruction Results with DCGAN

Since in the original architecture of the DCGAN, the input layer of the generator ac-

cepts a random vector only, and here we are passing the Autoencoder-generated output

through the DCGAN for fine-tuning, we make the required modifications to the input

layer of the generator of the DCGAN. The layer-wise architecture of DCGAN is shown
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in Table 5.4. As can be seen from the table, we use a combination of convolution layers,

Table 5.4: Layer-wise specification of the DCGAN
Network Layer Filter size, stride No. of filters

Generator
Conv2d_1 to Conv2d_6 3×3, 1 32,64,64,

128,128,128
Up_Scaling2d 2×2, 1 -

Conv2d_7 to Conv2d_9 3×3, 1 64,64,3

Discriminator Conv2d_1 to Conv2d_5 3×3, 2 32,64,64,
128,256

Dense No. of neurons = 1 -

up-scaling 2D layers, and batch normalization layers with ReLU activation function in

all but the last layer in which tanh activation is used. The discriminator of DCGAN

tries to predict if the image output by the generator resembles the real (i.e., actual

image) or fake (i.e., generated image). The discriminator consists of five convolutional

layers with a stride value of 1 and a dropout factor of 0.2 in-between, and a final

fully-connected dense layer with one neuron and Sigmoid activation function. During

training the DCGAN, we use the Autoencoder generated images as input and the cor-

responding unoccluded ground-truth images as the desired output. It is trained with

Adam optimizer in multiple epochs till convergence. During deployment, the Autoen-

coder and the DCGAN are connected in an end-to-end fashion, and we represent this

bi-network as Autoencoder+DCGAN. An occluded image is input to the Autoencoder

that does the necessary computation to generate a coarse occlusion-free image, which

is then passed through the DCGAN to obtain the fine-tuned occlusion reconstructed

image.

The reconstruction quality of the fine-tuned images is again evaluated through the Dice

Similarity Coefficient (DSC). Although, Autoencoder was seen to perform better than

OHGAN in reconstructing the occluded frames, in this experiment we study the ef-

fect of fine-tuning both the OHGAN and the Autoencoder-generated outputs on the

DSC score. Table 5.5 presents the DSC scores for the two different models, namely,

OHGAN+DCGAN and Autoencoder+DCGAN for margin (m) values equal to 5, 10,

and 20 using the Partial ReID and Partial iLIDS data sets. The effectiveness of Au-
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Table 5.5: Dice similarity coefficient (DSC) values for the reconstruction models

Data set Network m=5 m=10 m=20
Partial ReID OHGAN 0.68 0.73 0.79
Partial iLIDS + DCGAN 0.70 0.76 0.83
Partial ReID Autoencoder 0.76 0.89 0.94
Partial iLIDS + DCGAN 0.73 0.80 0.91

toencoder over OHGAN in occlusion reconstruction can once again be verified from the

results of this table. Moreover, on comparing Table 5.3 with Table 5.5, we observe

that the DSC scores for the different margin values usually improve upon applying the

fine-tuning phase. We also qualitatively study the effectiveness of the DCGAN -based

fine-tuning stage on the reconstruction quality. For this, we observe the reconstruction

results by Autoencoder only and also by the combination of Autoencoder and DC-

GAN (i.e., Autoencoder+DCGAN) on a set of synthetically occluded images. Figure

Figure 5.6: Sample ground-truth unoccluded non-sequential frames (1st row), frames
with synthetic occlusion (2nd row), reconstruction using Autoencoder (3rd row), and
fine-tuning using DCGAN (4th row)

5.6 presents the qualitative reconstruction results from the above two models. Here,
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the first and second rows show sample image frames from the original data and the

corresponding synthetically occluded frames. The third and fourth rows show the oc-

clusion reconstructed images generated by Autoencoder and by Autoencoder+DCGAN,

respectively. It can be visualized from the figure that the image frames generated by

Autoencoder+DCGAN successfully remove the irregularities that were present on the

object edges of the Autoencoder generated outputs, and also the generated images by

Autoencoder+DCGAN shown in fourth row of the figure look closely similar to that of

the original unoccluded images present in the data set, as shown in the first row.

5.2.5 Re-Identification Results Using Baseline Networks

The applicability of two different baseline models has been studied for person re-

identification from the occlusion reconstructed data, namely, the Part-based Con-

volution Baseline (PCB), and the Siamese Convolution Box (SCB), introduced in

Chapter 3. We compare these results with a set of non-Deep Learning-based ap-

proaches, namely, [108,147,150,160,161], and a set of Deep Learning-based approaches,

namely, [3, 162, 163], and GAN-based approaches, namely, [72–74, 76] on synthetically

occluded test sets generated from CUHK_01, CUHK_03, and Market1501 data sets.

The original unoccluded versions of the same 80% data corresponding to each subject

used for training the occlusion reconstruction models have been also used as a gallery

set for re-identification. The test set is constructed by considering the remaining 20%

samples from each class and corrupting these with varying levels of synthetic occlu-

sion. These pairs of training and test sets have been used to report the re-identification

accuracy and/or map score at different ranks for the different approaches on unseen

synthetically occluded data constructed from the CUHK_01, CUHK_03, and Mar-

ket1501 data sets as shown in Tables 5.6, 5.7, and 5.8, respectively. In these ta-

bles, we also present the re-identification accuracy at different ranks given by the

network combinations by stacking each of OHGAN and Autoencoder+DCGAN sep-



114 5.2. Occlusion Handling in Image Frames

arately with FDGAN, PNGAN, and ResNet101. In addition to these, we also consider

a few other network combinations formed by stacking different occlusion reconstruc-

tion and re-identification models discussed in the chapter, namely, OHGAN+PCB,

and Autoencoder+DCGAN+PCB for the comparative study. Results in each table are

shown in four sub-blocks that correspond to the non-Deep Learning-based approaches,

Deep Learning-based approaches, GAN -based approaches, and occlusion handling ap-

proaches, respectively. It may be noted that since the FDGAN and PNGAN -based

re-identification methods do not incorporate any occlusion reconstruction mechanism,

we test their efficacy in performing re-identification using the occlusion reconstructed

images generated by OHGAN/Autoencoder.

Table 5.6: Comparative results on CUHK_01 data set for Ranks 1, 5, and 10

Data Set CUHK_01

Methods Rank 1 Rank 5 Rank 10

BoW [108]+KISSME [147] 54.8 63.0 69.0

LOMO [150]+ XQDA [150] 64.1 77.4 82.0

HistLBP [151]+XQDA [150] 56.7 70.1 81.6

WARCA [160] 56.4 66.8 74.6

Deep Re-Id [3] 31.0 44.6 56.2

SVD-Net [162] 87.2 89.5 92.0

CamStyle + re-rank [163] 86.2 88.8 93.5

MSCAN [66] 89.7 92.3 94.4

FDGAN [73] 90.4 92.7 95.6

PNGAN [74] 92.1 94.1 97.9

PT-GAN [76] 58.5 69.2 81.5

Autoencoder+DCGAN+FDGAN 90.6 93.8 97.0

Autoencoder+DCGAN+PNGAN 91.5 94.0 97.8

Autoencoder+DCGAN+ResNet101 90.6 94.4 97.8

OHGAN+FDGAN 91.2 92.8 96.0

OHGAN+PNGAN 92.4 94.8 98.0

OHGAN+ResNet101 89.0 93.4 97.8

OHGAN+PCB 93.4 93.8 96.2

Autoencoder+DCGAN+SCB 94.0 96.6 98.2
Autoencoder+DCGAN+PCB 93.5 94.0 95.6

From Tables 5.6, 5.7, and 5.8, it can be seen that each of the re-identification models

formed by combining our proposed occlusion reconstruction and re-identification models
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Table 5.7: Comparative results on CUHK_03 data set for Ranks 1, 5, and 10

Data Set CUHK_03

Methods Rank 1 Rank 5 Rank 10

BoW [108]+KISSME [147] 51.0 57.0 65.0

LOMO [150]+ XQDA [150] 66.1 75.4 82.0

HistLBP [151]+XQDA [150] 54.7 61.1 67.6

WARCA [160] 49.4 61.8 74.6

Deep Re-Id [3] 26.4 44.8 57.2

SVD-Net [162] 89.2 92.5 95.0

CamStyle + re-rank [163] 88.6 90.8 92.5

MSCAN [66] 83.7 90.3 95.4

FDGAN [73] 88.5 92.7 96.6

PNGAN [74] 90.1 93.5 97.2

PT-GAN [76] 52.5 67.2 81.5

Autoencoder+DCGAN+FDGAN 90.6 93.8 97.0

Autoencoder+DCGAN+PNGAN 91.5 94.0 97.8
Autoencoder+DCGAN+ResNet101 90.6 94.4 97.8

OHGAN+FDGAN 90.6 93.8 97.0

OHGAN+PNGAN 91.5 94.0 97.8
OHGAN+ResNet101 90.6 94.4 97.8

OHGAN+PCB 92.8 95.4 97.0

Autoencoder+DCGAN+SCB 93.2 96.0 97.4

Autoencoder+DCGAN+PCB 92.8 95.6 92.2

performs with a high accuracy/map score compared to the state-of-the-art approaches,

which emphasizes the effectiveness of the proposed reconstruction models. The Rank

1 accuracy values given by the combination Autoencoder+DCGAN+SCB are 94%,

93.2%, and 94.4% on the synthetically occluded samples generated from CUHK_01,

CUHK_03, and Market1501 data, respectively. These accuracy values are quite sat-

isfactory considering the fact that the input data has been corrupted with occlusion,

and also these values are higher compared to that given by the other existing Deep

Learning-based, GAN-based, and occlusion handling methods. The corresponding ac-

curacy values increase to 98.2%, 97.4%, and 98.0% at Rank 10. In general, the combi-

nation Autoencoder+DCGAN+SCB provides the best re-identification accuracy/map

score at each of the different ranks for each data set used in the study. Only for the

CUHK_03 data, it has been seen that the Rank 10 accuracy provided by each of Au-
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Table 5.8: Comparative results on Market1501 data set for Ranks 1, 5, and 10 along
with mean average precision (map)

Data Set Market1501

Methods R-1 R-5 R-10 map

BoW [108]+KISSME [147] 44.5 63.4 72.2 20.8

LOMO [150]+ XQDA [150] 32.4 44.8 60.5 17.0

HistLBP [151]+XQDA [150] 36.7 50.2 67.6 -

WARCA [160] 45.4 68.8 76.6 26.4

Deep Re-Id [3] 26.4 40.6 60.2 -

SVD-Net [162] 82.2 91.5 95.0 62.4

CamStyle + re-rank [163] 85.2 92.8 95.5 -

MSCAN [66] 86.8 - - 66.4

FDGAN [73] 90.5 92.7 94.8 77.7

PNGAN [74] 92.0 94.5 96.8 80.9

PT-GAN [76] 40.8 - - 30.5

Autoencoder+DCGAN+FDGAN 90.6 93.8 97.0 76.4

Autoencoder+DCGAN+PNGAN 91.5 94.0 97.8 78.0

Autoencoder+DCGAN+ResNet101 90.6 94.4 97.8 76.4

OHGAN+FDGAN 91.0 93.0 95.2 78.2

OHGAN+PNGAN 92.8 95.0 97.2 81.2

OHGAN+ResNet101 87.4 91.5 93.0 81.8

OHGAN+PCB 94.0 96.4 97.5 86.4

Autoencoder+DCGAN+SCB 94.4 96.8 98.0 87.2
Autoencoder+DCGAN+PCB 94.2 96.2 97.8 86.8

toencoder+DCGAN+PNGAN, Autoencoder+DCGAN+ResNet101, OHGAN+PNGAN,

and OHGAN+ResNet101 is 97.8%, which is slightly higher than that given by our ap-

proach, i.e., 97.4%. The map scores presented in Table 5.8 for the Market1501 data

also show the effectiveness of the proposed occlusion reconstruction and re-identification

models. Using the combination Autoencoder+DCGAN+SCB, a map score of 87.2 is

obtained which is best among all other approaches used in the comparative study.

The results also indicate that the Siamese Convolution Box (SCB) introduced in Chap-

ter 3, which is based on Siamese architecture, is indeed effective for image-based person

re-identification, and it also performs better than PCB in each case, as can be verified

from the last two rows of each table. This is mostly due to the fact that a tradi-

tional classification model like PCB requires an adequate number of examples from
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each class to get trained properly. However, such extensive data is not available in the

gallery set for re-identification for any of the data sets used in the study. In contrast,

a sufficient quantity of training examples can be conveniently generated to train the

Siamese architecture-based SCB since it only requires forming positive and negative

pairs from the gallery samples. Thus, the prediction capability of SCB has also been

found to be better than that of PCB. From the above results and discussions, we can

conclude that the combination Autoencoder+DCGAN+PCB performs most accurately

and robustly on various test sets compared to the other methods for image-based person

re-identification in the presence of occlusion.

The same combination has also been used to test the re-identification accuracy on

synthetically occluded samples present in Partial ReID, Partial iLIDS, and IIT(BHU)

Re-identification data sets. As a re-identification gallery set we consider 80% unoc-

cluded images corresponding to each individual from each data set, and as a test set

we consider the remaining 20% unoccluded images and corrupt these with varying

levels of synthetic occlusion (refer to Section 5.1). In Table 5.9, we present the cor-

responding Rank 1 accuracy results for each data set, and also compare these with

the Rank 1 accuracy given by the two other combinations, namely, OHGAN+PCB

and Autoencoder+DCGAN+PCB for each data set. Once again it can be observed

from the table that Autoencoder+DCGAN+SCB outperforms each of the two other

approaches by a significantly large margin of accuracy for each data set. For Partial

ReID, the combination Autoencoder+DCGAN+SCB performs with 1.8% higher Rank

1 accuracy than the second-best approach, i.e., Autoencoder+DCGAN+PCB. The cor-

responding values for the Partial iLIDS and IIT (BHU) Re-Identification data sets are

1.4% and 6.6%, respectively. A closer look into the first two rows of the table also

reveals that Autoencoder+DCGAN -based reconstruction is to some extent better than

that of OHGAN, and this is reflected in the re-identification accuracy values as well.

As in the previous experiment, the results from this table also verify the effective-
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ness of Autoencoder+DCGAN+SCB over other models used for occlusion handling in

re-identification.

Table 5.9: Comparison of Rank 1 accuracy of OHGAN+PCB, Autoen-
coder+DCGAN+PCB, and Autoencoder+DCGAN+SCB on synthetically occluded
samples generated from Partial ReID, Partial iLIDS, and IIT(BHU) Re-identification
sets

Rank 1 accuracy (%)

Methods Partial ReID Partial iLIDS
IIT(BHU)

(ReID Data)

OHGAN+PCB 75.8 67.4 89.0

Autoencoder+DCGAN+PCB 78.6 70.2 91.8

Autoencoder+DCGAN+SCB 80.4 71.6 98.4

In our next experiment, we make a comparative performance evaluation of the effective-

ness of three different approaches in handling occluded images during re-identification.

These are (i) SCB on occluded images without any reconstruction algorithm, (ii) the

best approach determined in the previous experiments involving both reconstruction

and re-identification phases, i.e., Autoencoder+DCGAN+SCB, and (iii) fusion of the

reconstruction algorithm with part-based image analysis through SCB as discussed in

Chapter 3, i.e., Autoencoder+DCGAN+SCB (part-based). Rank 1 accuracy results are

shown in the form of grouped bar charts in Figure 5.7 for three data sets, namely,

CUHK_01, CUHK_03, and Market1501. In this plot, the data set names are specified

in the horizontal axis and the accuracy values are plotted along the vertical axis. Each

group of bars corresponds to the results obtained from the above three re-identification

approaches on a given data set. From the results, it can be observed that the SCB

without image reconstruction performs the worst among all the approaches used in

the study in handling occluded images. On the other hand, by carrying out image re-

construction and re-identification using either Autoencoder+DCGAN+SCB or Autoen-

coder+DCGAN+SCB (part-based), we achieve significantly higher accuracy than that

provided by SCB alone. The results emphasize the need for employing the occlusion re-

construction technique through Autoencoder+DCGAN as an initial step before carrying
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Figure 5.7: Comparison of Rank 1 accuracy of (i) SCB, (ii) Autoen-
coder+DCGAN+SCB, (iii) Autoencoder+DCGAN+SCB (part-based)

out re-identification. It can also be seen from the figure that the results obtained from

Autoencoder+DCGAN+SCB, and Autoencoder+DCGAN+SCB (part-based) are almost

comparable. This is mostly due to the fact that the data sets used in the experiments

consist of multiple poses of the same individual from varying viewpoints, as a result

of which equivalent contextual information from the images gets captured using both

SCB on the entire image and the image part-based SCB. The part-based classification

scheme is expected to be more effective when used in scenarios equivalent to that stated

in Chapter 3, where walking images/videos of subjects are captured roughly from the

same view by each camera.

5.3 Summary

In this chapter, we have discussed effective methods to handle the occlusion scenario in

image-based person re-identification methods. Specifically, we have studied the appli-

cability of two different methods, namely, OHGAN and Autoencoder for reconstructing
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occlusion in images. Training of both the occlusion reconstruction models is done

by constructing a data set of synthetically occluded images along with their origi-

nal unoccluded versions. Qualitative and quantitative results show that among these

two, the reconstruction results given by Autoencoder are better than that by OHGAN.

These reconstructed results are further fine-tuned using a DCGAN model, and finally,

the reconstructed frames corresponding to a set of occluded frames are used for re-

identification. As re-identification model, we study the use of PCB as well as SCB

introduced in Chapter 3. Due to the unavailability of real occluded data sets for person

re-identification, as test data sets we consider the synthetically occluded versions of

CUHK_01, CUHK_01, and Market1501 data sets.

We also compare the re-identification results with several popular existing methods

and found that the multi-model architecture Autoencoder+DCGAN+SCB performs

the best for all the test data sets used in the study. Employment of the hierarchi-

cal classification scheme through color-based and SCB-based matching as discussed in

Chapter 3 on the Autoencoder+DCGAN -reconstructed images is expected to improve

the re-identification accuracy even further, which can be studied in the future. Although

encouraging results are obtained using Autoencoder+DCGAN+SCB on occluded im-

age data sets, it needs to be studied if spatio-temporal information-based occlusion

reconstruction can help in achieving better frame reconstruction and re-identification

accuracy in the case of video data sets which will be focused on in the next chapter.


