
Chapter 3

Person Re-Identification from Still

Images

In this chapter, we focus on extracting effective appearance-based descriptors for image-

based person re-identification. Specifically, we consider a scenario where a set of image

frames of a person are only available for re-identification. These set of frames may have

different poses and may be captured under varying lighting conditions. Also, these

frames may/ may not correspond to any specific activity sequence, as already explained

using Figure 1.2. Traditional approaches to person re-identification [30,31,40,107,122–

124] extracts spatial-domain features from the available set of frames corresponding to

each subject, and are suited for deployment in the considered re-identification scenario.

A limitation of this category of approaches is that due to the use of appearance-based

information these methods are usually not robust to varying lighting conditions or

pose changes of a subject. With the advent of Deep Learning, research has been also

done to study if application of Deep Neural Networks can improve the accuracy and

robustness of the primitive approaches further [1, 12, 86, 90, 92, 98, 125–127]. However,

Deep Learning architectures usually involve a large set of parameters which makes the

process time-intensive, and also the color information of an input image gets faded out
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as the image is gradually passed across the layers of the Deep Network. Also, similar

to traditional approaches, the Deep Learning-based methods fail to perform well if the

scale of the images captured during testing is drastically different from that of the

images present in the gallery set. Since color is an important appearance cue for person

re-identification, it appears that effective fusion of the traditional appearance-based

approaches with the modern Deep Learning approaches can lead to a more accurate

and robust prediction.

In this chapter, we study the effectiveness of using two different feature extraction

techniques, and next make a comparative analysis to determine the best among the two.

Our first approach is based on multi-scale feature extraction through dilation applied at

the layers of a deep network to be discussed in Section 3.1, whereas the second approach

is based on a two-step hierarchical classification scheme to be discussed in Section 3.2.

In the second approach, dominant color information has been used at the first level

of hierarchy to eliminate individuals with significant differences in their appearances,

thereby enabling the search to focus on only those individuals that closely match with

the target subject in terms of appearance features and prevent it from getting biased

towards a completely different element in the search space. Next, a Siamese network is

used to identify the correct match from the reduced set of samples.

The surveillance setup for re-identification considered in this chapter is explained using

Figure 3.1. The figure shows a multi-camera surveillance setup in which there are

designated entry and exit points. Each of the n cameras (labeled as Cam1, Cam2, ...,

Cami, ..., Camn) shown in the figure captures walking videos of persons from the front

view. This scenario is similar to that found in concert and movie halls, or some meeting

place, where a group of people assembles in a hall, and after some time each of them

exits the hall one by one. For effective tracking of individuals, we propose to install

cameras on top of each entry/exit point so that both the cameras capture the front view

of the walking of subjects. A gallery set will be formed from all the subjects captured
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Figure 3.1: Surveillance setup for re-identification

by the several entry gate cameras, which will next be used to re-identify a subject as

he/she approaches an exit gate camera. Since in the above-mentioned scenario, both

the cameras capture the front view of walking, the physical appearance and clothing

conditions of a subject will appear to be almost the same in the images/videos captured

by the two cameras. Minor color variations may be observed due to different lighting

conditions in the fields of view of the two cameras. The feature descriptors derived in

this chapter are extracted using only spatial information present in the image frames.

3.1 Multi-Scale Feature Extraction for Person

Re-Identification

In this section, we discuss our proposed work on multi-scale feature extraction for person

re-identification. Due to the effectiveness of Siamese networks in person re-identification

task, as discussed in Section 2.2.2, here we also propose to employ Siamese network-

based feature extractor to compute the descriptor for each individual. Specifically, we

build a new Siamese network-based model and term it as Multi-scale Siamese (SMSNet)

architecture. The architecture detail of SMSNet is given in Section 3.1.1, and training

of SMSNet is discussed in Section 3.1.2. Finally, experimental evaluation using the

SMSNet architecture is presented in Section 3.1.3.
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3.1.1 Multi-Scale Siamese (SMSNet) Architecture

An insight view of the proposed Siamese Multi-scale Network (SMSNet) model is given

in Figure 3.2. Table 3.1 presents the detailed network configuration used in the study.

With reference to Figure 3.2 and Table 3.1, the first layer of the network consists

of two parallel tied convolution layers (Conv2d_0) that accepts two input images of

size 60×160, and this is followed by four more convolution layers, each equipped with

dilation rates of 1, 2, and 3 (Conv2d_1, Conv2d_2, Conv2d_3, and Conv2d_4). As

already explained before, the application of dilation in the convolution layers helps in

obtaining a multi-scale feature representation that encodes the visual characteristics

of an input image by capturing low-level features. The size of the filters at every

convolution layer is 3×3, except for the first layer in which the size is 5×5, and the

number of filters used in each layer is the same (i.e, 32). The feature difference layer

shown after all the convolution layers is used to compute the cross-input neighborhood

difference [1] between the outputs of the aggregated features extracted from both the

branches of the SMSNet.

Figure 3.2: Insight view of the proposed Siamese Multi-scale Network (SMSNet) ar-
chitecture. The first layer of convolution is unaffected by dilation parameters. All other
layers are dilated with rates 1, 2, and 3, and feature aggregation has been done after
each convolution layer in form of concatenation. The feature difference is computed
after the fourth convolution layer.

If fi and gi represent the ith concatenated feature maps at the final layer corresponding
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Table 3.1: Layer specification of each Siamese Multi-scale Network (SMSNet)
Layer kernel No. of filters

Conv2d_0 5×5 32
Conv2d_1 3×3 32
Conv2d_2 3×3 32
Conv2d_3 3×3 32
Conv2d_4 3×3 32

Layer No. of neurons
Fully Connected 500

to the two images input to the SMSNet, then the cross-input neighborhood distance K

between fi and gi at each pixel location (x,y) is computed as follows:

K(x, y) = fi(x, y) ∗ I(n, n)−N [gi(x, y)], (3.1)

where n is the neighborhood size, fi(x, y) is the pixel value of feature map fi at location

(x,y), I(n, n) denotes an identity matrix of dimensions n×n matrix, and N [gi(x, y)]

denotes a n×n neighborhood around pixel (x,y) of feature map gi. In the present work,

the value of n has been chosen as 5. The use of the cross-input neighborhood distance is

advantageous in the sense that it helps in obtaining the positional differences between

the two input images.

3.1.2 SMSNet Training

As explained before, in the given problem scenario, both training and test data consist

of walking sequences from the front view. Standard pre-processing techniques can be

applied to segment out the bounding box containing the silhouette of the target subject

and normalize the dimensions of the bounding box to a fixed height and width. Each of

the feature extraction mechanisms discussed in this chapter and the subsequent chap-

ters use these normalized cropped frames for further analysis. To capture better spatial

information and preserve relative ordering among the upper, middle, and lower body

parts, instead of using a single SMSNet to extract features from the entire frame image,

we propose dividing each image into three equal segments, and pass each of these seg-



52 3.1. Multi-Scale Feature Extraction for Person Re-Identification

Figure 3.3: Overall framework of the re-identification approach

ments through different SMSNet channels as shown in Figure 3.3. These three segments

are termed Segment1, Segment2, and Segment3 in the figure, and pairs of correspond-

ing segments from the two input images are fed to the individual SMSNets termed as

SMSNet1, SMSNet2, and SMSNet3. Here, SMSNet1 computes the cross-neighborhood

distance between the first segments of the two images at its final layer denoted by fc_1,

while SMSNet2 and SMSNet3 compute the cross-neighborhood distances between the

second segments of the images and third segments of the images at their final layers de-

noted by fc_2 and fc_3, respectively. Each of the features in the fc_1, fc_2, and fc_3

layers is 500 dimensional, and provides useful information regarding the dissimilarity

between the corresponding segments in the two input images. These features are next

concatenated into a single feature vector of dimension 1500, denoted by FC. The FC

layer is now fully connected with a final classification layer with two nodes representing

Similar Class and Dissimilar Class, respectively. Training of the complete network is

done using Adam optimizer [128] in multiple epochs by computing the binary cross-
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entropy loss at the nodes of the final layer until convergence. Training of the network

is done by preparing a gallery set in the form of positive and negative pairs of images.

Positive pairs are formed from the images of the same identity, whereas negative pairs

are formed from the images of two different identities. Each data set is divided into

training, test, and validation sets. The training and fine-tuning of the SMSNet is done

using the training and the validation sets, and the testing is done on the test set. The

split information for training the SMSNet model will be discussed in the next section

while discussing about the experimental evaluation.

3.1.3 Experimental Evaluation

For evaluating our work, we consider four data sets, namely, VIPeR [106], CUHK_01

[107], CUHK_03 [3] and Market1501 [108]. A detailed description of each of these data

sets has been given in Section 2.4.1 of Chapter 2. It may be noted that the above-

mentioned data sets already provide the silhouette images extracted from the video

frames. However, during working with video data in real-life scenarios, accurate local-

ization (i.e., estimating the bounding box) of individuals in each video frame followed

by frame dimension normalization has to be carried out. Since, the re-identification

scenario considered in this work assumes one person to be present in the camera field-

of-view at a time, localizing the moving person in the background can be done effectively

using recent techniques such as [129]. Even if the bounding box detected around the

moving person is not very precise, it would still not affect the re-identification accu-

racy much, since the proposed algorithm considers the RGB information of the entire

bounding box, and does not require segmentation of clean object silhouette from the

background. Hence, as long as a significant portion of the target subject appears in the

estimated bounding box, our approach should be able to work satisfactorily.

We split each of the above-mentioned re-identification data set into a test set of 100

samples, a validation set of 100 samples, and a training set with the rest of the remaining
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samples. The test set is used to evaluate the model during the testing phase, while the

training and validation sets are used to train and fine-tune the models used for re-

identification. The complete split information of the different data sets is given in

Table 3.2. It may be noted that the VIPeR data set has a very less number of images

per person (i.e., two images per person) as compared to each of the other data sets.

Hence, for this data set, we use a cross-data set training strategy by fine-tuning the

weights of a pre-trained Siamese model using the CUHK_03 data set.

Table 3.2: Data set split information

Data set No. of training No. of validation No. of test
samples samples samples

CUHK_01 771 100 100
CUHK_03 1160 100 100
Market1501 1301 100 100

VIPeR 432 100 100

The experimental results reported in the thesis have been obtained using Tensor-

flow [118] on a system having 64 GB RAM, NVIDIA TITAN Xp, and NVIDIA RTX-

1080Ti GPUs with a total capacity of 34 GB memory capacity. We train the proposed

Siamese Multi-scale Network (SMSNet) model with the l2 regularizer using a learn-

ing rate of 0.001. To avoid over-fitting during training the network, a weight decay

factor (γ) of 5e-4 is introduced at each convolution layer. The optimal values of the

hyper-parameters, i.e., learning rate (η) and weight decay (γ) are determined by carry-

ing out three-fold cross-validation using the training and validation sets for the differ-

ent combinations of these hyper-parameters, and next choosing the configuration that

yields the highest cross-validation accuracy. Corresponding to each data set, namely

CUHK_01, CUHK_03, and Market1501, we consider three different combinations of η

and γ namely, C1 (0.01,2.5e-3), C2 (0.01,5e-4), C3 (0.03,5e-4), and for each of these

combinations, we perform three-fold cross-validation and observe the effectiveness of

learning the training data for five different initialization of the network weights. Figure

3.4 presents the results of this experiment using box and whiskers plot. Here, each
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Figure 3.4: Range of three-fold cross-validation accuracy for various combinations of
parameters η and γ corresponding to different the data sets by setting different initial
weights of the network

box represents the variation of Rank 1 training accuracy for a particular data set (i.e.,

CUHK_01, CUHK_03, and Market1501) and network configuration (i.e., C1, C2, and

C3). It can be seen from the figure that the inter-quartile range of boxes for the config-

uration C2 is quite less (i.e, between 1.4 to 2.5 %). The accuracy values obtained using

C2 are also significantly higher than those obtained using either C1 or C3. Thus, the

combination of hyper-parameters in configuration C2, i.e., (0.01,5e-4) can be assumed

to be the best among all the different configurations considered for training the SM-

SNet, and the values of η and γ corresponding to this configuration have been used to

report the results for the following experiments.

Next, we test the stability of the proposed network (SMSNet) by studying if the model

performs with a similar level of effectiveness on the same test set even if it is initialized

differently and trained with different training sets five times. The same set of model

hyper-parameters determined in the previous experiment has been used here as well.

The CUHK_01, CUHK_03, Market1501, and VIPeR data sets have been used to report



56 3.1. Multi-Scale Feature Extraction for Person Re-Identification

the results for this experiment. 90% samples are selected randomly from the training

and validation samples of each data set (refer to Table 3.2) five different times and

accordingly five different data sets are created, using which we train the SMSNet five

different times from scratch. On completion of the training each time, we evaluate the

performance of the trained model on the test set which is kept fixed. Figure 3.5 presents

the results of this experiment in terms of the box and whiskers plot. The four boxes
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Figure 3.5: Box and whiskers plot showing the performance of the proposed approach
after five different times of run on four data sets i.e., VIPeR, CUHK_01, CUHK_03,
and Market1501

in the figure correspond to the range of accuracy obtained for each of the data sets

used in the study, namely, CUHK_01, CUHK_03, Market1501, and VIPeR from the

five runs. With reference to the figure, it can be observed that the inter-quartile range

(i.e., between 25th to 75th percentile) corresponding to the CUHK_01, CUHK_03, and

Market1501 data sets are 1.5%, 1.7%, and 2.6%, respectively, which are quite small.

The corresponding number for the VIPeR data set is 5% which is slightly larger than
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the others, and this is because the network does not get trained properly due to the

availability of limited training data. The small range of the whiskers in Figure 3.5

emphasizes the robustness of our approach against a wide variety of data sets.

We next compare our proposed approach with other popular state-of-the-art Siamese

network-based techniques developed for image-based re-identification, namely, [130],

[131], [1], [2], along with two non-Siamese network-based techniques, namely, Deep-

Reid [3], and MuDeep [61]. Results are shown in Table 3.3 in terms of Rank 1 accuracy

percentage. For this experiment also, we use a similar training-test set combination as

already discussed in Section 3.1.3. The first two rows in Table 3.3 correspond to the two

Non-Siamese network-based approaches while the rest of the rows show the performance

of the Siamese network-based approaches, as mentioned above. From Table 3.3, it

Table 3.3: Comparison of Rank 1 accuracy (in %) for 100 test_ids of our proposed
approach with state-of-the-art techniques

Methods
Rank 1 Accuracy (%)

VIPeR CUHK_01 CUHK_03 Market
1501

Non-Siamese based

Li et al. [3] 56.1 27.9 20.6 44.4

Qian et al. [61] 44.7 79.6 82.4 71.2

Siamese based

Ahmed et al. [1] 35.2 64.2 55.0 56.7

Subramaniam et al. [2] 68.7 81.2 72.3 76.7

Varior et al. [130] 68.7 - 57.3 61.6

Guo et al. [131] 50.9 88.1 88.3 -

Proposed SMSNet 91.5 87.3 89.6 79.2

can be observed that the proposed SMSNet model for person re-identification usually

performs better than the state-of-the-art approaches in terms of accuracy. Only in the

case of the CUHK_01 data, our approach falls short of the accuracy obtained from [131]

by a very small percentage of 0.8. However, in all other situations, our approach stands

out to be the winner. The superior performance of the proposed SMSNet on the VIPeR

data set is since unlike the existing approaches, here our model is first trained on an
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extensive data, namely, CUHK_03 data, and next fine-tuned using the VIPeR data.

This prevents the network from getting under-fitted due to the presence of a small

number of training examples, thereby improving its accuracy.

(a) (b)

(c) (d)

Figure 3.6: Cumulative matching characteristic curves showing improvement in re-
identification accuracy with rank for the different approaches corresponding to: (a)
CUHK_01, (b) CUHK_03, (c) Market1501, and (d) VIPeR data sets

The CMC curves corresponding to the different data sets used in the study, namely,

CUHK_01, CUHK_03, Market1501, and VIPeR data are also presented in Figures

3.6 (a)-(d) respectively for Rank 1 to Rank 10. Once again, it is observed from the

CMC curves that our proposed model provides high accuracy for most rank values

and also for the different data sets. Although the Rank 1 accuracy of our approach on

CUHK_01 data is lower than that of [131] (as seen in Table 3.3), from Rank 2 onwards,
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our approach performs better than [131] throughout. In general, the rank-wise accuracy

of each of the other competing techniques is considerably lower than our approach for

the different rank values. Also, it is observed that our method achieves a 90% or higher

accuracy mark at Rank 1 for the VIPeR data, and at Rank 2 for both the CUHK_01

and CUHK_03 data, and at Rank 7 for the Market1501 data. We also observe that

the average Rank 5 accuracy of our work is 96.02%, which is better than that of [131]

(i.e., the approach with the second-best performance (85.65%)) by about 10%, which

is remarkable.

3.1.4 Limitations of the Approach

Although use of dilation in the convolutional layers helps in capturing better low-level

information from the images by increasing the receptive field of the filters, a limitation of

this approach is that it makes the network more complex by incrementing the number of

trainable parameters. Also, there is a possibility of losing intrinsic high-level structural

details such as edges and textures. Understandably, eliminating the dilation in the

convolutional layers may help in simplifying the SMSNet architecture considerably, but

the effectiveness of the extracted features may suffer. To overcome this and achieve a

similar level of effectiveness as that of the SMSNet, a hierarchical classification scheme

may be employed in which color-based matching is used as an initial step to shortlist

the best matches from the gallery set, and next re-identification is carried out using

Siamese network from the reduced gallery set. Such an approach would enable the final

re-identification to be performed by comparing the target image with only the closely

matched samples and prevent the search from getting biased towards a completely

different element with similar structural features. We discuss this proposed hierarchical

classification approach in detail in the following section, i.e., Section 3.2.
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Figure 3.7: A block diagram of the proposed hierarchical approach to person re-
identification

3.2 Hierarchical Classification for Person Re-Identification

A block diagram of the proposed approach is shown in Figure 3.7. With reference to

the block diagram, the first phase of the approach is to train the Siamese network

using positive and negative image pairs. The color histogram-based features are also

computed from the gallery subjects and these features are clustered into the optimal

number of clusters using K-Means clustering algorithm. During deployment, the color

histogram features computed from the input test subject are first compared with all the

cluster centers using Euclidean distance. Only those samples for which the correspond-

ing cluster centers match closely with the features of the test image are considered for

further comparison through Deep Siamese-based features.

In contrast to the previous approach discussed in Section 3.1, here we use a more

simplified Siamese network with lesser trainable parameters and term it as the Siamese

Convolution Box (SCB). A detailed description of the SCB network architecture is

given in Section 3.2.1, following which the proposed hierarchical classification scheme

is described in Section 3.2.2. Finally, an extensive experimental evaluation is presented

in Section 3.2.3.
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3.2.1 SCB Training

The SCB network used in the present work is a four-layer network in which two lay-

ers are tied-convolved and the rest two are normal convolution layers. The complete

architecture of the network is shown in Table 3.4, and the re-identification framework

is shown in Figure 3.8. The framework is similar to that shown in Figure 3.3, the only

Table 3.4: Layer specification of the SCB network. Both the starting convolution
layers are pooled with size 2×2 and the last two layers are exempted from pooling. ⋆
represents the concatenation of fully connected layers

Network Layer Size of filter No. of filters
Siamese Conv2d_1 5×5 20

Convolution Conv2d_2 5×5 25
Box Conv2d_3 5×5 25

(SCB) Conv2d_4 3×3 25
Layer No. of neurons

Fully fc_1 500 -
Connected fc_2 500 -

fc_3 500 -
FC fc_1⋆fc_2⋆fc_3 -

difference being here the SMSNet block has been replaced with the SCB block, and

the final step of re-identification has been carried out using only a small gallery set. A

magnified view of the SCB is shown in Figure 3.9. The figure shows that after the first

two convolution layers, there is a feature difference layer that subtracts the features

obtained from the first two layers. This difference feature is further distilled using two

more convolution layers without pooling to prevent significant information loss due to

shrinking after the first two layers.

As seen in Figure 3.8, three different Siamese blocks are trained on the different silhou-

ette parts, namely, the head, torso, and leg parts, by dividing the silhouette equally

into three regions. The latent vectors obtained from each block (namely, fc_1, fc_2,

and fc_3) are compressed to obtain the final fully connected layer (FC). The net-

work is next trained on an extensive data set constructed from the CUHK_03 [3] and

Market1501 [108] re-identification data sets. The SCB is trained in multiple epochs

using Adam optimizer until convergence and at each epoch during training the soft-
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Figure 3.9: Siamese Convolution Box (SCB)

max cross-entropy function is used at the final layer of the network to measure the

network loss. Convergence is said to have reached if the difference in the network losses

between two successive epochs reaches a pre-determined small threshold value ϵ. In our

experiments, the value of ϵ is considered as 10−5.
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3.2.2 Hierarchical Approach to Re-Identification

As a first step, we aim to group all the gallery subjects into separate clusters based on

similar color appearance features. Color histograms in the R, G, and B channels are

used as features to perform this grouping. For each frame, first background subtraction,

RGB silhouette extraction, and normalization to a fixed height and width need to be

carried out using standard techniques [1], [66]. Since different silhouettes with similar

color distribution are likely to have the same histogram pattern, we first segregate each

silhouette into three equal parts as shown in Figure 3.8, and carry out silhouette part-

based analysis by computing the histogram for each of the three parts in the R, G, and

B channels. Each of these channels is further quantized into 16 bins to eliminate the

effect of appearance changes due to illumination differences in the two camera views.

Next, color histograms computed from all the frames of a walking sequence are averaged

to generate the final color appearance descriptor H i of the ith subject. The procedure

used to obtain the number of clusters is briefly discussed next.

Assuming the gallery set contains N subjects, the histograms computed from all the N

subjects (i.e., H1, H2, ..., HN) are concatenated to form a feature matrix H, which is

next clustered into a fixed number of groups using K-means clustering. The clustering

is done such that subjects with similar perceptual color appearances (i.e., similar H i

features) are placed in the same cluster. The number of color groups (i.e., K) to be

formed from the set H is determined by plotting an elbow curve. This curve shows the

variation of the clustering error (i.e., the summation of the square of the intra-cluster

distances) as the value of K is gradually increased from a small value. If C1, C2, C3,

..., CK are the K cluster centers at a given point of time, then the clustering error is

computed as:

E =
N∑
i=1

||H i − CHi ||2, (3.2)

where CHi denotes the cluster center to which H i gets mapped, ||.||2 denotes the Eu-
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clidean norm, and 1≤H i≤K. The elbow curves obtained from the VIPeR and the

CUHK_03 data sets are shown in Figures 3.11(a) and (b), respectively. From each

of these figures, it can be seen that the clustering error does not reduce significantly

as the number of clusters is increased beyond 100. Hence, a value of K equal to 100

can be considered to be an optimal choice from the elbow curve. Similar approaches to

determine the optimal number of clusters can be found in different applications in the

past, e.g., [132, 133].

As soon as a particular subject S ′
t appears in the field of view of the camera Cam2

positioned above the exit point, the averaged color histogram (say, H ′
t) of the test

subject is computed and the top K matching clusters are selected. For example, if C1,

C2, ..., CK are the top K matching clusters corresponding to the subject S ′
t, then the

subsequent Siamese network-based comparison is done on subset Sred of S such that

Sred ∈ {SC1

∪
SC2

∪
...

∪
SCK}, where SCk

is the set of subjects belonging to cluster k (k

= 1,2,3,...,K). Reducing the search space by eliminating dissimilar elements helps in

improving the re-identification accuracy by preventing the subsequent Siamese network-

based prediction stage from getting biased towards an incorrect element in the gallery

set having similar structural features.

Finally, the test subject S ′
t is compared with all the subjects in the reduced set Sred

determined from the previous cluster matching stage. Since both Cam1 and Cam2

capture videos instead of still images, the averaged normalized silhouettes computed

from the two video sequences are provided as input to the SCB network. The normalized

silhouettes are obtained by finding the bounding box around the target subject and

resizing it to a fixed height and width. The silhouette normalization step has already

been done in the data sets used in the study, and hence we did not have to carry out

this step in the thesis. The test subject S ′
t is assigned the class T if

sim(T , S ′
t) > sim(X,S ′

t), ∀X ∈ Sred, X ̸= T , (3.3)
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where sim(A,B) represents the similarity score given by the Siamese network for two

input images A and B.

3.2.3 Experimental Evaluation

As for the previously proposed approach given in Section 3.1, here also for evaluation, we

consider the same four data sets, namely, VIPeR [106], CUHK_01 [107], CUHK_03 [3],

and Market1501 [108]. Additionally, to simulate the deployment scenario shown in

Figure 3.1, we capture a new data set in the laboratory that consists of walking videos

of 41 subjects and evaluate our approach using this data set as well. This data set is

termed as the IIT (BHU) Re-Identification data and a detailed description of the data

set has already been given in Section 2.4 of Chapter 2.

The performance evaluation of the proposed SCB has been done using the same training-

test combination as explained earlier in Section 3.1.3. The two user-defined constant

parameters to be specified before training the SCB network are the learning rate (η)

and the weight decay factor (γ). To get a good estimate of these parameters, we study

the average cross-validation accuracy for different combinations of the above parame-

ters and select the one that provides the maximum cross-validation accuracy. Specif-

ically, we consider three different pairs of η and γ values as follows: C1(0.01,0.0250),

C2(0.01,0.0005), and C3(0.07,0.0005), and train the SCB from scratch fives times

for each of these three configurations. The one with the best average cross-validation

accuracy is finally selected and has been used to report the results for all future experi-

ments. For a particular combination of the η and γ values, the cross-validation scheme

is carried out by constructing three different pairs of training and validation sets by

randomly partitioning the gallery set, and next computing the average cross-validation

accuracy obtained from these three validation sets. Since, we perform a leave-100-out-

cross-validation, in each of the above partitions the cardinality of the validation set is

considered to be 100. The average cross-validation accuracy for the above-mentioned
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three data sets and the different combinations of η and γ values are reported in form of

box plot in Figure 3.10. With reference to the figure, the horizontal axis represents the
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Figure 3.10: Range of five-fold cross-validation accuracy for various combinations of
parameters η and γ corresponding to different the data sets by setting different initial
weights of the network

different sets of hyper-parameters (i.e., η and γ) whereas the vertical axis represents

the Rank 1 accuracy. We have observed that the maximum cross-validation accuracy

corresponding to each data set has been obtained for η=0.01 and γ=0.0005. Hence,

these values for η and γ have been used to train the Siamese network (SCB) in all

future experiments. Our observation is that the training algorithm converges as the

number of epochs reaches 80000 for each of the CUHK_01 and CUHK_03 data sets,

while for the Market1501 data the corresponding number is 110000.

In our next experiment, we determine the optimal number of perceptually distinct colors

from a given data set to perform re-identification. For this, we study the improvement in

the clustering error with increment in the number of clusters (K) for the VIPeR and the

CUHK_03 gallery sets. The respective plots are shown using elbow curves in Figures

3.11(a) and (b), and in each of these figures the horizontal axis represents the number
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of clusters while the vertical axis denotes the clustering error for the corresponding

number of clusters.
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Figure 3.11: Elbow Curves for (a) VIPeR and (b) CUHK_03 data

From both the figures, it is observed that the clustering error is quite low if the number

of clusters is set to be equal to 100, and this is the point in the plots where the first

elbow can be observed. It is also seen that beyond 200 clusters, the curve attains

almost a saturation level. Thus, the optimal number of color clusters for the VIPeR

and CUHK_03 data sets may be assumed to lie between 100 and 200. Similar elbow

curves obtained from each of the other data sets (except the IIT(BHU) Re-Identification

Data Set) reveal that the optimal number of clusters falls in the range [100,200], while

in the case of the IIT(BHU) Re-Identification Data Set, the corresponding number lies

within the range [5,10]. To avoid the repetition of similar results, these plots have not

been presented in the chapter.

Next, to obtain a good estimate of the parameters K and K (refer to Section 3.2.2), we

study the effect of varying these parameters on the average cross-validation accuracy

on the five public data sets, namely, the VIPeR [106], CUHK_01 [107], CUHK_03

[3], Market1501 [108]. Table 3.5 shows this average cross-validation accuracy on five

different validation sets derived from the gallery set of each data set as the value of K

is increased from 100 to 500 in steps of 100, and for two values of the parameter K,
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namely, 1 and 2. The average response times to re-identify a subject for the different

experimental settings have also been reported in the same table. It is verified from

Table 3.5: Average cross-validation accuracy of the proposed approach on different
data sets and average response time (in milli-secs)

Performance Selecting Clusters based on Color Matching
Data set Evaluation K=1 K=2

Clusters 100 200 300 500 100 200 300 500

VIPeR Acc(%) 88.3 85.4 78.6 76.5 88.0 86.4 77.5 73.8

Time(ms) 40.5 31.2 25.5 13.6 43.8 32.4 27.6 14.1

CUHK_01 Acc(%) 82.1 83.4 76.8 72.2 84.2 85.1 78.6 75.2

Time(ms) 43.0 26.3 14.2 9.5 45.2 32.6 18.5 12.2

CUHK_03 Acc(%) 91.0 89.6 83.1 81.6 92.7 90.0 82.6 81.1

Time(ms) 41.2 29.1 15.2 10.3 46.5 32.4 19.9 11.6

Market Acc(%) 93.6 89.4 84.8 81.0 93.2 90.7 85.6 80.3

1501 Time(ms) 49.9 37.8 25.0 14.3 52.7 40.0 25.6 16.8

the table that, as expected, higher cross-validation accuracy values are obtained if the

value of K is set to be equal to 100 or 200. In general, this accuracy decreases as the

value of K is increased, and this reduction in the re-identification accuracy is due to

the elimination of clusters with the correct matches during the cluster mapping phase.

From the above results, it is clear that the clustering step based on the color histogram

features (as explained in Section 3.2.2) has a profound influence on the final cross-

validation accuracy. To study the impact of the clustering phase on the final prediction

accuracy, in the next experiment we observe the variation of the accuracy of the cluster

mapping phase with increment in the number of clusters. The training set constructed

from each data set is used to determine the color clusters, following which each sample

from the validation set is mapped to the appropriate cluster, and finally, the cluster

mapping accuracy is computed. A validation sample is said to map to the correct

cluster only if the training sample of the same subject also gets mapped to the same

cluster. From the knowledge of the ground truth, the accuracy of this cluster mapping

phase can be computed. Similar accuracy values are computed by varying K from 50

to 100 in steps of 50. A plot of cluster mapping accuracy with respect to the number
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of clusters for the CUHK_03 data is shown in Figure 3.12.

Figure 3.12: Variation of the cluster mapping accuracy with increment in the number
of clusters for CUHK_03 data

It can be seen from the figure that while for 50 and 100 number of clusters, the cluster

mapping accuracy is close to 100%, it reduces as the number of clusters continues to

increase, and attains about 85% accuracy mark when the number of clusters reaches

500. A similar observation has also been obtained for each of the other data sets as

well, but these plots have not been presented in the chapter to avoid repetition of

similar results. From the results of Table 3.5 and Figure 3.12, it can be concluded

that while the clustering phase can significantly improve the effectiveness of the re-

identification algorithm by reducing the search space for identity matching, finding an

optimum partitioning from the gallery samples is crucial to carry out re-identification

accurately. If a high value for K is chosen for clustering, it might be possible that

during the cluster building phase, multiple clusters get formed out of subjects with

similar appearances (i.e., color histogram features). This, in turn, increases the chance

for a test sample to get mapped to a similar but incorrect color cluster during the cluster

mapping phase. As explained in Section 3.2.2, K is a parameter that decides how many

top matching clusters should be retained for the second level of classification using the

Siamese network. As expected, Table 3.5 shows that the response time increases if a

higher value of K is chosen keeping other factors constant. It can also be seen from
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the table that K=2 performs marginally better than K=1, which is logical since the

search space for re-identification increases for higher values of K. Although setting the

value of K to 2 provides marginally better results, it reduces the efficiency of the re-

identification process. On the other hand, by setting the value of K to 1, more than 82%

accuracy is obtained for each of the five data sets corresponding to 100 clusters, within

a considerably shorter time. Hence, K=100 and K=1 can be considered to be optimal

parameters for re-identification for each of the above data sets. It may be noted that

the optimal values for the parameters K and K are data-specific. For a different data

set, another set of parameter values might turn out to be optimal. Hence, given any

re-identification data set, the optimal values for K and K have to be first determined

from the gallery set before carrying out re-identification using the test samples.

Each of the above experiments deals with parameter tuning and model training using

the gallery set data consisting of training and validation samples. Next, we evaluate

the effectiveness of the proposed approach on unseen data over other popular state-of-

the-art techniques using the test samples corresponding to each data set. We perform

a comparative performance analysis of our work with the same approaches used for

experimental evaluation in Section 3.1.3, i.e., [1–3, 61, 130, 131]. The trained model for

each data set, as obtained from the previous experiments, has been used to report the

results of this experiment on the test set of 100 samples. In this experiment, we study

the robustness of the different re-identification approaches by observing the variation

of Rank 1 re-identification accuracy values for different non-overlapping subsets of the

test set derived from each data set. Each test set of 100 subjects is divided into four

non-overlapping subsets of 25 subjects, following which the accuracy of the trained

models on these different sub-sets are observed. Let us denote these four test sets as

Test 1, Test 2, Test 3, and Test 4. Figures 3.13(a)-(e) respectively present the Rank

1 re-identification accuracy of the above-mentioned approaches on the different test

sets in the form of grouped bar charts corresponding to the six datasets used in the
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(a) (b)

(c) (d)

(e)

Figure 3.13: Accuracy and standard deviation of accuracy values on the four test sets
constructed from (a) CUHK_01, (b) CUHK_03, (c) Market1501, (d) VIPeR, and (e)
IIT(BHU) Re-Identification Data
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study, namely, the CUHK_01, CUHK_03, Market1501, VIPeR, and IIT(BHU) Re-

Identification data. In each plot, the horizontal axis shows the citations of the different

re-identification methods, while the height of each bar shown along the vertical axis

represents the corresponding re-identification accuracy. The µ and σ values reported

on the top of each group of bars represent the mean and the standard deviation of the

observations, respectively. From the figures, it can be seen that, in general, our method

performs better than the state-of-the-art approaches both in terms of re-identification

accuracy and response time. Only in the case of the CUHK_01, and CUHK_03 data

sets, the average performance of our approach is closely comparable to that of [131].

While for the CUHK_01 data, the average accuracy of the work of [131] is about 0.8%

better than that of ours, for the CUHK_03 data our approach surpasses the accuracy

of [131] by about 1.3%. However, for each of the other data sets the average performance

of our method is significantly better (more than 12%) than each of the other existing

re-identification techniques used in the study. This superiority in the performance is

mostly due to the hierarchical matching scheme followed in this work that eliminates

vastly dissimilar candidates after the first stage, thereby preventing the second stage

of Siamese network-based classification from getting biased towards a different element

in the gallery set with similar structural features. Also, the low standard deviation

value of our approach in each figure emphasizes the fact that our approach performs

consistently well on each of the different test sets, namely, the Test 1, Test 2, Test 3,

Test 4. We have also noted the average response times for the different approaches to

compare between a pair of gallery and test subjects. These are 0.09, 0.10, 0.16, 0.08,

0.11, and 0.06 seconds, respectively for the approaches [1, 2, 130, 131] and our work.

Hence, it can be concluded that the proposed approach outperforms state-of-the-art

re-identification techniques both in terms of accuracy and efficiency.

We next perform a comparative rank-based performance analysis (from Rank 1 to Rank

10) of our method with other state-of-the-art re-identification approaches using Cumu-
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Figure 3.14: Comparative performance analysis of the different re-identification ap-
proaches by means of Cumulative Matching Characteristic curves on (a) CUHK_01,
(b) CUHK_03, (c) Market1501, (d) VIPeR, and (e)IIT(BHU) Re-Identification Data
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lative Matching Curves (CMC) on the complete test set of 100 ids. Figures 3.14(a)-(f)

respectively present the CMC curves obtained for the different re-identification ap-

proaches (namely, [1–3, 61, 130, 131]) on the six data sets used in the study. The rank-

based re-identification accuracy obtained for the data sets CUHK_01 [107], CUHK_03

[3] and Market1501 [108] are presented in Figures 3.14 (a), (b), and (c), respectively.

We also perform cross-data set experiments and plot the rank-based improvement in re-

identification accuracy of the different techniques on the VIPeR [106], and IIT(BHU)

Re-Identification data in Figures 3.14 (d) and (e), respectively. From the figures, it

can be again observed that the proposed approach always outperforms the state-of-the-

art re-identification methods by a large margin. Moreover, our approach achieves the

100% accuracy mark on the test set of all the data sets only within a rank of 4. As

already explained from the results of Figures 3.13(a)-(e), the improved performance of

the proposed technique is mostly due to the use of tied-convolved layers in the SCB and

employment of the hierarchical classification scheme that retains only the top matches

from the gallery set to make the final prediction.

As explained in Section 3.2.2, the proposed re-identification algorithm consists of two

major components: (i) determining the appropriate cluster/s by utilizing the color in-

formation of the test subject, thereby reducing the search space, (ii) comparing the test

subject with the elements of the reduced set using a Siamese network. In the following

experiment, we study the effect of these individual components on the overall accuracy

and response time. Specifically, we carry out a rank-based performance analysis of our

proposed work with two different settings using the test sets of the CUHK_01 [107],

CUHK_03 [3], and Market1501 [108] data sets. These are (i) re-identification by incor-

porating the clustering phase using the optimal values for K and K as determined during

training, and (ii) re-identification without including the cluster matching component.

The same training-test pair, as well as the trained Siamese network determined in the

training phase, have also been used to report these results. Figures 3.15 (a), (b), (c)
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Figure 3.15: Cumulative Matching Characteristic curves showing improvement in re-
identification accuracy with the rank of the proposed algorithm with and without the
clustering phase for the (a) CUHK_01, (b) CUHK_03, (c) Market1501 data sets

show the CMC curves representing the rank-wise improvement of the re-identification

accuracy corresponding to the above three data sets for each experimental setting. It

is seen from the figure that the clustering step (i.e., the first level of the proposed

hierarchical re-identification method) has a significantly high impact on the final re-

identification accuracy. In each of the curves, the re-identification accuracy for the

different ranks can be seen to be much higher when the clustering phase is employed.

Also, the average times to re-identify a test subject with and without clustering are

0.454 secs and 0.232 secs, respectively, and hence it can be assertively said that the

inclusion of the clustering phase does not reduce the efficiency of the re-identification
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Figure 3.16: Percentage accuracy and the standard deviation of the accuracy values
on 100 test samples of the CUHK_01, CUHK_03, and Market1501 data sets obtained
by training our model with different initialization parameters five times

process much.

The above experiments verify the robustness of the proposed approach for the different

training-test set combinations. Further, to evaluate the reliability of our approach, we

study the re-identification accuracy given by our approach for five different random

initialization of the weights of the Siamese network and training the network via cross-

validation using the gallery set. The CUHK_01, CUHK_03, and Market1501 data sets

have been used to perform this experiment. Each random initialization results in a dif-

ferently trained model, and the performance of each of these five trained models is next

evaluated on the test set through Rank 1 re-identification accuracy. The corresponding

results are plotted using grouped bar charts in Figure 3.16. Here, the horizontal axis

refers to the data set names, while the vertical axis refers to the re-identification ac-

curacy. The standard deviation (σ) of the accuracy values obtained after running the

five differently trained models on the same test set is shown on the top of each group of

bars in the same figure. It is observed from the results that, for the above-mentioned
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three data sets, i.e., CUHK_01, CUHK_03, and Market1501, the prediction accuracy

values vary in the range [81.3, 88.2], [84.8, 90.8], and [91.5, 91.4], respectively. Also, the

standard deviations of the accuracy values obtained after five runs on these data sets

are only 1.1, 1.7, 1.5, respectively, each of which is quite low. From the high average

accuracy (above 85%) and low standard deviation of accuracy, it can be concluded that

the proposed re-identification approach should be able to perform reliably for different

training-test data combinations.

Since the first level of the hierarchical classification carries out short-listing based on

color information, it appears that our approach might fail if the subjects in the re-

identification gallery set wear similar colored clothes. To study the effectiveness of our

approach in this challenging scenario, we study a rank-wise performance improvement

of our approach with and without the cluster determination and mapping phases on a

data set where subjects wear similar colored clothes. The subset of the IIT (BHU) Re-

Identification data set constructed with 20 individuals (refer to Section 2.4.2 of Chapter

2) wearing similar colored clothes has been used for this experiment. The same pre-

trained Siamese model used for presenting the results of Table 3.5, and Figures 3.14 and

3.15, has also been used here. The two CMC curves presented in Figure 3.17 represent

the rank-wise performance improvement of the proposed algorithm with and without

including the clustering phase on this data set. To obtain the results of the clustering

phase, we determine the optimal values for K and K as 5 and 2, respectively from the

elbow curve in a similar manner as discussed in Section 3.2.2. It is observed from the

figure that higher accuracy is obtained for each of Rank 1 and Rank 2 if the clustering

phase is included. This is since the elimination of dissimilar candidates after the first

hierarchical level improves the prediction of the Siamese network. However, for higher

ranks, the approach without clustering performs better. This is due to the difficulty in

determining the dominant colors from similar-looking individuals during the clustering

phase. Often the correct match gets eliminated after the color matching phase, and
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Figure 3.17: Cumulative Matching Characteristic curves showing improvement of re-
identification accuracy with rank on a test set with similar clothing conditions with and
without considering the cluster determination and mapping phases

the deep feature-based classification used in the second stage of the hierarchy has no

chance of predicting the correct match in such cases. Thus, the proposed algorithm

with the clustering phase never achieves the 100% mark even for higher values of the

rank. This situation does not arise if the clustering stage is not included, since in

this case the final prediction is obtained by comparing the test sample with the entire

gallery set. However, even in this challenging scenario, the proposed approach (without

the clustering phase) performs with 85% accuracy at Rank 1 and also achieves 100%

accuracy within only Rank 6. This emphasizes the effectiveness of the proposed SCB-

based feature extractor.

Handling images of persons with similar appearances has always been regarded as one

of the challenging problems in person re-identification [134]. To evaluate the effective-

ness of our approach over state-of-the-art techniques in handling person images with

similar appearances, we next carry out a comparative performance evaluation of the

different re-identification approaches, namely, [1–3,61,131] using the same training and

test sets as used for the previous experiment. Results are shown in terms of Rank 1
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accuracy in Table 3.6. The first five rows correspond to the re-identification accuracy of

five state-of-the-art approaches, while the last two rows show the accuracy obtained us-

ing the proposed approach with and without incorporating the cluster-based matching

stage. The results from the table reveal that the proposed approach (with clustering)

Table 3.6: Comparative study of Rank 1 accuracy of different re-identification ap-
proaches on a test set of subjects with similar clothing conditions

Methods Accuracy (in %)

Ahmed et al. [1] 53.0

Guo et al. [131] 82.0

Li et al. [3] 41.0

Qian et al. [61] 81.0

Subramaniam et al. [2] 76.0

Proposed Approach 85.0

Proposed Approach (without clustering) 75.0

outperforms each of the state-of-the-art techniques by at least 3% even in the case of

the challenging scenario where subjects wear similar colored clothes. This is due to cap-

turing effective person-specific features through SCB, and also employing part-based

silhouette analysis, as described in Section 3.2.1. From the extensive experimental

evaluation described above, we conclude that the proposed re-identification approach

outperforms the existing techniques used in the comparative study both in terms of

accuracy and efficiency.

We next carry out a comparative performance analysis between the two approaches

proposed in this chapter in Sections 3.1 and 3.2 using the same training and test set

combination of VIPeR, CUHK_01, CUHK_03, and Market1501 data sets, as discussed

in Section 3.1.3. Table 3.7 presents the Rank 1 accuracy given by these two approaches

on the different data sets. It can be seen from the table that the proposed hierarchical

re-identification scheme based on SCB performs better than the one using SMSNet

in terms of accuracy for each of the data sets. This is since SMSNet tends to lose

certain edge and shape-related features due to putting a higher focus on the low-level

information by increasing the receptive field of filters in the convolutional layers. In
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Table 3.7: Comparison of Rank 1 accuracy (in %) for 100 test_ids

Methods
Rank 1 Accuracy (%)

VIPeR CUHK_01 CUHK_03 Market1501

SMSNet 91.5 87.3 89.6 79.2

Proposed Approach 93.0 88.2 90.8 91.2

contrast, the tied convolution layers used in SCB share useful parameters across the

layers which helps in coming up with a more accurate descriptor, thereby resulting in

a better re-identification performance.

3.3 Summary

In this chapter, we have presented two effective methods of feature extraction through

(i) a multi-scale deep learning framework and (ii) a hierarchical classification scheme,

each of which employs Siamese network-based feature extractors by dividing a silhouette

into multiple segments. In Section 3.1, we study the use of dilation in the Siamese

network to derive effective multi-scale features. We introduce a Siamese model termed

as SMSNet and apply different dilation rates in the convolution layers of the SMSNet

to enable capturing of detailed visual features. Additionally, the silhouette part-based

analysis presented in this work helps in preserving the spatial relationships among

the different silhouette segments at a high resolution. Since the use of dilation in

convolutional layers may lose important high-level image information and also increase

the complexity of the network, we next study the use of a Siamese network without

incorporating dilation in its layers. In this context, we propose a new model termed

as the Siamese Convolution Box (SCB) and adopt a hierarchical classification scheme

through an effective combination of a traditional passive-based approach and a modern

Deep Learning-based approach. Here, color histogram-based matching is employed at

the initial level of hierarchy to shortlist the top few closest matches and reduce the

gallery set for the subsequent step of Siamese network-based matching. Incorporation
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of the initial color-based matching scheme reduces the search space and prevents the

Siamese network from getting biased towards an utterly different element with similar

structural features that may be present in the gallery set. Results on several public data

sets demonstrate that the SCB-based re-identification performs better than SMSNet-

based re-identification and also outperforms the existing re-identification techniques by

a high margin. It may also be noted that the re-identification methods discussed in

this chapter do not need the person images to be captured strictly from the front view.

Rather, these are equally effective in situations where the images are captured from

near-front views or other views as well. However, the target subject must occupy the

major portion of the cropped and normalized frame and must have a similar color-based

appearance from each view.

As per the re-identification scenario discussed using Figure 3.1, both the entry and exit

gate cameras capture human walking videos from the front view. However, each of the

approaches discussed in this chapter computes only spatial-domain features from the

image frames and does not exploit the temporal information present in the sequential

video frames to derive the feature descriptors. While working with video data sets, we

compute an averaged normalized frame from each sequence which is next used in the

re-identification phase. Since we are dealing with surveillance scenarios, where cameras

typically capture walking videos consisting of sequential frames, it appears that the

use of temporal features derived from the motion information can play a vital role in

improving the re-identification accuracy further, that we are going to study in the next

chapter.


