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Abstract

Person re-identification refers to the process of finding one-one correspondences among

images/videos of individuals captured by different cameras which may have overlap-

ping/ non-overlapping fields of view. It plays a central role in tracking and monitoring

crowd movement in public places, and hence it serves as an essential means for pro-

viding public security in surveillance sites. In this thesis, we target to come up with

plausible approaches to Computer Vision-based person re-identification that can be

conveniently deployed in surveillance setups where the movement of multiple persons

is monitored by a network of cameras. In Chapter 1 of the thesis, we introduce the

problem of re-identification, the challenges involved, along with the motivation of the

present work, and main contributions of the thesis with highlights. Next, in Chapter

2, we present a thorough literature survey on person re-identification starting from the

traditional contextual and non-contextual approaches to the modern Deep Learning-

based approaches. In this chapter, we also present a thorough insight of the trend of

research in the domain person re-identification by highlighting the summary and lim-

itations of the recently published work in tabular form, from where we figure out the

scopes for further research in this area.

It has been observed from the literature survey that the initial approaches to image-

based person re-identification mostly consider color-based appearance descriptors for

matching, whereas the modern approaches employ deep features to make the predic-

tion more accurate and robust. While the initial approaches are passive and not so
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reliable in the presence of varying lighting conditions or varying scales of the captured

images, the modern Deep Learning approaches suffer from the use of large number

of parameters that makes the process time-intensive specially if the gallery set is very

large. The use of multi-scale features for person re-identification or fusion of the passive

methods with Deep Neural Network-based methods is expected to significantly improve

the overall effectiveness of re-identification, which we have studied in Chapter 3. Here,

we propose two approaches to image-based person re-identification that deal with the

extraction of effective spatial features from images through the use of (i) a multi-scale

feature generation technique, and (ii) a hierarchical combination of color-based and

Deep Siamese network-based features. We make a thorough comparative study among

these two proposed techniques and also other state-of-the-art techniques and observe

that both these outperform the existing approaches in terms of accuracy. Also, among

the two, the second approach has been seen to provide a more consistent performance

across different data sets and is less time-intensive due to following a hierarchical clas-

sification scheme.

Although there exist several re-identification techniques that work with videos/set

of sequential frames, these all depend on a single model prediction. However, since

video data sets are less extensive compared to image data sets, prediction from a single

model may not be reliable. Hence, we propose to employ an ensemble of recurrent

network models for the prediction so that the different spatio-temporal aspects of the

motion data can be exploited for re-identification. Our proposed ensemble architecture

is discussed in depth in Chapter 4, which combines the predictions from a Full-Body

Pose Attention Network, a Motion Pooling Network, and a Long-Short Term Memory

Network to re-identify an individual for a set of gallery subjects. Through extensive

experiments and comparative study, we observe that fusion of the spatio-temporal

information extracted by these three sub-networks helps in performing accurate re-

identification from video data. We also observe that the use of spatial features alone
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is also not so effective in situations where subjects are engaged in some sequential ac-

tivities like walking, running, etc., and also in situations where subjects have almost

similar clothing conditions.

The images/videos captured by the cameras in a surveillance zone are usually cor-

rupted with occlusion caused by other static/dynamic objects present in the scene. To

the best of our knowledge, although there exist a few Deep Learning-based occlusion

reconstruction strategies in the context of person re-identification, none of these con-

sider occlusion reconstruction and re-identification as two separate modules. Rather,

these methods train a single Deep Neural Network to perform re-identification directly

from the input occluded frames. It appears that the effectiveness of these approaches

can be improved by training two separate dedicated Deep Neural Network architec-

tures for occlusion reconstruction and re-identification and stacking them during de-

ployment as a single end-to-end model. In Chapter 5, we have proposed two such

improved techniques that reconstruct the occluded frames by employing Deep Neural

Network generators, one of which is based on UNet+DCGAN with skip connections

between the convolution and the deconvolution layers, while the other is based on Au-

toencoder+DCGAN without any skip connections. Following the reconstruction phase,

another Deep Learning classifier is used for re-identification. We make a rigorous com-

parative study between the two proposed techniques and observe that the network

formed by stacking Autoencoder+DCGAN performs the best between the two. Clas-

sification of the reconstructed images using a Siamese Network-based classifier shows

that our proposed method outperforms the existing person re-identification techniques

working with occluded sequences.

It may also be noted that, none of the existing techniques that handle occlusion in

the person re-identification task are capable of exploiting the available spatio-temporal

information if the input is a video sequence rather than a set of non-sequential frames.

Due to relying on spatial pixel-based information only, the reconstruction quality of
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these existing methods is poor in case a frame of the input sequence is heavily occluded.

This limitation of existing techniques can be overcome by effectively utilizing the spatio-

temporal information present in the adjacent sequential frames of a video sequence

while making prediction about the missing/occluded frames, which we have considered

in Chapter 6. Specifically, we propose an algorithm for occlusion reconstruction from

videos by employing a Conv-LSTM -based generator and a DCGAN -based fine-tuner.

The reconstruction and re-identification results given by our method on video data sets

corrupted with occlusion are quite good and also outperform the related approaches for

most experimental settings.

It may be noted that apart from PRID2011 and iLIDS-VID data, most existing

re-identification data sets do not consist of frames with a sequence of activities. To test

the effectiveness of diverse video-based re-identification data sets, we construct another

indoor data in our laboratory with frontal walking videos from 41 subjects and use it

to evaluate the performances of the different approaches proposed in the Chapters 3-5

as well as for carrying out detailed comparative studies. This data set has been termed

as the IIT (BHU) Re-identification data set and it has been made publicly available

to the research community for further comparison. In Chapter 6, we also conduct an

experiment to present an unified interpretation of results of all the approaches discussed

in Chapters 3-6 using both the image-based and video-based occluded re-identification

data sets. Our observation is that the approach proposed in Chapter 5 is most suited to

carry out re-identification from non-sequential frames, while that proposed in Chapter

6 is suited for dealing with sequential frames captured by surveillance cameras in most

real-life surveillance sites. In a more constrained setup, where clean input images/videos

of a target subject are available, the approaches discussed in Chapters 3 and 4 can be

conveniently used. Each of our trained models has been made publicly available to

the research community for further comparative studies. Finally, in Chapter 7, we

conclude the thesis and give insights to some future directions of work in the area of
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person re-identification.

Keywords: Image and Video-based Person Re-identification, Siamese Convolution
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