CERTIFICATE

It is certified that the work contained in the thesis titled "Person Re-Identification for Intelligent Surveillance Using Deep Learning" by Nirbhay Kumar Tagore has been carried out under my supervision and that this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all requirements of Comprehensive Examination, Candidacy, and SOTA for the award of Ph.D. Degree.

Supervisor Pratik Chattopadhyay 01/11/2021

Dr. Pratik Chattopadhyay datato/Supervisor संगणक विज्ञान एवं अमियांत्रिकी विमाग Assistant Professor, Department of Computer Sc. & Engo. Department of Computer Science and Engineering Indian Institute of Technology (BHU), Varanasi, 94 Uttar Pradesh, INDIA 221005 (Banaras Hindu University)

DECLARATION BY THE CANDIDATE

I, Nirbhay Kumar Tagore, certify that the work embodied in this Ph.D. thesis is my own bonafide work carried out by me under the supervision of Dr. Pratik Chattopadhyay from December 2017 to October 2021 at Department of Computer Science and Engineering, Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc. reported in journals, books, magazines, reports, dissertations, theses, etc., or available at websites and have not included them in this thesis and have not cited as my own work.

Date: 01/11/2021 Place: Varanasi

Nivbley Kyman Tagore (Nirbhay Kumar Tagore)

CERTIFICATE BY THE SUPERVISOR

This is to certify that the above statement made by the candidate is correct to the best of my knowledge.

Pratik Chattopadhyay 01/11/2021 (Dr. Pratik Chattopadhyay data) संगणक विज्ञान एवं अभियांत्रिकी विमाग Assistant Professor, Department of Computer Sc. & Engg. Dept. of Computer Science and Engineering, trend Indian Institute of Technology (BHC) years and the second of the (Banaras Hindu University)

वाराणसी/Varanasi-221005

Signature of Head of Department Professor & Head संगणक विज्ञान एवं अभियांत्रिकी विभाग Department of Computer Sc. & Engo भारतीय प्रोद्योगिकी संस्थान Indian Institute of Technology (बनारस हिन्दू यूनिवर्सिटी) (Banaras Hindu University) याराणसी–२२१००५ / Varanasi-221005

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: Person Re-Identification for Intelligent Surveillance Using Deep Learning

Name of the Student: Nirbhay Kumar Tagore

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University), Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the *Doctor of Philosophy*.

Nirbray Kermen Toopn

(Nirbhay Kumar Tagore)

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the Institute's copyright notice are indicated.

Dedicated to my parents,

Mr. B. S. Tagore

and

Mrs. Roopa Tagore

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Dr. Pratik Chattopadhyay, for his invaluable support and assistance. I feel immense pleasure in expressing my profound sense of gratitude and sincere regard for his constant feedback and expertise during all these years. I am eternally grateful to have had the opportunity to work on my thesis under his supervision.

My cordial thanks to all the members of the Department of Computer Science and Engineering for creating an excellent working atmosphere. I would also like to thank the other members of my Doctoral committee, Dr. Sandeep Ghosh, Department of Electrical Engineering, and Dr. Bhaskar Biswas, Department of Computer Science and Engineering, for their help and support throughout the tenure of my studies. Special thanks to Prof. Rajeev Srivastava, Department of Computer Science and Engineering, for his valuable suggestions. I would also like to convey my sincere gratitude to Prof. Sanjay Kumar Singh, Head of the CSE Department, and all the RPEC and DPGC members for their suggestions and endorsement of this work.

I am grateful to my colleagues and friends, Ankit Jaiswal, Naina Yadav, Amit Biswas, Shashank Kumar Singh, Amit Kumar, and Ramakant Kumar, for the long discussions and their brilliant insights that have helped me to overcome the challenges I have faced in the development of this work. Finally, I express my heartfelt gratitude to my parents Mrs. Roopa Tagore and Mr. Brehma Shanker Tagore, and my life partner Swati for their constant support, love, encouragement, and sacrifices. Their affectionate love and care cannot be expressed in words.

With limitless humility, I would like to praise and thank the "Sankat Mochan Hanuman Ji" and "Baba Kashi Vishwanath Ji". The almighty, the Merciful compassionate who bestowed me with all the favourable circumstances to achieve the desired goal of life through this crucial juncture.

Contents

Li	st of	Figure	S	xi
Li	st of	Tables		xvi
List of Symbols xv				
Li	st of	Abbre	viations	xix
A	bstra	ct		xxi
1	Intr	oducti	on	1
	1.1	Person	Re-Identification	1
		1.1.1	Possible Scenarios and Application Areas for Person Re-Identification	ion 2
		1.1.2	Need for Development of Automated Re-id Technique	3
		1.1.3	Data Acquisition Devices to Carry-Out Re-id in Surveillance	
			Applications	4
		1.1.4	Challenges in Computer Vision-Based Person Re-id Applied to	
			Surveillance Sites	6
	1.2	Motiva	tion of the Work	7
	1.3	Contri	butions of the Thesis	9
		1.3.1	Developing Improved Person Re-identification Approaches from	
			Still Images	9
		1.3.2	Effective Handling of Motion Features in Video-Based Person	
			Re-identification $\ldots \ldots \ldots$	11
		1.3.3	Handling Occlusion in Images	13
		1.3.4	Handling Occlusion in Videos $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
		1.3.5	Constructing A New Data Set and Making the Pre-Trained Models	
			Publicly Available	17
	1.4	Organi	zation of the Thesis	17

2	Rel	ated w	ork	19
	2.1	Tradit	ional Person Re-Identification Methods	19
		2.1.1	Contextual Methods	20
		2.1.2	Non-Contextual Methods	21
	2.2	Mode	rn Approaches	24
		2.2.1	Deep Learning-based Approaches	24
		2.2.2	Siamese Network-based Approaches	26
		2.2.3	GAN-based Approaches	28
	2.3	Scope	s for Further Research	35
	2.4 Data Set Description and Evaluation Metrics		Set Description and Evaluation Metrics	37
		2.4.1	Image-based Re-Identification Data Set	37
		2.4.2	Video-based Re-Identification Data Set	40
		2.4.3	Evaluation Metrics	41
	2.5	Tools	and Frameworks	42
		2.5.1	Keras	43
		2.5.2	Tensorflow	43
		2.5.3	Pytorch	43
	2.6	Summ	nary	44
-				
ર	Por	son R	-Identification from Still Images	17
3	$\operatorname{Per}_{3 1}$	son Re Multi	e-Identification from Still Images	47 49
3	Per 3.1	son Re Multi- 3 1 1	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification	47 49 50
3	Per 3.1	son Re Multi- 3.1.1 3.1.2	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture	47 49 50
3	Per 3.1	son Re Multi- 3.1.1 3.1.2 3.1.3	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture	47 49 50 51 53
3	Per 3.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4	e-Identification from Still Images •Scale Feature Extraction for Person Re-Identification	47 49 50 51 53 50
3	Per 3.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hiorau	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification	47 49 50 51 53 59 60
3	Per 3.1 3.2	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1	p-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach schere Classification for Person Re-Identification SCB Training	47 49 50 51 53 59 60 61
3	Per 3.1 3.2	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach rchical Classification for Person Re-Identification SCB Training Hierarchical Approach	47 49 50 51 53 59 60 61 63
3	Per 3.1 3.2	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach scher Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation	 47 49 50 51 53 59 60 61 63 65
3	Per 3.1 3.2	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ	b-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach schical Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification	47 49 50 51 53 59 60 61 63 65 80
3	Per 3.1 3.2 3.3	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ	b-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach rchical Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation	 47 49 50 51 53 59 60 61 63 65 80
3	Per 3.1 3.2 3.3 Ten	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation Attention Features for Video-Based Person Re-Identification	47 49 50 51 53 59 60 61 63 65 80 n 83
3	Per 3.1 3.2 3.3 Ten 4.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ nporal Sub-N	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification	47 49 50 51 53 59 60 61 63 65 80 n 83 86
3	Per 3.1 3.2 3.3 Ten 4.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ nporal Sub-N 4.1.1	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach schical Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation mary Hierarchical Approach to Re-Identification Full-Body Pose Attention Network	47 49 50 51 53 59 60 61 63 65 80 n 83 86 86
3	Per 3.1 3.2 3.3 Ten 4.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ nporal Sub-N 4.1.1 4.1.2	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach training Chical Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation Muti-Scale Signese for Video-Based Person Re-Identification Full-Body Pose Attention Network Mution Pooling Network	47 49 50 51 53 59 60 61 63 65 80 n 83 86 86 86 87
3	Per 3.1 3.2 3.3 Ten 4.1	son Re Multi- 3.1.1 3.1.2 3.1.3 3.1.4 Hieran 3.2.1 3.2.2 3.2.3 Summ nporal Sub-N 4.1.1 4.1.2 4.1.3	e-Identification from Still Images Scale Feature Extraction for Person Re-Identification Multi-Scale Siamese (SMSNet) Architecture SMSNet Training Experimental Evaluation Limitations of the Approach rchical Classification for Person Re-Identification SCB Training Hierarchical Approach to Re-Identification Experimental Evaluation Mutrical Approach to Re-Identification Mary Attention Features for Video-Based Person Re-Identification Full-Body Pose Attention Network Motion Pooling Network Long-Short Term Memory Network	47 49 50 51 53 59 60 61 63 65 80 n 83 86 86 86 87 88

	4.3	Summary	99
5	Occ	lusion Handling in Image-based Person Re-Identification	101
	5.1	Synthetic Occlusion Generation for Training Deep Neural Network Model	s103
	5.2	Occlusion Handling in Image Frames	104
		5.2.1 $OHGAN$ -based Reconstruction	104
		5.2.2 Autoencoder-based Reconstruction	107
		5.2.3 Reconstruction Results Using $OHGAN$ and $Autoencoder$	108
		5.2.4 Fine-Tuning Reconstruction Results with $DCGAN$	110
		5.2.5 Re-Identification Results Using Baseline Networks	113
	5.3	Summary	119
6	Occ	lusion Handling in Video-Based Person Re-Identification	121
	6.1	Conv-LSTM-based Occlusion Reconstruction	122
	6.2	Reconstruction Results	125
	6.3	Person Re-identification and Experimental Evaluation	128
	6.4	Summary	137
7	Con	clusions and Future Work	139
Re	eferei	nces	148
Lis	List of Publications 170		

List of Figures

1.1	Images of same person captured using two different cameras at different	
	times	1
1.2	Scenario where spatial features extracted from non-sequential frames are	
	used for re-identification	10
1.3	Scenario where spatio-temporal features extracted from sequential frames	
	are used for re-identification	12
1.4	Re-identification scenario with occlusion present in non-sequential image	
	frames	13
1.5	Re-identification framework for occlusion handling in sequential frames	15
3.1	Surveillance setup for re-identification	49
3.2	Insight view of the proposed Siamese Multi-scale Network (SMSNet)	
	architecture. The first layer of convolution is unaffected by dilation	
	parameters. All other layers are dilated with rates 1, 2, and 3, and	
	feature aggregation has been done after each convolution layer in form	
	of concatenation. The feature difference is computed after the fourth	
	convolution layer.	50
3.3	Overall framework of the re-identification approach	52
3.4	Range of three-fold cross-validation accuracy for various combinations	
	of parameters η and γ corresponding to different the data sets by setting	
	different initial weights of the network	55
3.5	Box and whiskers plot showing the performance of the proposed approach	
	after five different times of run on four data sets i.e., VIPeR, CUHK_01,	
	$CUHK_{03}$, and $Market1501$	56
3.6	Cumulative matching characteristic curves showing improvement in re-	
	identification accuracy with rank for the different approaches corresponding	
	to: (a) $CUHK_01$, (b) $CUHK_03$, (c) $Market1501$, and (d) $VIPeR$ data	
	sets	58

3.7	A block diagram of the proposed hierarchical approach to person re-	
	identification	60
3.8	Re-Identification framework applied on the reduced gallery set	62
3.9	Siamese Convolution Box (SCB)	62
3.10	Range of five-fold cross-validation accuracy for various combinations of	
	parameters η and γ corresponding to different the data sets by setting	
	different initial weights of the network $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	66
3.11	Elbow Curves for (a) $VIPeR$ and (b) $CUHK_03$ data	67
3.12	Variation of the cluster mapping accuracy with increment in the number	
	of clusters for $CUHK_{03}$ data	69
3.13	Accuracy and standard deviation of accuracy values on the four test sets	
	constructed from (a) $CUHK_01$, (b) $CUHK_03$, (c) $Market1501$, (d)	
	VIPeR, and (e) $IIT(BHU)$ Re-Identification Data	71
3.14	Comparative performance analysis of the different re-identification approach	hes
	by means of Cumulative Matching Characteristic curves on (a) $CUHK_01$,	
	(b) CUHK_03, (c) Market1501, (d) VIPeR, and (e) IIT(BHU) Re-Identifica	tion
	Data	73
3.15	Cumulative Matching Characteristic curves showing improvement in re-	
	identification accuracy with the rank of the proposed algorithm with and	
	without the clustering phase for the (a) $CUHK_01$, (b) $CUHK_03$, (c)	
	Market 1501 data sets	75
3.16	Percentage accuracy and the standard deviation of the accuracy values	
	on 100 test samples of the CUHK_01, CUHK_03, and Market1501	
	data sets obtained by training our model with different initialization	
	parameters five times	76
3.17	Cumulative Matching Characteristic curves showing improvement of re-	
	identification accuracy with rank on a test set with similar clothing	
	conditions with and without considering the cluster determination and	
	mapping phases	78
4.1	A block diagram of the re-identification approach	85
4.2	Feature maps generated at the intermediate layers of (a) FPAN, (b)	
	MPN, (c) RNN , (d) T - MAN	90
4.3	Rank 1 accuracy for different combinations of RNN Models (i.e., Simple	
	RNN, LSTM, and GRU)	91
4.4	Rank 1 accuracy obtained by executing our ensemble T -MAN model	
	three times along with the standard deviation $\ldots \ldots \ldots \ldots \ldots \ldots$	96

5.1	Overall framework of the re-identification approach: (a) Occlusion reconstr	uction,
	and (b) Re-identification	102
5.2	An original frame from the $CUHK_03$ data and the corresponding occluded	b
	frames generated by adding varying degrees of synthetic occlusion $\ . \ .$	104
5.3	Occlusion Handling GAN (OHGAN) architecture	105
5.4	An insight view of an Autoencoder	107
5.5	Images in the first row represent the synthetically occluded samples while	
	the respective images in the second and third row show the generated	
	images from the OHGAN and Autoencoder	110
5.6	Sample ground-truth unoccluded non-sequential frames (1^{st} row) , frames	
	with synthetic occlusion (2^{nd} row) , reconstruction using Autoencoder (3^{rd})	
	row), and fine-tuning using $DCGAN$ (4 th row)	112
5.7	Comparison of Rank 1 accuracy of (i) SCB, (ii) Autoencoder+DCGAN+SC	$^{\prime}B,$
	(iii) Autoencoder+DCGAN+SCB (part-based)	119
6.1	Overall framework of the proposed video-based re-identification approach	
	in the presence of occlusion $\ldots \ldots \ldots$	122
6.2	Insight of Conv-LSTM Model	124
6.3	First and second rows show unoccluded and synthetically occluded frames	
	from the IIT (BHU) Data set, while third and fourth rows present the	
	reconstructed frames from the $Conv$ -LSTM model and the corresponding	
	fine-tuned frames through $DCGAN$	126
6.4	Box and whiskers plot showing the stability of the reconstruction model	
	Conv-LSTM+DCGAN on the synthetically occluded test sets of IIT	
	(BHU) Re-identification data and PRID2011 data	127
6.5	Comparative study in terms of rank-based accuracy of T -MAN with SCB	
	and the approaches $[1-3]$ using synthetically occluded (a) IIT (BHU) Re-	
	<i>identification</i> data and (b) $PRID2011$ data	130
6.6	Comparison of robustness of all four proposed methods $M1$, $M2$, $M3$, and	
	M4 on various test sets constructed from the (i) video-based $PRID2011$	
	data, and (ii) image-based $Market-1501$ data corrupted with 20% synthetic	
	occlusion	135
6.7	Comparison of stability of the Deep Learning models used in the four	
	proposed methods $M1$, $M2$, $M3$, and $M4$ by training the models multiple	
	times from scratch on the same data and observing the overall re-identificat	ion
	accuracy of the approaches on (a) video-based <i>PRID2011</i> data, and (ii)	
	image-based Market-1501 data corrupted with 20% synthetic occlusion	136

List of Tables

2.1	Summary of some recent approaches to person re-identification	29
2.2	Image-based re-identification data sets	39
2.3	Video-based re-identification data sets	41
3.1	Layer specification of each Siamese Multi-scale Network (SMSNet)	51
3.2	Data set split information	54
3.3	Comparison of Rank 1 accuracy (in $\%)$ for 100 test_ids of our proposed	
	approach with state-of-the-art techniques	57
3.4	Layer specification of the SCB network. Both the starting convolution	
	layers are pooled with size 2×2 and the last two layers are exempted	
	from pooling. \star represents the concatenation of fully connected layers .	61
3.5	Average cross-validation accuracy of the proposed approach on different	
	data sets and average response time (in milli-secs) \ldots \ldots \ldots	68
3.6	6 Comparative study of Rank 1 accuracy of different re-identification approaches	
	on a test set of subjects with similar clothing conditions $\ldots \ldots \ldots$	79
3.7	Comparison of Rank 1 accuracy (in %) for 100 test_ids	80
4.1	Comparative results on $PRID\mathchar`2011$ data set for Ranks 1, 5 and 10 $$	92
4.2	Comparison results on $\it iLIDS-VID$ data set for Ranks 1, 5 and 10 $$	93
4.3	Comparison results on $MARS$ data set for Ranks 1, 5 and 20 with Mean	
	Average Precision (map)	94
4.4	Comparative analysis of different combinations of proposed models (FPAN,	
	MPN , and T - MAN) on the $MARS$ data set $\ldots \ldots \ldots \ldots \ldots \ldots$	95
4.5	Comparison of Rank 1 accuracy for Siamese Convolution Box (SCB) and	
	Temporal Motion Aware Network $(T-MAN)$	97
4.6	Rank 1 accuracy of Siamese Convolution Box (SCB) (with and without	
	clustering) and Temporal Motion Aware Network $(T-MAN)$ on a data	
	set with similar clothing conditions	98

4.7	Comparison of Rank 1 accuracy for simple T -MAN and Hierarchical	
	T- MAN	99
5.1	Layer specification of the OHGAN architecture	106
5.2	Layer-wise configuration of the Autoencoder	108
5.3	Dice scores obtained from the two reconstruction models at different	
	margin values for different data sets	109
5.4	Layer-wise specification of the $DCGAN$	111
5.5	Dice similarity coefficient (DSC) values for the reconstruction models .	112
5.6	Comparative results on $CUHK_01$ data set for Ranks 1, 5, and 10	114
5.7	Comparative results on $CUHK_{03}$ data set for Ranks 1, 5, and 10	115
5.8	Comparative results on <i>Market1501</i> data set for Ranks 1, 5, and 10 along	
	with mean average precision (map)	116
5.9	Comparison of Rank 1 accuracy of OHGAN+PCB, Autoencoder+DCGAN	+PCB,
	and $Autoencoder+DCGAN+SCB$ on synthetically occluded samples generated as $Autoencoder+DCGAN+SCB$ on synthetically occluded as $Autoencoder+DCGAN+SCB$ on synthetically occluded as $Autoencoder+DCGAN+SCB$ on synthetical as $Autoencoder+DCGAN+SCB$ on synthetical as $Autoencoder+DCGAN+SCB$ on synthetical as $Autoencoder+DCGAN+SCB$ on synthet	ated
	from Partial ReID, Partial iLIDS, and IIT(BHU) Re-identification sets	118
6.1	Layer-wise specification of the Conv-LSTM. Here, ConvLSTM2d_i represe	nts
	the i^{th} layer of the model	124
6.2	Dice score for the reconstruction model (<i>Conv-LSTM</i>) at different margin	
	values for the IIT (BHU) Re-identification and $PRID2011$ data set	127
6.3	Comparative study of Rank 1 accuracy of the different methods on	
	the occlusion reconstructed images by $ConvLSTM+DCGAN$ for the	
	<i>IIT(BHU)</i> Re-identification and <i>PRID2011</i> data sets	129
6.4	Comparative study of Rank 1 accuracy of T -MAN (with and without re-	
	construction) for the synthetically occluded <i>IIT(BHU)</i> Re-identification	
	and <i>PRID2011</i> data sets	131
6.5	Comparative study of Rank 1 accuracy of all the proposed approaches	
	on <i>iLIDS-VID</i> , <i>PRID2011</i> , and <i>IIT(BHU)</i> Re-identification data sets .	133
6.6	Comparative study of Rank 1 accuracy of all the proposed approaches	
	on CUHK_01, CUHK_03, and Market-1501 data sets	134

List of Symbols

Symbol	Description
Cam_i	Camera 'i'
f_i	Feature map i
K	Cross-input neighborhood distance
$\mathcal{N}[g_i(x,y)]$	Neighborhood around pixel (x, y)
\mathcal{C}_i	Cluster centre
S_t	Subject 't'
sim(A, B)	Similarity score between 'A' and 'B'
K	Number of clusters
\mathcal{K}	Number of top matching clusters
Ci	Hyper Parameter Configuration
η	Learning rate
γ	Weight decay factor
μ	Mean
σ	Standard Deviation
b_c^t	Average of 't' feature vectors
m_c	Attention feature vector of clip 'C'
W_o	Weight matrix
$g_{i,a}$	Ground-Truth for sample (i,a)
$p_{i,a}$	Prediction for sample (i,a)
L_G	Generator loss
$G_e(I)$	Generated reconstructed image

Abbreviations

Abbreviation	Description
CNN	Convolutional Neural Network
LSTM	Long-short term memory
GAN	Generative Adversarial Network
NN	Neural Network
RNN	Recurrent Neural Network
GRU	Gated Recurrent Unit
SMSNet	Siamese Multi-scale Network
SCB	Siamese Convolution Box
FPAN	Full-body Pose Attention Network
MPN	Motion Pooling Network
T-MAN	Temporal Motion Aware Network
CMC	Cumulative Matching Characteristic
STD	Standard Deviation
map	Mean Average Precision
DSC	Dice Similarity Co-efficient
Conv - LSTM	Convolutional LSTM
DCGAN	Deep Convolutional GAN
ReLU	Rectified Linear Unit

Abstract

Person re-identification refers to the process of finding one-one correspondences among images/videos of individuals captured by different cameras which may have overlapping/ non-overlapping fields of view. It plays a central role in tracking and monitoring crowd movement in public places, and hence it serves as an essential means for providing public security in surveillance sites. In this thesis, we target to come up with plausible approaches to Computer Vision-based person re-identification that can be conveniently deployed in surveillance setups where the movement of multiple persons is monitored by a network of cameras. In Chapter 1 of the thesis, we introduce the problem of re-identification, the challenges involved, along with the motivation of the present work, and main contributions of the thesis with highlights. Next, in Chapter 2, we present a thorough literature survey on person re-identification starting from the traditional contextual and non-contextual approaches to the modern Deep Learningbased approaches. In this chapter, we also present a thorough insight of the trend of research in the domain person re-identification by highlighting the summary and limitations of the recently published work in tabular form, from where we figure out the scopes for further research in this area.

It has been observed from the literature survey that the initial approaches to imagebased person re-identification mostly consider color-based appearance descriptors for matching, whereas the modern approaches employ deep features to make the prediction more accurate and robust. While the initial approaches are passive and not so reliable in the presence of varying lighting conditions or varying scales of the captured images, the modern Deep Learning approaches suffer from the use of large number of parameters that makes the process time-intensive specially if the gallery set is very large. The use of multi-scale features for person re-identification or fusion of the passive methods with Deep Neural Network-based methods is expected to significantly improve the overall effectiveness of re-identification, which we have studied in Chapter 3. Here, we propose two approaches to image-based person re-identification that deal with the extraction of effective spatial features from images through the use of (i) a multi-scale feature generation technique, and (ii) a hierarchical combination of color-based and Deep Siamese network-based features. We make a thorough comparative study among these two proposed techniques and also other state-of-the-art techniques and observe that both these outperform the existing approaches in terms of accuracy. Also, among the two, the second approach has been seen to provide a more consistent performance across different data sets and is less time-intensive due to following a hierarchical classification scheme.

Although there exist several re-identification techniques that work with videos/set of sequential frames, these all depend on a single model prediction. However, since video data sets are less extensive compared to image data sets, prediction from a single model may not be reliable. Hence, we propose to employ an ensemble of recurrent network models for the prediction so that the different spatio-temporal aspects of the motion data can be exploited for re-identification. Our proposed ensemble architecture is discussed in depth in Chapter 4, which combines the predictions from a Full-Body Pose Attention Network, a Motion Pooling Network, and a Long-Short Term Memory Network to re-identify an individual for a set of gallery subjects. Through extensive experiments and comparative study, we observe that fusion of the spatio-temporal information extracted by these three sub-networks helps in performing accurate reidentification from video data. We also observe that the use of spatial features alone is also not so effective in situations where subjects are engaged in some sequential activities like walking, running, etc., and also in situations where subjects have almost similar clothing conditions.

The images/videos captured by the cameras in a surveillance zone are usually corrupted with occlusion caused by other static/dynamic objects present in the scene. To the best of our knowledge, although there exist a few Deep Learning-based occlusion reconstruction strategies in the context of person re-identification, none of these consider occlusion reconstruction and re-identification as two separate modules. Rather, these methods train a single Deep Neural Network to perform re-identification directly from the input occluded frames. It appears that the effectiveness of these approaches can be improved by training two separate dedicated Deep Neural Network architectures for occlusion reconstruction and re-identification and stacking them during deployment as a single end-to-end model. In Chapter 5, we have proposed two such improved techniques that reconstruct the occluded frames by employing Deep Neural Network generators, one of which is based on UNet+DCGAN with skip connections between the convolution and the deconvolution layers, while the other is based on Auto encoder+DCGAN without any skip connections. Following the reconstruction phase, another Deep Learning classifier is used for re-identification. We make a rigorous comparative study between the two proposed techniques and observe that the network formed by stacking Autoencoder+DCGAN performs the best between the two. Classification of the reconstructed images using a Siamese Network-based classifier shows that our proposed method outperforms the existing person re-identification techniques working with occluded sequences.

It may also be noted that, none of the existing techniques that handle occlusion in the person re-identification task are capable of exploiting the available spatio-temporal information if the input is a video sequence rather than a set of non-sequential frames. Due to relying on spatial pixel-based information only, the reconstruction quality of these existing methods is poor in case a frame of the input sequence is heavily occluded. This limitation of existing techniques can be overcome by effectively utilizing the spatiotemporal information present in the adjacent sequential frames of a video sequence while making prediction about the missing/occluded frames, which we have considered in Chapter 6. Specifically, we propose an algorithm for occlusion reconstruction from videos by employing a *Conv-LSTM*-based generator and a *DCGAN*-based fine-tuner. The reconstruction and re-identification results given by our method on video data sets corrupted with occlusion are quite good and also outperform the related approaches for most experimental settings.

It may be noted that apart from *PRID2011* and *iLIDS-VID* data, most existing re-identification data sets do not consist of frames with a sequence of activities. To test the effectiveness of diverse video-based re-identification data sets, we construct another indoor data in our laboratory with frontal walking videos from 41 subjects and use it to evaluate the performances of the different approaches proposed in the Chapters 3-5 as well as for carrying out detailed comparative studies. This data set has been termed as the IIT (BHU) Re-identification data set and it has been made publicly available to the research community for further comparison. In Chapter 6, we also conduct an experiment to present an unified interpretation of results of all the approaches discussed in Chapters 3-6 using both the image-based and video-based occluded re-identification data sets. Our observation is that the approach proposed in Chapter 5 is most suited to carry out re-identification from non-sequential frames, while that proposed in Chapter 6 is suited for dealing with sequential frames captured by surveillance cameras in most real-life surveillance sites. In a more constrained setup, where clean input images/videos of a target subject are available, the approaches discussed in Chapters 3 and 4 can be conveniently used. Each of our trained models has been made publicly available to the research community for further comparative studies. Finally, in Chapter 7, we conclude the thesis and give insights to some future directions of work in the area of person re-identification.

Keywords: Image and Video-based Person Re-identification, Siamese Convolution Box, Temporal Motion Aware Network, Generative Modeling, Occlusion Reconstruction, Autoencoder, Convolutional LSTM