Table of Contents

Particulars		
List of Figures		
List of Tables	XVII	
List of Abbreviations	XVIII	
Preface	XX	
Introduction	XXI	
Chapter 1		
1.1.Introduction	1	
1.2. Material and methods	2	
1.2.1. Animals	2	
1.2.2. Drugs and chemicals	2	
1.2.3. Drug treatment	2	
1.2.4. Cold Restraint stress (CRS)	2	
1.2.5. Evaluation of Catalepsy behaviour	3	
1.2.6. Evaluation of Ulcer Index	3	
1.2.7. Estimation of plasma corticosterone and norepinephrine by HPLC	4	
1.2.8. Estimation of Serotonin, Dopamine and their Metabolites by HPLC	4	
1.2.9. Statistics for Data Analysis	4-5	
1.3. Results	5	
1.3.1. Effect of OLZ on CRS-induced alteration on catalepsy behaviour	5	
1.3.2. Effect of OLZ on CRS-induced alteration on ulcer index	6	
1.3.3. Effect of OLZ (0.1, 1.0 and 10mg/kg) on CRS-induced alteration on		
plasma corticosterone		
1.3.4. Effect of OLZ (0.1, 1.0 and 10mg/kg) on CRS-induced alteration on	8	
plasma nor-epinephrine		
1.3.5. Effect of OLZ (0.1, 1.0 and 10mg/kg) on CRS-induced alteration of	9-11	
serotonin and its metabolite in PFC, HIP and AMY		
1.3.6. Effect of OLZ (0.1, 1.0 and 10mg/kg) on CRS-induced alteration on	12	
dopamine level in PFC, HIP and AMY		
1.4. Discussion		
Chapter 2		
2.1 Introduction	15-16	
2.2. Material and methods	17	
2.2.1. Animals	17	
2.2.2. Drugs and chemicals	17	
2.2.3. Drug treatment	17	
2.2.4. Cold restraint stress (CRS)	17	
2.2.5. Evaluation of Catalepsy behaviour	18	

2.2.6. Evaluation of Ulcer Index		
2.2.7. Estimation of plasma corticosterone and norepinephrine by HPLC		
2.2.8. Estimation of Serotonin, Dopamine, norepinephrine (NE) and their		
Metabolites by HPLC		
2.2.9. Statistics for Data Analysis	20	
2.3. Results	21	
2.3.1. Effect of aripiprazole (APZ) on CRS-induced alteration in cataleptic	21	
behaviour		
2.3.2. Effect of aripiprazole (APZ) on CRS-induced alteration in ulcer index	21-22	
2.3.3. APZ alters plasma CORT and NE in Stressed animal	22-23	
2.3.4. APZ selectively alters the level of 5-HT and its metabolites in	24-26	
hippocampus, prefrontal cortex, Amygdala and hypothalamus		
2.3.5. APZ selectively alters level of DA and its metabolite in prefrontal	27-29	
cortex, hippocampus Amygdala and hypothalamus		
2.3.6. Significant Correlation exists between gastric ulcer, plasma	30-31	
corticosterone and monoamines in discrete brain regions		
2.4. Discussion	32-35	
Chanter 3		
3.1 Introduction	36-37	
3.2 Materials and Methods	37	
3.2.1. Animals	37	
3.2.2. Drugs	37	
3.2.3. Cold Restraint Stress (CRS) model	38	
3.2.4. Experimental protocol	38	
3.2.5. Evaluation of catalepsy behaviour in bar test	38-39	
3.2.6. Estimation of ulcer index	39	
3.2.7. Estimation of Plasma Corticosterone (CORT)	39	
3.2.8. Estimation of Plasma Norepinephrine (NE)	39-40	
3.2.9. Estimation of serotonin, dopamine and their metabolites	41	
3.2.10. Statistical analysis	41	
3.3. Results	41	
3.3.1. Effect of risperidone on catalepsy behaviour in bar test	41	
3.3.2. Repeated low dose risperidone decreases Ulcer index due to CRS	42	
3.3.3. Risperidone alters plasma CORT and NE in stressed animals	42-43	
3.3.4. RIS selectively alters the level of 5-HT and its metabolite in the	44-45	
hippocampus, prefrontal cortex, and striatum		
3.3.5. RIS selectively alters the level of DA and its metabolite in the	46-48	
hippocampus, prefrontal cortex, and striatum		
3.4. Discussion	49-53	

Chapter 4		
4.1. Introduction	54	
4.2. Materials and methods	55	
4.2.1 Drugs & chemicals	55	
4.2.2 Animals	55-56	
4.2.3 Experimental protocol	56	
4.2.4 Stress-restress (SRS)/ Time-dependent sensitization (TDS)	57	
4.2.5 Evaluation of freezing-like behaviour	57	
4.2.6 Evaluation of anxiety	58	
4.2.7 Y-maze	58-59	
4.2.8 Estimation of plasma corticosterone by HPLC	59-60	
4.2.9 Western blot analysis	60	
4.2.9.1 Tissue preparation	60	
4.2.9.2 Protein isolation	60	
4.2.9.3 Western blotting	60-61	
4.2.10 Statistical analysis	61	
4.3. Results	62	
4.3.1 Effect of OLZ on SRS-induced rise in the Freezing behaviour	62	
4.3.2 Effect of OLZ in SRS-induced anxiety behaviour in EPM	63-64	
4.3.3 Effect of OLZ on SRS-induced alterations in the spatial memory in Y-		
maze test		
4.3.4. The effect of OLZ on SRS-induced changes in Y-maze arm		
discrimination		
4.3.5 Effect of OLZ on the SRS-induced decline in plasma corticosterone	69	
4.3.6. Effect of OLZ on the expression of BDNF	69-70	
4.3.7. Effect of OLZ treatment on the expression of pERK/ERK in PFC	71	
4.3.8. Effect of OLZ treatment on the expression of pERK/ERK in AMY	72	
4.3.9. Effect of OLZ on the expression of CREB	73	
4.3.10. Effect of OLZ on the expression of Caspase-3	74-75	
4.4. Discussion		
Chapter 5		
5.1. Introduction	83-84	
5.2. Materials and methods	84	
5.2.1. Drugs & chemicals	84	
5.2.2. Animals	84	
5.2.3. Experimental protocol	85	
5.2.4. Stress-restress (SRS)	85-86	
5.2.5. Evaluation of freezing	86	
5.2.6. Evaluation of anxiety	86	
5.2.7. Evaluation of Memory	86-87	

5.2.8. Estimation of plasma corticosterone by HPLC		
5.2.9. Western blot analysis	87-88	
5.2.10. Statistical analysis	88	
5.3. Results	89	
5.3.1. Effect of APZ on open arm entries in EPM	89	
5.3.2. Effect of APZ on open arm time spent on EPM	90	
5.3.3. Effect of APZ on fecal pellets on EPM	91	
5.3.4. Effect of APZ on immobility period	92	
5.3.5 Effect of APZ on Y-maze Trail-I	93	
5.3.6. Effect of APZ on Y-maze Trail-II	94	
5.3.7. Effect of APZ on SRS-induced plasma corticosterone level	95	
5.3.8. Effect of APZ on SRS-induced brain serotonin levels	95	
5.3.9. Effect of APZ on SRS-induced brain dopamine levels	96	
5.3.10. APZ induces the expression of BDNF	97	
5.3.11. Effect of APZ treatment on the expression of pERK in PFC	98	
5.3.12. Effect of APZ treatment on the expression of pERK in AMY	99	
5.3.13. APZ promotes the expression of CREB	100	
5.3.14. APZ inhibits the expression of Caspase-3	101	
5.4. Discussion	102-103	
Chapter 6	104.100	
6.1. Introduction	104-106	
6.2. Materials and methods	106	
6.2.1. Animals	106	
6.2.2. Drugs	106	
6.2.3. Animal Treatment	10/	
6.2.4. Modified stress-restress paradigm	10/	
6.2.5. Evaluation of anxiety-like behaviour	100 100	
6.2.6. Evaluation of Memory	108-109	
6.2.7. Estimation of Serotonin and Dopamine by HPLC	109	
6.2.8. Western blot analysis	110	
6.2.9. Statistical analysis	110-111	
6.3. Results	111	
6.3.1. RIS Reduced SRS-Induced Anxiety-Like Symptoms in EPM Test	111-112	
6.3.2. RIS improved loss of spatial recognition memory in Y-Maze Test	112-113	
6.3.3. Effect of RIS (0.1, 1.0 and 10mg/kg) on SRS-induced alteration on		
5HT level in PFC and AMY		
6.3.4. Effect of RIS (0.1, 1.0 and 10mg/kg) on SRS-induced alteration on		
dopamine level in PFC, and AMY		
6.3.5. RIS treatment enhances BDNF formation	115-116	
6.3.6. RIS decreases the pERK expression in PFC	117	
6.3.7. RIS decreases the pERK expression in AMY		

6.3.8. RIS enhances the expression of CREB	119-120
6.3.9. RIS mitigates the Caspase-3 expression	121-122
6.4. Discussion	123-126
Summary	127-128
References	129-153
publications from thesis	154

List of Figures

Figure No.	. Figure Captions		
		No.	
1.1	Effect of OLZ on CRS-induced alteration in catalepsy behaviour	6	
1.2	Effect of OLZ on CRS-induced alteration on ulcer index	7	
1.3	Effect of OLZ on CRS-induced alteration on plasma-corticosterone	8	
1.4	Effect of OLZ on CRS-induced alteration on plasma nor-epinephrine	9	
1.5	OLZ alters level of 5-HT	10	
1.6	OLZ alters level of 5HIAA	11	
1.7	OLZ alters level of 5HIAA/5-HT	12	
1.8	Effect of OLZ on CRS-induced alteration on dopamine level	13	
2.1	Effect of APZ on CRS-induced cataleptic behaviour	22	
2.2	Effect of APZ on CRS-induced ulcer index	23	
2.3	APZ alters plasma CORT	24	
2.4	APZ alters plasma NE	24	
2.5	APZ selectively alters the level of 5-HT	25	
2.6	APZ selectively alters the level of 5-HIAA	26	
2.7	APZ selectively alters the level of 5- HT/5HIAA	27	
2.8	APZ selectively alters the level of dopamine	28	
2.9	APZ selectively alters the level of DOPAC	29	
2.10	APZ selectively alters the level of DOPAC/DA	30	
2.11	Correlation analysis of plasma corticosterone and monoamines	32-33	
3.1	Repeated low dose risperidone decreases ulcer index in rats	41	
3.2	Effect of risperidone on catalepsy behaviour	42	
3.3	Risperidone alters plasma CORT	43	
3.4	Risperidone alters plasma Norepinephrine	43	
3.5	RIS selectively alters the level of 5-HT	45-46	
3.5	RIS selectively alters the level of 5-HIAA	45-46	
3.5	RIS selectively alters the level of 5-HIIA/5HT	45-46	
3.6	RIS selectively alters the level of DA	48	
3.6	RIS selectively alters the level of DOPAC	48	
3.6	RIS selectively alters the DOPAC/DA ratio	48	
4.1	Schematic representation of the experimental design	56	
4.2	Effect of OLZ on the SRS-induced rise in the Freezing behaviour	62	
4.3	The effect of OLZ on SRS-induced changes in Y-maze arm	68	
4.4	Effect of OLZ on the SRS-induced decline in plasma	69	
	corticosterone		
4.5	The effect of OLZ on SRS-induced changes in the expression of	70	
	BDNF in PFC and AMY		
4.6	Effect of OLZ treatment on the expression of pERK/ERK in PFC	71	

4.7	Effect of OLZ treatment on the expression of pERK/ERK in AMY		
4.8	Effect of OLZ treatment on the expression of CREB in PFC, AMY	73-74	
4.9	Effect of OLZ on the expression of Caspase-3	75	
5.1	Schematic diagram of the experimental protocol of APZ in PTSD	86	
5.2	Effect of APZ on open arm entries in EPM	90	
5.3	Effect of APZ on open arm time spent on EPM	91	
5.4	Effect of APZ on fecal pellets on EPM	92	
5.5	Effect of APZ on immobility period	93	
5.6	Effect of APZ on Y-maze Trail-I	94	
5.7	Effect of APZ on Y-maze Trail-II	95	
5.8	Effect of APZ on SRS-induced plasma corticosterone level	96	
5.9	APZ induces the expression of BDNF	98	
5.10	Effect of APZ treatment on the expression of pERK in PFC	99	
5.11	Effect of APZ treatment on the expression of pERK in AMY	100	
5.12	APZ promotes the expression of CREB	101	
5.13	APZ inhibits the expression of Caspase-3	102	
6.1	RIS treatment enhances BDNF formation	118	
6.2	RIS decreases the pERK expression in PFC	119	
6.3	RIS decreases the pERK expression in AMY	120	
6.4	RIS enhances the expression of CREB	121	
6.5	RIS mitigates the Caspase-3 expression	123	

List of Tables

Table No.	Table Captions	Page No.
4.1	Effect of OLZ and PAX in the open arm	64
4.2	Effect of OLZ and PAX in trial-1 and trial-2	66
5.1	APZ Effect on 5HT in SRS rats brain regions	96
5.2	APZ effect on DA in SRS rat brain regions	96
6.1	RIS Reduced SRS-Induced Anxiety-Like Symptoms in EPM Test	111-112
6.2	RIS improved SRS-induced loss in spatial recognition memory in Y-maze test	114
6.3	RIS effect on 5HT in SRS rats	114
6.4	RIS effect on DA in SRS-induced rat brain	115

List of Abbreviations and Symbols

%	:	Percent
±	:	Plus or minus
μl	:	Microliter
μg	:	Microgram
ng	:	Nanogram
μm	:	Micrometre
pg	:	Picogram
g	:	Gram
h	:	Hour
kg	:	Kilogram
mg	:	Milligram
mM	:	Millimolar
М	:	Molar
mL	:	Millilitre
α	:	Alpha
β	:	Beta
γ	:	Gamma
κ	:	Карра
2	:	Greater than or equal to
=	:	Equal to
°C	:	Degree centigrade
mmol	:	Millimoles
рН	:	Potential of hydrogen
L	:	Litre
dL	:	Decilitre
>	:	Greater
<u> </u>	:	Less than or equal to
Ca ⁺²	:	Calcium
BDNF	:	Brain-derived nerve growth factor

CREB	:	Cyclic AMP responsive element binding protein
p-ERK	:	Phosphorylated extracellular regulated kinase
ERK	:	Extracellular signal-regulated kinase
APZ	:	Aripiprazole
OLZ	:	Olanzapine
RIS	:	Risperidone
EPM	:	Elevated plus-maze
Plasma Cort	:	Plasma corticosterone
NE	:	Norepinephrine
5HT	:	Serotonin
DA	:	Dopamine
5HIAA	:	5-Hydroxy Indole acetic acid
HVA	:	Homovanilic acid
WHO	:	World Health Organization
i.v.	:	Intravenous
i.p.	:	Intraperitoneal
p.o.	:	Peroral
rpm	:	Revolutions per minute
mU	:	Milliunits
U	:	Units
∞	:	infinity
V	:	Volt
<u> </u>	:	Less than or equal to
VS	:	Versus
&	:	And
mmHg	:	Millimeter of mercury
pg	:	Picogram