
CHAPTER 1
Introduction

Polymer is a large macromolecule that consists of repetitive units

called monomers [1–3]. Polymers can be classified in various cat-

egories: (i) structure-wise, (ii) based on composition (different

kinds of monomers), and (iii)source or origin wise. The functionality (f ′)

is a parameter which is defined as the number of reactive end-groups as-

sociated with a monomer [2–5]. For f ′ < 2, polymerization does not take

place and hence, polymer cannot be formed. For f ′ = 2, a linear poly-

mer chain can grow, while f ′ > 2, a complex structure appears such as

branched polymer, cross-linked polymers, etc. In Fig. 1, we show cases

for f ′ ≥ 2.

Polymers may be classified in terms of its constituent monomers. If

monomers are identical, it is termed as homopolymer, whereas if monomers

are different, that is known as heteropolymer. Heteropolymers may fur-

ther be classified as random copolymer, block copolymer. In a random

copolymer, no periodicity is maintained between different kinds of monomers

[4, 6]. In contrast, in the block copolymer, a block of two or more

monomers gets repeated along the polymer’s backbone. In Fig. 1 we
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Figure 1.1. Schematic representation: Polymer classification based on func-
tionality.
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Figure 1.2. Schematic representation: Polymer classification based on different
kind of monomer
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Figure 1.3. Examples of monomers of synthetic polymer

illustrate some examples of homo and heteropolymers.

There are two different types of polymer, namely, (i) synthetic poly-

mers, and (ii) natural polymers. Synthetic polymers are synthesised in

the laboratory, such as polyethylene, polyvinyl chloride, polypropylene,

etc., where the repetitive units are ethylene, vinyl chloride, propylene re-

spectively (Fig. 1) [7, 8]. On the otherhand, proteins, RNA, DNA, polysac-

charides, etc., are natural polymers, also known as biopolymers.

Proteins are made up several smaller units called amino acids that are

attached to one other by peptide bonds forming a long chain [9, 10].

Amino acids are composed of amino (−NH2) and Carboxyl (−COOH)

functional groups along with a side chain (R-group) which is unique for

each amino acid. There are 20 different kinds of amino acids linked by

peptide bonds to form a unique three-dimensional structure of the pro-

tein. There are four stages in protein folding. The linear sequence of

amino acids is known as the primary structure. The hydrogen bonding

between amino and carbonyl groups often folds into a two-dimensional

β-sheet or α-helix, which is known as a secondary structure. The combi-

nation of folds and formations in a single linear chain forms polypeptides

which are called tertiary structures. Lastly, multiple polypeptide chains



3

Figure 1.4. Various stages of protein folding. Image is taken from https :
//courses.lumenlearning.com/microbiology/chapter/proteins/

fold into a complex quaternary structure [11]. The occurrence of the

structures during folding are shown in Fig. 1.4.

Nucleic acids (DNA and RNA) are another examples of biopolymers.

Nucleotides are the repetitive units of DNA and RNA which are composed

of a nitrogenous base, sugar, and phosphate [9, 12]. While sugar and

phosphate are the same for each nucleotide, there are four nitrogenous

bases, namely Adenine (A), Thymine (T), Guanine (G), and Cytosine (C),

in the case of DNA (Fig. 1.5). While for the RNA, Thymine (T) is replaced

by Uracil (U). There is a Watson-Crick interaction between two single

stranded DNA (ssDNA) where A makes base pair with T by two hydrogen

bonds, whereas G pairs with C by three hydrogen bonds. This makes G-C

base-pairs stronger in compare to AT base-pairs. This is known as comple-

mentary base-pairing. In double stranded DNA (dsDNA), the two strands

of the DNA are antiparallel to each other, determined by the position of

sugar and phosphate classified by 3′ and 5′. The 5′ and 3′ designations

refer to the number of carbon atoms in Deoxyribose molecules to which

a phosphate group gets attached.

In the living cell, DNA is usually found in the nucleus. It contains all

the genetic information and transfer it to another cell during cell divi-

sion. During cell division, DNA undergoes through the process of repli-

cation where the genetic information of mother DNA is being copied to

the daughter DNA [13]. There is another biological process known as

transcription, where RNA gets synthesized from the DNA [9, 14]. Both

these processes require the unwinding of dsDNA into two single strands
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Figure 1.5. Schematic representation of dsDNA structure. Im-
age taken from https : //www.sigmaaldrich.com/IN/en/technical −
documents/protocol/genomics/sequencing/sanger − sequencing



5

Table 1.1. Range of forces and corresponding displacements for various exper-
imental probes.

Techniques fmax −min(N) ∆(x)min (m)

Optical tweezers 10−13 − 10−10 10−9

AFM 10−11 − 10−7 10−10

Micro-needles 10−12 − 10−10 10−9

mediated by enzyme action [15]. In vitro, the separation is induced either

by temperature (DNA melting) or change in solvent conditions (DNA de-

naturation) [16]. The melting temperature (Tm) is usually defined when

half of the base-pairs of the given strand are opened [17]. The melting

temperature usually occurs in the range of ≈ 85◦C to 95◦C depending

upon the sequences. For A-T rich sequence, melting temperature is found

to be less compared to G-C rich region. This is because A-T binds with

two hydrogen bonds, whereas G-C binds with three hydrogen bonds[18].

In vivo, replication and transcription take place at much lower temper-

ature (36 − 38 ◦C). In fact the separation of dsDNA in vivo is mediated

by different types of enzymes (DNA helicase, polymerase, etc.) which

exerts a force which eventually reduces the melting temperature. Moti-

vated by this, efforts are being made in recent years to measure the forces

responsible for processes like DNA unzipping, protein unfolding, etc.

In the following, we discuss about the different types of forces in-

volved in the biological processes [19, 20]. The smallest force ranges be-

tween 4−6 pN arising due to stochastic fluctuations. The molecular forces

arising due to vander waals interaction and hydrogen bonding usually lies

in the range of 8−120 pN. The largest force is arising due to stretching of

covalent bonds which is of the order of 103 pN. The single molecule force

spectroscopy (SMFS) experiments allow us to measure these forces. For

example, optical tweezer measure the force in the range of 0.1− 100 pN,

whereas Magnetic tweezer can measure 10−3− 104 pN, AFM 10− 104 can

measure force (Table 1.1) [21]. Therefore, it is now possible to study
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the force induced transitions in vitro, e.g. folding-unfolding transition of

protein, stretching of DNA, unzipping transition of dsDNA, etc.

New challenges have been seen in the area of protein unfolding, DNA

unzipping etc. when removed from an artificial, controlled environment

in vitro and relocated to the cellular environment [22]. Cells have a

crowded environment, because they are composed of various types of

biomolecules which occupy a large fraction of the total volume. It is

now known that such confinement can influence the stability, dynamics

and function of biomolecules. Understanding of equilibrium properties

of a biopolymer in confined geometry thus become important because

of the shift in the balance between the conformational entropy and the

internal energy [17, 23], which leads polymers to modify their shape

under external parameter, such as, changes in temperature, or pH of the

solvent, or external force. Such confinement may delineate the possible

mechanism involved in many biological processes, such as, translocation,

transport of protein from the nucleus, ejection of viral DNA from the

capsid, etc. [24, 25].

While most experiments and theorists focus on driven system, there

is also considerabale interest related to the unforced translocation. An

interesting example is when a pore connects two volumes of the solvent of

different qualities in case of nascent polypeptide which translocate from

cytoplasm of eucaryotic cell to the lumen of the endoplasmic reticulum

[26]. It is pertinent to mention here that in some cases the shape of

the pore interface (e.g. Mycobacterium Smegmatis Porin A (MSPA), HIV

capsid, etc.) looks similar to the cone shaped channel [27]. One of the

objective of present thesis is to study the effect of asymmetry arising due

to cone shaped channel on the DNA melting and compare it with a pore

on the flat interface.

In this context confinement arising due to impenetrable surface have

been studied quite extensively in the context of adsorption of biopoly-

mers on the surface. This has potential applications in biocompatibility

of surgical implants, prosthetics depends on the cellular interaction with
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metal /non-metal surface, etc. There is a considerable amount of stud-

ies related to adsorption of biopolymers, e.g., proteins in serum and blood

which adsorps to the substrate [28, 29]. On the other hand, adsorption of

DNA and RNA molecules on gold nanoparticle surface has utmost impor-

tance due to RNA sequencing, which is useful for early clinical diagnosis

of AIDS virus, hepatitis C, COVID-19 virus, etc. [30, 31]. The dynam-

ics of dsDNA adsorption on the gold surface are different from ssDNA or

RNA as flexible ssDNA uncoil its bases easily absorbed by the charged sur-

face. While the rigid dsDNA is itself stable due to double helix geometry

[32]. This makes the study of adsorption of dsDNA on attractive surface

noteworthy and is worth exploring.

Apart from temperature, solvent and confinement, another property

which drives the dynamics of biopolymer is different types of gradients in

the living system, such as chemical gradient, thermal gradient, gradient

arising due to geometry, etc [33–35]. A chemical gradient (salt gradient)

may increase or decrease the motion of biomolecules [36]. Similarly, a

thermal gradient may give rise convection flow [37, 38]. Different ge-

ometries, such as MSPA, viral capsid induces geometrical gradient aris-

ing due to the gradual increase or decrease in configurational entropy of

biopolymers as it approaches or go away from the confined geometry.

Manipulation of configurational properties of biomolecules in above

mentioned processes (melting, unzipping, adsorption-desorption, etc.)

may be understood in the framework of statistical mechanics. The so-

phistication in computer simulation studies may shed deeper insight in

the mechanism involved in such processes. The main advantage of com-

puter simulations relies on explicitly modeling all the degrees of freedom

of the biopolymeric system. Despite limitations in length and time scales,

the physical properties of the biopolymers in a given constraint can be

extracted quite accurately using the simulation.
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1.1 Theoretical modelling of polymer

In recent years, a large amount of data has been generated by different

SMFS techniques, which provided the various properties of biomolecules

[39]. The two state model explains some of the properties as seen in the

experiments [40]. However, there are many intriguing issues, which are

beyond the two state model. A considerable interest has been generated

to understand such issues. Since, the number of monomers in these ex-

periments varies in the range 104− 105, different models of the polymer /

biopolymer have been developed in the framework of statistical mechan-

ics. Broadly they are classified in two categories: (i) Continuum model,

and (ii) lattice model.

The simplest representation of polymer is a random walk (RW) model

which can be realized both in continuum and discrete space. The under-

lying concept is straightforward, that the walk can intersect itself. In con-

tinuum space model, there is no restriction in bond length (distance be-

tween two monomers), whereas in lattice RW follows fixed bond length.

Next we will discuss the random walk model and illustrate its limitations.

These limitations may be overcome by self-avoiding walk (SAW) which is

a subset of random walk, but resembles many properties of polymers.

1.1.1 Continuum model

A polymer chain in solution changes its shape continuously, where the

instantaneous shape is known as conformation. The Freely Jointed Chain

(FJC), Gaussian chain, Worm-like chain (WLC), etc., are few examples of

modelling of polymer in the continuum limit. All these models belong to

the class of ideal polymer where monomer of the chain can intersect and

belong to the same universality of random walk [3, 5].

Freely Jointed Chain (FJC)

The simplest polymer model is the Freely Jointed Chain (FJC) (Fig. 1.6).

The bond length (b) is fixed between two adjacent monomers. We may

associate a vector ~r with each bond which orients randomly and is in-



1.1. Theoretical modelling of polymer 9

-2 -1 0 1 2
R

0

0.2

0.4

0.6

0.8

1

P
(R

)

Figure 1.6. Probability distribution P (~R,N) for FJC model of polymer.

dependent of its previous bonds [3, 5]. For a polymer of N bonds with

starting end at origin and the other end with position vector ~RN may be

defined as

~R(N) =
N∑
l=1

~rl, (1.1)

The probability distribution of end-to-end vector ~R(N) is given by,

P (~R,N) =

∫
d~r1

∫
d~r2....

∫
d ~rNδ(~R−

N∑
i=1

~ri)φ(~ri). (1.2)

φ(~ri) is the bond-vector distribution which is given by,

φ(~ri) =
1

4πb2
δ(~r − b) (1.3)

which inturn gives

P (~R,N) =
3

2πNb2
exp(− 3R2

2Nb2
) (1.4)

A fixed bond length in physical system is a far-fletched simplification

and in general there are fluctuations found in bond lengths which are
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Figure 1.7. Worm-like chain model

independent and given by,

〈~rl〉 = 0

〈~rl~rm〉 = b2δlm
(1.5)

with the distribution,

φ(~r) = (
3

2πb2
)3/2exp(−3r2

2b2
) (1.6)

This is the Gaussian distribution of the distance between two points

along the length of the polymer and may be written as,

P (~rl − ~rm, l −m) = (
3

2πb2|l −m|
)3/2exp(

−3R2

2|l −m|b2
) (1.7)

A continuous description of the polymer chain where energy is as-

sociated with bending of chain is termed as Worm-like chain model

(Fig. 1.7). If s denotes the distance of a point on the polymer from one

end, then the function ~r(s) denotes the position vector of the particular

point with s running from 0 to L. The tangent vector at any point s is

given by,

t(s) =
∂ ~r(s)

∂s
(1.8)

where t(s) is a unit vector i.e. tangent to the curve at point s. Now,

in order to define bending energy, we need curvature parameter ( κ(s))
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which is defined as,

κ =
1

R
= lim

∆s→0

∆θ

∆s
= |∂

2~r(s)

∂s2
| (1.9)

This in turn gives bending energy of WLC model which is quadratic in

curvature κ and can be written as,

E =

∫ L

0

ds[
a

2
(
∂2~r(s)

∂s2
)2] (1.10)

where a is the rigidity parameter which has the dimension of (energy ×
length).

1.1.2 Lattice model

Polymer modelling in discrete space is known as the lattice model of poly-

mer. The simplest model of the polymer is a random walk model where

it follows the mechanism of the FJC chain with restricted bond angles

associated with the lattice. The polymer size characteristics are the same

as 〈~ri〉 = 0 and 〈r2〉 = Nb.

In physical systems, random walk representation of polymers holds

less significance as a single point in space (lattice) can be accessed by

an infinite number of monomers. In order to avoid this discrepancy in

modelling, there are several models which are shown in Fig. ??. One of

them is directed walks (DW) model in which self-interaction is excluded.

There are two types of DWs: (i) Fully Directed walk (FDW), and (ii)

Partially Directed walk (PDW). In FDW a walker can move only along

the preferred direction. For example, in a two-dimensional lattice model,

only +x and +y direction. In PDW, a walker can move along±y direction,

however it can move only in +x direction, i.e. walker cannot go backward

[4].
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Figure 1.8. Schematic representation of the (a) Random walk (RW), (b)
Fully Directed walk (FDW), (c) Partially Directed Walk (PDW), and (d) Self-
avoiding Walk (SAW).

1.1.3 Self-avoiding Walk

The oversimplification of DW makes it unrealistic to model the polymer

which can acquire the confirmation in any direction (±x, ±y, and ±z).

The occupancy of the same lattice site by the walker arises when the

walker moves in ± direction. In order to avoid self occupancy, the con-

cept of excluded volume is introduced where two monomers cannot oc-

cupy the same site. If this concept is introduced in RW, we get a self-

avoiding walk (SAW) where the walker is not allowed to visit sites which

are already visited by the walker (Fig. ?? (d)). For this model,

〈R2〉 = N2ν , (1.11)

where ν = 3
d+2

which is known as the Flory relation. This is the remark-

able relation which gives the exact value of ν = 1, 0.75, 0.5 for dimension

d = 1, 2 and 4 respectively and differs by 0.001 to the best reported value

for d = 3 [1, 2, 4]. The relation may be obtained by considering the self-

avoiding walk of N monomers with mean field interaction energy among

the monomers in three dimension as,

U ∝ N2b3

R3
(1.12)
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Therefore, the total free energy is given by,

F

KBT
=
N2b3

R3
+

R2

Nb2
(1.13)

Now, minimizing the free enrgy for equilibrium condition at R̄ reduces to

the following equation,

(∂F/kBT
∂R

)
R=R̄

= 0 ⇒ R̄ ∝ bN3/5, (1.14)

This gives ν ≈ 3/5, very close to the experimentally observed value ν =

0.59.

de Gennes and des Cloizeaux [2] established a relation between poly-

mer statistics and q-vector spin model of magnetization in the limit q → 0.

This correspondence allows polymer science to be benefitted from the

vast knowledge of critical phenomena. A polymer chain in good solvent

can be described by SAW [3, 4]. If z is step fugacity in the SAW, then

associated generating function can be expressed as:

C(z) = lim
p→∞

1

p

∑
N=1

CN(p)zN (1.15)

where p is the number of lattice points and CN is the distinct number of

SAWs for a N step walk. We define,

C̄N = lim
p→∞

CN(p)

p
(1.16)

The number of configurations (CN) increases exponentially. It is reported

that the number of configurations,

C̄N ∼ µNNγ−1 (1.17)

where, µ = log(CN+1

CN
) = 2.638159.. for square lattice and γ = 43/32 is

critical constant.

Apart from self-avoidance, polymer can have long range interaction in
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monomer − monomer (short range)

monomer −monomer (long range)

monomer − solvent 

solvent − solvent

Figure 1.9. Schematic representation of different types of interactions in the
solvent.

the solution [2]. These interactions are well descibed in three categories

(Fig. 1.9):

• Monomer - Monomer interaction ∼ T
2
χMMφ

2.

• Monomer - Solvent interaction ∼ TχMSφ1− φ

• Solvent - Solvent interaction T
2
χSS(1− φ)2

Where T is the temperature and φ is the fraction of sites occupied by

monomers in solution. The Flory interaction parameter is given by,

χ = χMS −
1

2
(χMM + χSS) (1.18)

Now, if χ is positive, then the solvent is good. If χ is negative, solvent

is poor and for χ = 0 solution is athermal (Free energy is only from en-

tropy) [1, 2]. In a good solvent, the polymer is in coil form, whereas

in the poor solvent, the self attraction in free energy dominates to have

a globular shape of the polymer. Changing the solvent quality or tem-

perature leads polymer to acquire conformation from the coil state to

the globule state and the transition is referred to as coil-glouble transi-

tion. The temperature at which the coil-glouble transition takes place is

known as θ-temperature [4].
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1.2 Modelling of DNA

In the following we discuss few models of DNA which successfully de-

scribe the equilibrium properties of DNA.

1.2.1 Poland-Scheraga Model

Poland-Scheraga model considers the DNA molecule is composed of al-

ternating region of zipped and bubbles (regions with broken base-pairs)

formed by two linear polymer chains (strands) interacting with each

other with suitable constraint [41]. The bubble state (loop) is entrop-

ically favorable, while the zipped region (bound) is energetically rich.

Both of these factors contribute to making the free energy minimum in

the equilibrium condition. In this simplified description, details of DNA,

e.g. stiffness, helicity, chemical composition, excluded volume effect of

nucleotides etc. have been ignored. Later the model was generalized by

Fisher to take care of the excluded volume effect [42].

1.2.2 Peyrard and Bishop Model

In 1989, Peyrard and Bishop proposed a dsDNA model, which assumed

that each strand of dsDNA is a series of point masses (beads), correspond-

ing to each nucleotide [43, 44]. In this model, the vibration of each

bead in transverse direction along the strands is represented by harmonic

potential. While Morse potential used in the P-B model represents the

interactions within complementary strands as well as the solvent effect.

These models do not allow formations of hairpin, DNA condensations,

non-native interactions between bases. The role of conformational en-

tropy is minimized in these models, as they are mostly (1+1) dimensional

models. These shortcomings can be resolved in the lattice representations

of DNA.
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Figure 1.10. Schematic representations of lattice moddels of DNA: (a)-(d)
represent the possible models for lattice representations of DNA. For model A,
(a) and (b) are two possible states with (c) representing a possible ground state.
For model B, (a) represents the ground state and (d) represents a partial bound
state. Here, (d) differs from (b) in the nature of interactions represented by
the dotted lines. In model B, (c) has no valid interaction and would represent
an open state.

1.2.3 Lattice model of DNA

In minimal representation of DNA (lattice model)(Fig. 1.10), we consider

two models A and B, which differ only in the interaction type in between

the two strands [45]. Let us consider two mutually attracting self avoid-

ing polymer chains that can not cross each-other. Monomers are called

’bases’ and interaction among ’bases’ are called base-pair. There is an at-

tractive interaction between monomers or bases only if they are of oppo-

site strands and are nearest neighbors on the lattice. This nearest neigh-

bor attraction mimics the short range nature of hydrogen bonds in DNA.

In model A, any monomer of one strand can interact with any monomer

of the other strand. In model B only native base-pairing is possible such

that ith monomer of one strand makes base-pair with ith monomer of the

other strand. In both models, base-pairing energy is ε = −1 and originat-

ing lattice point of each strand is kept fixed with a single lattice parameter

distance.
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1.3 Methods: Theory and Simulations

1.3.1 Exact Enumeration technique

The thermodynamic properties associated with the collapse of polymer

or unzipping transition of DNA are obtained from the partition function

which can be written as a sum over all possible configurations of polymer

or DNA[4],

ZN(ω, u) =
∑
m,y

C(m, y)ωmuy. (1.19)

Here N is the chain length of the polymer or of each of the two strands of

DNA. ω = exp(1/T ) is the Boltzmann weight associated with each non-

bonded nearest neighbor and m is the number of nearest neighbors in

case of polymer. Now, for dsDNA representation, m describes the number

of bound base-pairs. u = exp(g/T ) is Boltzmann weight associated with

the force. Here, y is the distance of interest. As an example, for DNA

unzipping by pulling two strands apart, y represents the distance between

the two ends of the DNA. Analysis of the partition function through series

analysis gives greater accuracy by suitable extrapolation technique. To

achieve the same accuracy by the Monte Carlo method, a chain of about

two orders of magnitude larger than in the exact enumeration method

must be considered.

1.3.2 Monte-Carlo simulation

Real polymers comprise a large number of monomers (104−105), so a bet-

ter understanding of polymer behavior on a large length scale is needed

sometimes [46]. Various Monte-Carlo techniques, such as Monte Carlo

Metropolis, Wang-Landau simulation, Bond Fluctuation model, Pruned

Enriched Rosenbluth Method (PERM), are used to study the large system

[46]. Next, we describe briefly different moves associated with Monte-

Carlo simulation.
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Figure 1.11. Schematic representation of various moves: a) end-point rotation,
b) kink, and c) crankshaft moves. These are called local moves. Figure (d)
represents pivot move (global move) where the rotation of polymer can be done
after ith monomer.

Moves

The accuracy of Monte-Carlo methods depends on the structural moves

which try to scan the configurational space accessible to the polymer as

much as possible. Moves are broadly categorized in two ways,

Local moves

Single monomer moves such as endpoint rotation (one bond length changed),

corner flip (monomer in between two bonds changed) are often used.

Whereas crankshaft is a local move where two monomers and three bonds

positions are changed (Fig. 1.11). However, these moves suffer from cor-

related configurations [47, 48].

Global moves

Pivot move in lattice polymer simulation is an efficient move where any

monomer(i) along the polymer (length N) is chosen randomly and by
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Figure 1.12. Schematic representation of global pull moves. This figure is taken
from the ref. [49]

arbitrary rotation (90 or -90 degree rotation) the rest of the polymer

(i + 1 → N) orientation position is changed. This works nicely for long

polymer chains but lacks efficiency in compact polymer structures or low-

temperature cases. To avoid that, another efficient Monte Carlo move,

Pull moves, is used, which is very efficient in generating compact self-

avoiding walks in lattice settings.

In the pull move (Fig. 1.12) a) vertex i shifts to a free lattice site L.

(b) In the case where the fourth corner site C holds vertex i−1; the move

is complete. (c) Otherwise, vertex i − 1 is shifted to C. This does not

complete the move. Then (d) as it does not complete the move, vertex

i− 2 is moved to the lattice site earlier occupied by vertex i, vertex i− 3

now is shifted to the site earlier held by vertex i − 1, and so on until

a valid self-avoiding configuration is reached. In this example, i − 3 is

shifted which completes the move.

The Monte Carlo technique allows as much as possible independent
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configuration based on a random number generator. Any physical observ-

able can be calculated by using the average of all such configurations.

The master equation governs the probability of choosing a new configu-

rational state n over m:

dPn(t)

dT
= −

∑
n6=m

[ωnmPn(t)− ωmnPm(t)], (1.20)

where Pn(t), Pm(t) is the probability of having the system (polymer) at

state n and at state m in time t. ωnm and ωmn are the transition probabil-

ities from state n to m and m to n respectively. For equilibrium condition
dPn(t)
dT

= 0, leading to

ωnmPn(t) = ωmnPm(t) (1.21)

This is known as detailed balance condition and must be satisfied during

the simulation run. So, the ratio of transition probabilities,

ωnm
ωmn

=
Pm
Pn

(1.22)

And the selection criterion is given by,

ωnm = min(
Pm
Pn

, 1) (1.23)

This is the basis of the Monte Carlo method. In the next section, we

briefly describe two important MC simulation techniques: (i) Metropolis

technique (ii) Wang-Landau technique.

1.3.3 Metropolis technique

Starting with an initial configuration of polymer with energy En at state

n, the probability of the state is given by [46],

P (En, t) =
exp(−EnKBT )

Z
(1.24)
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Where Z is the partition function and is given by,

Z =
∑
n

exp(− En
KBT

) (1.25)

In general during the simulation En is unknown, but this is bypassed by

the Markov process as we are interested only on the selection criterion

which depends on Pm

Pn
or the factor exp(−∆E/KBT ), where ∆E = En −

Em. So, the probability of choosing the state m over n eventually depends

on,

ωnm = min(exp(− ∆E

KBT
), 1) (1.26)

which depicts that if Em < En, the probability of choosing the m state

is 1. This is in demand because the system always tends to have lower

energy (equilibrium). If Em > En then the exponential factor is compared

with random number r (0→ 1) and if r < exp(− ∆E
KBT

), then only the state

with energy Em is considered, otherwise simulation carries on with the

previous energy En. The process usually goes on for 2 x 108 steps where

108 steps are for equilibration, and the next 108 steps are for calculating

average properties. During the simulation (after the equilibrium), various

properties of the system is measured, and average values are given by,

〈A〉 =
1

S

S∑
i

A(xi) (1.27)

where S is the total number of Monte Carlo steps. This is very straightfor-

ward to work with but comes with difficulties. As the simulation directly

depends on the temperature, there are some metastable states at low tem-

peratures where polymer gets trapped, and averaging does not give an

accurate picture. Also, the polymer does not behave accurately near the

phase transition, which is known as critical slowing down. From systems

where transitions from one state to another as a function of time (Monte

Carlo moves) need to be studied, the Metropolis method fits the bill. But

for the thermal phase diagram where polymer configurational states for
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the whole temperature range need to be analyzed, the Metropolis method

lacks accuracy.

1.3.4 Wang-Landau technique

The challenges in determining the average thermodynamical properties

in low temperatures can be overcome by generalized histogram tech-

niques such as the Wang-Landau simulation method. Wang-Landau sim-

ulation deals with the density of states (DOS) g(E), which is the number

of configurations for a given energy state E and is independent of the sys-

tem temperature [46]. In this case, the walker moves randomly on the

energy space of the system and visits every distinct energy point corre-

sponding to different conformations of the polymer. If the maximum and

minimum energy of the polymer is known prior to the simulation (which

may be known by ground-state search of the model), that energy space

Emin < E < Emax can be divided uniformly in energy bins (Ei) with equal

interval. The initial DOS attributed to each E is g(E) = 1 and h(E) = 0

for all E, where h(E) is the quantity that monitors the flatness of the

histogram of energy visits of the walker. Along with the modification fac-

tor f (which is initially set ln(f) = 1), h(E) controls the simulation run.

A complete flow-chart diagram of Wang-Landau technique is shown in

Fig. 1.13.

A Monte Carlo trial move from a state A with energy EA to a state B

with energy EB is accepted on the basis of the transition probability

P (A→ B) = min(
g(EA)

g(EB)
, 1). (1.28)

After each successful move, we update DOS in the following way: g(EB) =

g(EB) ·f and h(EB) = h(EB)+1, otherwise g(EA) and h(EA) are updated

in the same fashion. Energy distribution in h(E) is checked in each run,

once h(E) ≥ 0.8 < h(E) >, where < h(E) > is the average histogram,

then the modification factor is reduced to fi+1 =
√
fi. The simulation con-

tinues until ln(f) reaches its final value 10−6, which is a standard choice
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for WL simulation and then the final g(E)s are extracted from the system.

We can calculate the final DOSs, and corresponding partition function of

the system as,

Z(β) =
∑
E

g(E) exp(−βE) (1.29)

Now, to calculate the physical quantities of the system (average nu-

cleotide density, average number of base pairs, end-to-end distance etc.),

we perform the simulation once without updating the final DOSs g(E)

for all E and following the same acceptance rule (Eq. 5). When all the

bins of the energy histogram h(E) have reached a sufficient number of

hits (∼ 107), we stop the sampling and the observable quantity Q can be

calculated in the following way:

< Q(β) >=
1

Z(β)

∑
E

g(E) exp(−βE)Q(E), (1.30)

where Q(E) is expressed as,

Q(E) =

∑
Q h(E,Q)Q∑
Q h(E,Q)

, (1.31)

where, h(E,Q) is the two dimensional histogram in E and Q.

Here we have briefly surveyed the literature on polymers and biopoly-

mers in confined environment. We have highlighted some significant is-

sues which will be addressed in the following chapters. In order to do this

we have discussed few models of biopolymers and techniques required to

calculate the physical observable in the framework of statistical mechan-

ics.
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Figure 1.13. Flowchart of Wang-Landau algorithm


