Contents

Front Page i
Acknowledgements v
1 Introduction 1
1.1 Theoretical modelling of polymer 8
1.1.1 Continuum model 8
1.1.2 Lattice model 11
1.1.3 Self-avoiding Walk 12
1.2 Modelling of DNA 15
1.2.1 Poland-Scheraga Model 15
1.2.2 Peyrard and Bishop Model 15
1.2.3 Lattice model of DNA 16
1.3 Methods: Theory and Simulations 17
1.3.1 Exact Enumeration technique 17
1.3.2 Monte-Carlo simulation 17
1.3.3 Metropolis technique 20
1.3.4 Wang-Landau technique 22
2 Effect of solvent gradient inside the entropic trap on polymer migration 25
2.1 Introduction 25
2.2 Model and Method 28
2.3 Free energy landscape 33
2.4 Configurational properties of polymer during migration 38
2.5 Summary 42
3 Forced induced melting of DNA in presence of an attractive
surface 45
3.1 Introduction 45
3.2 Model and method 47
3.3 Constant temperature 49
3.4 Constant force 52
3.5 Summary 55
4 Statistical mechanics of DNA melting in confined geometry 57
4.1 Model and Method 60
4.2 Thermal melting profile of DNA attached at the edge of pore 63
4.3 Melting profile and free-energy landscape of DNA 68
4.4 Summary 73
5 Effect of solvent gradient on DNA confined in a strip 75
5.1 Model and method 79
5.2 Distribution of nucleotide and base-pair across the strip 85
5.3 Effect of sequence on the melting profile 87
5.4 Summary 89
6 Conclusions 91
References 95

Figures

1.1 Schematic representation: Polymer classification based on functionality. 1
1.2 Schematic representation: Polymer classification based on different kind of monomer 2
1.3 Examples of monomers of synthetic polymer 2
1.4 Various stages of protein folding. Image is taken from https : //courses.lumenlearning.com/microbiology/chapter/proteins/ 3
1.5 Schematic representation of dsDNA structure. Image taken from https : //www.sigmaaldrich.com/IN/en/technical - documents/protocol/genomics/sequencing/sanger-sequencing 4
1.6 Probability distribution $P(\vec{R}, N)$ for FJC model of polymer. 9
1.7 Worm-like chain model 10
1.8 Schematic representation of the (a) Random walk (RW), (b) Fully Directed walk (FDW), (c) Partially Directed Walk (PDW), and (d) Self-avoiding Walk (SAW). 12
1.9 Schematic representation of different types of interactions in the solvent 14
1.10 Schematic representations of lattice moddels of DNA: (a)-(d) represent the possible models for lattice representa-tions of DNA. For model A, (a) and (b) are two possiblestates with (c) representing a possible ground state. Formodel B, (a) represents the ground state and (d) repre-sents a partial bound state. Here, (d) differs from (b) inthe nature of interactions represented by the dotted lines.In model B, (c) has no valid interaction and would repre-sent an open state.16
1.11 Schematic representation of various moves: a) end-point rotation b) kink c) crankshaft moves. These are called local moves. Figure (d) represents pivot move (global move) where the rotation of polymer can be done after $i^{\text {th }}$ monomer. 18
1.12 Schematic representation of global pull moves. This figure is taken from the ref. [49] 19
1.13 Flowchart of Wang-Landau algorithm 24
2.1 Schematic representations of polymer chain migration through an in-homogeneous channel. Channel has three different re-gions (I, II, and III) of a certain length ($l_{1}=14, l_{2}=10$ latticeunits) width ($h=12$ lattice units) and different solvent qual-ity (good, poor, and solvent): (a) Model A: Channel withoutentropic trap and solvent interaction gradient (in region II) isalong the x-direction; (b) Model B: Channel with entropic trapof depth $d=10$ lattice units and solvent interaction gradient (inregion II) is along the x-direction. The red dashed line shows thenon-bonded nearest neighbor pairs along x and y-direction andcorresponding Boltzmann weights are represented by τ_{x} and τ_{y};(c) Model C is same as model B, but the solvent interaction gra-dient inside an entropic trap (region II) acts along the transversedirection (y-axis); (d) Model D is same as the model C, but thesolvent interaction gradient has the reverese sign in compare tomodel C.29
2.2 Variation of the free energy with anchoring coordinate (x) for different solvent interaction gradient ($\Delta \epsilon$): (a) for model A (b) for model B. 33
2.3 Variation of the migration time (τ_{m}) with $\Delta \epsilon$ for model A and model B. In the inset we show the region where migration time for the model B exceeds the model A. 35

> 2.4 The free energy landscape for different values of $\Delta \epsilon:$ (a) for the model C; (b) for the model D. The arrows shown in Fig. (a) indicate the free energy barrier and free energy well. 36
2.5 (a) Variation of the migration time with $\Delta \epsilon$. (a) for the model C; (b) for the model D. The inset of Fig. (a) shows the minimum of migration time for model C; (b) Same as (a), but for the model D.37
2.6 The average number of monomers inside the trap $\left(\left\langle N_{T}\right\rangle\right)$ for different $\Delta \epsilon$: (a) for model C; (b) for model D 39
2.7 (a) Variation of radius of gyration $\left(\left\langle R_{g}^{2}\right\rangle\right)$ with x for differ- ent $\Delta \epsilon$ for model C; (b) Variation of x-component of radius of gyration $\left(\left\langle R_{g x}^{2}\right\rangle\right)$ with x for different $\Delta \epsilon$ for model C; (c) Variation of y-component of radius of gyration $\left(\left\langle R_{g y}^{2}\right\rangle\right)$ with x for different $\Delta \epsilon$ for model C; (d-f) Same as Fig. (a,b,c), but for model D. 40
3.1 Schematic diagram showing the adsoprtion of different bases of DNA into gold-nanoparticle ($\mathrm{Au}-\mathrm{Np}$) surfaces. Image is taken from Ref.[90]. 46
3.2 (a) Schematic diagrams of DNA adsorbed on attractive surface. The strand near the surface is called strand-I (first strand). A force (g) is applied on the one end of other strand (strand-II) along the y direction. The surface adsorbed nucleotides are shown in red circles, while black circles represent the nucleotide of strand-II. y_{1} and y_{2} represent the distance of end nucleotides of strand-I and strandII from the surface respectively. Figure (b) and (c) represent some of the conformations of DNA in presence of attractive surface under the applied force g.48
3.3 Figures (a,b) show the variation of $\left\langle N_{p}\right\rangle,\left\langle N_{s}\right\rangle$, and $\left\langle N_{p s}\right\rangle$ with g at $T=0.5$ for different ϵ_{s}. (c, d) same as (a,b), but for $\left\langle y_{1}\right\rangle$ and $\left\langle y_{2}\right\rangle$. 50
3.4 Same as Fig. 3.3, but at higher temperature $T=1.0$ 51
3.5 Figures (a-c) show the variation of $\left\langle N_{p}\right\rangle,\left\langle N_{s}\right\rangle$ and $\left\langle N_{p s}\right\rangle$ with T at different value of g at $\epsilon_{s}=-0.5$. Figure (d-f) are same as (a-c), but for $\left\langle y_{1}\right\rangle$ and $\left\langle y_{2}\right\rangle$ 53
3.6 Same as Fig. 3.5 but for $\epsilon_{s}=-1.0$ 55
4.1 Schematic representations of dsDNA translocating through a conical shape pore. Figure A), B), C) shows different stages of translocation. Figure D) represents the associate current distribution during translocation. Whenever the DNA is translocating through pore there is residual current distribution $I_{\text {res }}$ which depicts the time of translocation. This figure is taken from ref [110] 58
4.2 Schematic representations of crystal structure of MSPA pro- tein. The figure is taken from the ref [110] 59
4.3 Schematic representations of dsDNA attached at different sites across the pore: (i) the cone-shaped channel (a-c), and (ii) the flat channel (d-f). Starting end of the dsDNA is kept fixed and the other end is free to move anywhere except the wall (a and b). To calculate the free energy barrier, we fix the dsDNA chain at varying distances from the interface (say, x). Here, x can be positive, negative and zero (interface). ϵ_{c} and ϵ_{o} correspond to the non-native attraction between the complimentary bases of the dsDNA. 60
4.4 Schematic representations of dsDNA chain attached at the interface: (a) dsDNA is completely inside the cone, (b) Completely outside the cone, and (c) One strand is inside the cone, while the other is outside and vice versa. 61

$$
\begin{aligned}
& \text { 4.5 Variation of fluctuation in base-pairs with temperature for } \\
& \text { the cases when DNA is attached at the edge of the pore: } \\
& \text { Open square represents when both strands are completely } \\
& \text { inside the cone, whereas solid square represents a case } \\
& \text { where both strands are completely outside the cone. Open } \\
& \text { circle stands for the case when both strands can be any- } \\
& \text { where. For the sake of comparison, we have shown the } \\
& \text { melting profile for the case when there is no confinement } \\
& \text { by solid circles. } 63
\end{aligned}
$$

4.6 (a) Variation of $\ln \left(\frac{P_{c}}{P_{o}}\right)$ with β for cone-shaped channel. The slope ΔF gives the free energy barrier; (b) Same as (a), but for flat case.
4.7 (a) The free energy barrier ΔF as a function of $\Delta \epsilon$. The linear dependence is apparent from the plot. (b) same as of (a) but for the flat interface pore. For a cone-shaped channel, it occurs at $\Delta \epsilon \neq 0$, where as for flat pore it occurs at $\Delta \epsilon=0$. Arrow indicates the value at which the freeenergy barrier vanishes.66
4.8 Variation of free energy as a function of $\left\langle N_{p o}\right\rangle$, whose one
end is fixed at the edge of (a) the cone-shaped channel. (b)
the flat channel. The free energy barrier occurs at maxima
of $F\left(\left\langle N_{p o}\right\rangle\right)$. 67
4.9 Melting profile of DNA across the pore $(x=-12$ to $x=$ 12 , including zero) for different solvent qualities across the pore: (a) for the cone-shaped channel, and (b) for flatshaped channel.69
4.10 Variation of $\left\langle N_{p o}\right\rangle$ and $\left\langle N_{p c}\right\rangle$ with temperature (T) for three sets of interactions and different starting positions of DNA ($x=-4,-2,-1,0,1,2$).70
4.11 shows the variation of $\left\langle m_{o}\right\rangle$ and $\left\langle m_{c}\right\rangle$ with temperature (T) for three sets of interactions and different starting positions of DNA ($x=-4,-2,-1,0,1,2$)71

4.12 Figures (a-c) show the free energy profiles of a DNA chain, whose starting points have been varied systematically from $x=-12$ to 12 for three sets of solvent interactions. (a) If the starting point of chain is far away from the edge, for a given set of interaction, the free energy remains the same for the cis and trans-side, whereas near the pore it is higher. A rough estimate of the free-energy barrier may be estimated from these plots. This figure also shows the effect of confinement on the free energy arising due to coneshaped channel and flat channel.(b) For this set of interaction, the difference of free energy between cone-shaped and flat channel vanishes, if the polymer is in the transside, however, the barrier height increases. (c) Same as Fig. b, but in this case, barrier height increases further. Triangle and circle correspond to the cone-shaped channel and flat-shaped channel, respectively.
 72

5.1 Deep sea hydrothermal vent ejecting mineral-rich chim
neys. Image credit: Oregon State University / CC BY-SA
2.0 76

5.2 a) Trapping and accumulation of DNA by convection and
thermophoresis. Thermophoresis drive the molecule to the
right. DNA gets accumulated in the bottom of the right b)
DNA convection cycle is shown. In each cycle DNA dena
tures by short primer and replicates by DNA polymerase.
This is taken from ref [139] 77
5.3 Schematic representations of end grafted polymers in cap- illary valve: (a) Low temperature (or poor solvent condi- tion); (b) high temperature (or good solvent condition).This is taken from ref [148] 78
5.4 Schematic representation of MASAW (two mutually selfattracting self avoiding walk) dsDNA chain on a square lattice in a confined system (strip of length L) kept at different temperatures (T_{H} and T_{L}). We mimic the thermal gradient in terms of the solvent gradient by assigning different base-pairing interactions (ϵ_{L} and ϵ_{H}) corresponding to lower and upper walls respectively. The Boltzmann weight for the base-pairing interactions (τ_{x} and τ_{y}) are depicted by dotted lines. For the homogeneous medium τ_{x} and τ_{y} are same, but for a system having solvent gradient, τ is a function of $y\left(\tau_{x} \neq \tau_{y}\right)$.79
5.5 shows the variation of average number of monomers (nucleotides) ($<n_{m}>$) scaled by its length as a function of solvent gradient ($\beta \Delta \epsilon$) using (a) exact enumeration method (short chain); (b) Using Monte Carlo method (long chain). For both the cases, nucleotides move along the interaction gradient (thermal gradient) and prefer to stay near the upper layers (7th and 8th layers) at higher interaction gradient (cold temperature) to minimize the free energy. . . .82
5.6 Distribution of an average number of monomers (nucleotides) as a function of layer number and solvent gradient ($\beta \Delta \epsilon$) using (a) exact enumeration method, and (b) Monte Carlo simulation. The colour corresponds to the density.
5.7 show the average number of base-pairing $\left(\left\langle N_{p}\right\rangle\right)$ scaled by length of the chain (N) as a function of solvent gradient ($\beta \Delta \epsilon$) using (a) exact enumeration method (short chain); (b) Monte Carlo method (long chain). It is evident from the plots that as we increase the solvent gradient, zipping (increase in number of base-pairing) takes place towards the upper surface.
5.8 Schematic representations of three different sequences ofDNA: (a) a homo-sequence of AT, (b) a di-block of DNAwhich contains 50% AT and 50% GC, and (c) a homo-sequence of GC. 86
5.9 Variation of average end-to-end distance $(\langle R\rangle)$ as a func- tion of solvent gradient ($\beta \Delta \epsilon$) for three sequences using (a) exact enumeration (short chain) and (b) Monte Carlo method (long chain). Both short and long chain results show that GC rich DNA chain denatures at higher temper- ature than that of AT rich DNA. 88
5.10 Phase diagram of DNA melting under solvent gradient for different sequences: (a) exact enumeration (EE), and (b) Monte Carlo (MC) method. There is an excellent agree- ment between exact enumeration and Monte Carlo results. It shows a transition from DNA unzipping to zipping. 89

Tables

1.1 Range of forces and corresponding displacements for various experimental probes. 5

