Fr	ont P	age	i
Ac	:knov	vledgements	v
1	Intr	oduction	1
	1.1	Theoretical modelling of polymer	8
		1.1.1 Continuum model	8
		1.1.2 Lattice model	11
		1.1.3 Self-avoiding Walk	12
	1.2	Modelling of DNA	15
		1.2.1 Poland-Scheraga Model	15
		1.2.2 Peyrard and Bishop Model	15
		1.2.3 Lattice model of DNA	16
	1.3	Methods: Theory and Simulations	17
		1.3.1 Exact Enumeration technique	17
		1.3.2 Monte-Carlo simulation	17
		1.3.3 Metropolis technique	20
		1.3.4 Wang-Landau technique	22
2	Fffo	et of solvent gradient inside the entropic trap on polymer.	
4	mig	ration	25
	2.1	Introduction	25
	2.2	Model and Method	28
	2.3	Free energy landscape	33
	2.4	Configurational properties of polymer during migration	38
	2.5	Summary	42
	2.0		12

3 Forced induced melting of DNA in presence of an attractive

	surf	ace	45
	3.1	Introduction	45
	3.2	Model and method	47
	3.3	Constant temperature	49
	3.4	Constant force	52
	3.5	Summary	55
4	Stat	istical mechanics of DNA melting in confined geometry	57
	4.1	Model and Method	60
	4.2	Thermal melting profile of DNA attached at the edge of pore	63
	4.3	Melting profile and free-energy landscape of DNA	68
	4.4	Summary	73
5	Effe	ct of solvent gradient on DNA confined in a strip	75
	5.1	Model and method	79
	5.2	Distribution of nucleotide and base-pair across the strip	85
	5.3	Effect of sequence on the melting profile	87
	5.4	Summary	89
6	Con	clusions	91
Re	References		95

Figures

1.1	Schematic representation: Polymer classification based on		
	functionality.	1	
1.2	Schematic representation: Polymer classification based on		
	different kind of monomer	2	
1.3	Examples of monomers of synthetic polymer	2	
1.4	Various stages of protein folding. Image is taken from		
	https://courses.lumenlearning.com/microbiology/chapter/	'proteins/	3
1.5	Schematic representation of dsDNA structure. Image taken		
	${\it from}\ https://www.sigmaaldrich.com/IN/en/technical-$		
	documents/protocol/genomics/sequencing/sanger-sequences/sequence	ing 4	
1.6	Probability distribution $P(\vec{R}, N)$ for FJC model of polymer.	9	
1.7	Worm-like chain model	10	
1.8	Schematic representation of the (a) Random walk (RW),		
	(b) Fully Directed walk (FDW), (c) Partially Directed Walk		
	(PDW), and (d) Self-avoiding Walk (SAW).	12	
1.9	Schematic representation of different types of interactions		
	in the solvent	14	
1.10	Schematic representations of lattice moddels of DNA: (a)-		
	(d) represent the possible models for lattice representa-		
	tions of DNA. For model A, (a) and (b) are two possible		
	states with (c) representing a possible ground state. For		
	model B, (a) represents the ground state and (d) repre-		
	sents a partial bound state. Here, (d) differs from (b) in		
	the nature of interactions represented by the dotted lines.		
	In model B, (c) has no valid interaction and would repre-		
	sent an open state.	16	

1.11	Schematic representation of various moves: a) end-point rotation b) kink c) crankshaft moves. These are called local moves. Figure (d) represents pivot move (global move)	10
	where the rotation of polymer can be done after i^{m} monomer.	18
1.12	Schematic representation of global pull moves. This figure is taken from the ref. [49]	19
1.13	Flowchart of Wang-Landau algorithm	24
2.1	Schematic representations of polymer chain migration through an in-homogeneous channel. Channel has three different re- gions (I, II, and III) of a certain length $(l_1 = 14, l_2 = 10$ lattice units) width $(h = 12$ lattice units) and different solvent qual- ity (good, poor, and solvent): (a) Model A: Channel without entropic trap and solvent interaction gradient (in region II) is along the <i>x</i> -direction; (b) Model B: Channel with entropic trap of depth $d = 10$ lattice units and solvent interaction gradient (in region II) is along the <i>x</i> -direction. The red dashed line shows the non-bonded nearest neighbor pairs along <i>x</i> and <i>y</i> -direction and corresponding Boltzmann weights are represented by τ_x and τ_y ; (c) Model C is same as model B, but the solvent interaction gra- dient inside an entropic trap (region II) acts along the transverse direction (<i>y</i> -axis); (d) Model D is same as the model C, but the solvent interaction gradient has the reverses sign in compare to model C.	29
2.2	Variation of the free energy with anchoring coordinate (x) for different solvent interaction gradient ($\Delta \epsilon$): (a) for model A (b) for model B.	33
2.3	Variation of the migration time (τ_m) with $\Delta \epsilon$ for model A and model B. In the inset we show the region where	

migration time for the model B exceeds the model A. . . . 35

2.4	The free energy landscape for different values of $\Delta \epsilon$: (a) for the model C; (b) for the model D. The arrows shown in Fig. (a) indicate the free energy barrier and free energy well.	36
2.5	(a) Variation of the migration time with $\Delta \epsilon$. (a) for the model C; (b) for the model D. The inset of Fig. (a) shows the minimum of migration time for model C; (b) Same as (a), but for the model D	37
2.6	The average number of monomers inside the trap ($\langle N_T \rangle$) for different $\Delta \epsilon$: (a) for model C; (b) for model D	39
2.7	(a) Variation of radius of gyration $(\langle R_g^2 \rangle)$ with x for different $\Delta \epsilon$ for model C; (b) Variation of x -component of radius of gyration $(\langle R_{gx}^2 \rangle)$ with x for different $\Delta \epsilon$ for model C; (c) Variation of y -component of radius of gyration $(\langle R_{gy}^2 \rangle)$ with x for different $\Delta \epsilon$ for model C; (d-f) Same as Fig. (a,b,c), but for model D.	40
3.1	Schematic diagram showing the adsoprtion of different bases of DNA into gold-nanoparticle (Au-Np) surfaces. Image is taken from Ref.[90]	46
3.2	(a) Schematic diagrams of DNA adsorbed on attractive sur- face. The strand near the surface is called strand-I (first strand). A force (g) is applied on the one end of other strand (strand-II) along the y direction. The surface ad- sorbed nucleotides are shown in red circles, while black circles represent the nucleotide of strand-II. y_1 and y_2 rep- resent the distance of end nucleotides of strand-I and strand- II from the surface respectively. Figure (b) and (c) rep- resent some of the conformations of DNA in presence of	
3.3	attractive surface under the applied force g	48
	with g at $T = 0.5$ for different ϵ_s . (c, d) same as (a,b), but for $\langle y_1 \rangle$ and $\langle y_2 \rangle$.	50

3.4	Same as Fig. 3.3, but at higher temperature $T = 1.0 \dots$	51
3.5	Figures (a-c) show the variation of $\langle N_p \rangle$, $\langle N_s \rangle$ and $\langle N_{ps} \rangle$ with <i>T</i> at different value of <i>g</i> at $\epsilon_s = -0.5$. Figure (d-f) are same as (a-c), but for $\langle y_1 \rangle$ and $\langle y_2 \rangle$	53
3.6	Same as Fig. 3.5 but for $\epsilon_s = -1.0$	55
4.1	Schematic representations of dsDNA translocating through a conical shape pore. Figure A), B), C) shows different stages of translocation. Figure D) represents the associate current distribution during translocation. Whenever the DNA is translocating through pore there is residual current distribution I_{res} which depicts the time of translocation. This figure is taken from ref [110]	58
4.2	Schematic representations of crystal structure of MSPA pro- tein. The figure is taken from the ref [110]	59
4.3	Schematic representations of dsDNA attached at different sites across the pore: (i) the cone-shaped channel (a-c), and (ii) the flat channel (d-f). Starting end of the dsDNA is kept fixed and the other end is free to move anywhere except the wall (a and b). To calculate the free energy barrier, we fix the dsDNA chain at varying distances from the interface (say, x). Here, x can be positive, negative and zero (interface). ϵ_c and ϵ_o correspond to the non-native attraction between the complimentary bases of the dsDNA.	60
4.4	Schematic representations of dsDNA chain attached at the interface: (a) dsDNA is completely inside the cone, (b) Completely outside the cone, and (c) One strand is inside the cone, while the other is outside and <i>vice versa</i> .	61

ature for
he pore:
mpletely
s a case
ne. Open
be any-
own the
inement
63
channel.
Same as
64
$\Delta \epsilon$. The
same as
e-shaped
it occurs
the free-
66
nose one
nnel. (b)
maxima
67
2 to $x =$
cross the
for flat-
69
for three
s of DNA
70
ture (T)
ture (T) ng posi-

4.12 Figures (a-c) show the free energy profiles of a DNA chain, whose starting points have been varied systematically from x = -12 to 12 for three sets of solvent interactions. (a) If the starting point of chain is far away from the edge, for a given set of interaction, the free energy remains the same for the *cis* and *trans*-side, whereas near the pore it is higher. A rough estimate of the free-energy barrier may be estimated from these plots. This figure also shows the effect of confinement on the free energy arising due to coneshaped channel and flat channel.(b) For this set of interaction, the difference of free energy between cone-shaped and flat channel vanishes, if the polymer is in the transside, however, the barrier height increases. (c) Same as Fig. b, but in this case, barrier height increases further. Triangle and circle correspond to the cone-shaped channel and flat-shaped channel, respectively. 72 Deep sea hydrothermal vent ejecting mineral-rich chim-5.1 neys. Image credit: Oregon State University / CC BY-SA 2.0. 76 a) Trapping and accumulation of DNA by convection and 5.2 thermophoresis. Thermophoresis drive the molecule to the right. DNA gets accumulated in the bottom of the right b) DNA convection cycle is shown. In each cycle DNA denatures by short primer and replicates by DNA polymerase. 77 Schematic representations of end grafted polymers in cap-5.3 illary valve: (a) Low temperature (or poor solvent condition); (b) high temperature (or good solvent condition). This 78

- 5.5 shows the variation of average number of monomers (nucleotides) ($< n_m >$) scaled by its length as a function of solvent gradient ($\beta \Delta \epsilon$) using (a) exact enumeration method (short chain); (b) Using Monte Carlo method (long chain). For both the cases, nucleotides move along the interaction gradient (thermal gradient) and prefer to stay near the upper layers (7th and 8th layers) at higher interaction gradient (cold temperature) to minimize the free energy.
- 5.6 Distribution of an average number of monomers (nucleotides) as a function of layer number and solvent gradient ($\beta \Delta \epsilon$) using (a) exact enumeration method, and (b) Monte Carlo simulation. The colour corresponds to the density. 84

79

82

5.8	Schematic representations of three different sequences of	
	DNA: (a) a homo-sequence of AT, (b) a di-block of DNA	
	which contains 50 % AT and 50 % GC, and (c) a homo-	
	sequence of GC	86
5.9	Variation of average end-to-end distance ($\langle R \rangle$) as a func-	
	tion of solvent gradient ($\beta\Delta\epsilon$) for three sequences using	
	(a) exact enumeration (short chain) and (b) Monte Carlo	
	method (long chain). Both short and long chain results	
	show that GC rich DNA chain denatures at higher temper-	
	ature than that of AT rich DNA	88
5.10	Phase diagram of DNA melting under solvent gradient for	
	different sequences: (a) exact enumeration (EE), and (b)	
	Monte Carlo (MC) method. There is an excellent agree-	
	ment between exact enumeration and Monte Carlo results.	
	It shows a transition from DNA unzipping to zipping	89

Tables

1.1	Range of forces and corresponding displacements for vari-	
	ous experimental probes	5
