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ABSTRACT

Since the invention of synthetic polymers (e.g., plastic), polymeric

materials have brought ease to a great extent in everyday life.

Various applications of polymers encourage scientists to study

the configurational properties and dynamics of polymers under different

physical conditions. The polymer is a long chain molecule with repeti-

tive units called a ’monomer.’ The functionality of the monomers (num-

ber of reactive ends) classify the structure of the polymer. Polymers

from living organisms are known as biopolymers, such as DNA (Deoxyri-

bonucleic Acid ), RNA (Ribonucleic Acid), Protein, etc. The cells have

a very crowded environment because they are composed of different

biomolecules that may occupy a large fraction of the total volume. This

leads to the phenomenon called volume exclusion which is caused by

the steric repulsion among different molecules. The confinement that

arises due to this may influence the stability, dynamics, and function of

biomolecules. In the context of polymer physics, confinement reduces

a large number of configurations of biopolymers. Hence, there is a re-

duction in entropy which influences the free energy of the biopolymers.

There is another contribution to the free energy arising due to attractive

interaction among non-bonded nearest monomers. The polymeric system

usually equilibrates at a constant temperature to minimize its free energy.

However, change in temperature or solvent quality may lead biopolymer

to change its states from coil or swollen to globule or collapsed state.

The emphasis of this present thesis is to study the loss in configurational

entropy and gain in free energy on different biological processes.

Chapter 1 deals with a brief literature survey on the biopolymers un-

der confinement environments. This includes varying pore shapes in liv-

ing organisms such as Mycobacterium Smegtatis Porin A (MSPA), Nuclear
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Pore Complex (NPC), Viral capsid, etc. We highlight some significant is-

sues associated with the confinement of biopolymers. The second part

of this chapter consists of modeling polymers and biopolymers and tech-

niques (Exact Enumeration and Monte Carlo simulation) required to cal-

culate the physical observables in the framework of statistical mechanics.

In Chapter 2, we study the migration of the polymer chain across

an entropic trap in quasi-equilibrium condition and explore the effect of

solvent gradient present in the entropic trap which acts both parallel and

perpendicular to the direction of migration. The Fokker-Planck formalism

utilizes the free energy landscape of polymer chain across the channel in

presence of entropic trap to calculate the migration time. It is revealed

that the migration is fast when the solvent gradient acts along the mi-

gration axis (say, x-axis) inside the channel in compare to the channel

having entropic trap. We also study for the first time that the entropic

trap makes the migration faster at certain value of solvent gradient. We

also study the effect of transverse solvent gradient (along y-axis) inside

the trap and investigate the structural changes of the polymer during mi-

gration though the channel. We observe the non-monotonic dependence

of migration time on the solvent gradient.

Chapter 3 deals with force induced unzipping of a dsDNA (double

stranded DNA) by applying force on a single strand (while other strand

is free) in presence of an attractive surface. Manipulation of force on

pulled strand, surface attraction energy and temperature reveal various

phases of dsDNA. We report that at low surface attraction dsDNA des-

orbs as zipped form and melts in bulk at higher temperature. While at

high surface attraction dsDNA unzips from the surface itself below melt-

ing temperature. Noteworthy finding includes that at moderate surface

attraction the desorbed but zipped dsDNA melts with increasing temper-

ature and the free strand gets adsorbed to the surface.

The separation of two strands of dsDNA may be induced either by

changing the temperature (DNA melting) or the pH value of the solvent

(DNA denaturation). In chapter 4, we study the DNA melting and translo-
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cation of a biopolymer (cis-side to trans-side) across a cone-shaped chan-

nel. The shape of MSPA protein pore looks like a cone-shaped channel.

Motivated by this, we model the system on a square lattice in such a way

that its 3/4 volume corresponds to the trans-side, and the remaining 1/4

volume is of cis-side. We study the melting profile of dsDNA across the

pore, which differentiates two different kinds of solvents. If solvent across

the pore remains the same, the dsDNA prefers to stay in the trans side for

all temperatures due to the large configurational entropy of the dsDNA

available on the trans side. When the cis-side contains poor solvent, we

observe that the DNA prefers to stay on the trans side with relatively poor

solvent.

Chapter 5 deals with the equilibrium properties of a dsDNA confined

in a strip. One side of the strip contains a relatively poor solvent com-

pare to another side. This induces a solvent interaction gradient which

may be thought of as a temperature gradient. This allows us to model

DNA thermophoresis, where DNA migrates from the hot side and gets

accumulated near the cold side. We employed a simple lattice model of

polymer to show that dsDNA transfers to the cold side in a zipped form at

a particular solvent interaction gradient. We have also studied the effect

of sequence (AT-rich, GC-rich, AT-GC diblock DNA) under varying solvent

interaction gradients. We observed that GC-rich DNA migrated faster to

the colder side in comparison to the AT-rich sequence.

In chapter 6, we summarize the overall results of the thesis and com-

ment on the future perspective of our studies.
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