
CHAPTER 2
Effect of solvent gradient inside

the entropic trap on polymer

migration

2.1 Introduction

In the cell, movement of nucleotides, proteins, polysaccharides hold

ubiquitous significance [9, 15]. The dynamical processes of translo-

cation of DNA and RNAs occur within the shortest length and time

scale. Ejection of DNA from viral capsid, mRNA transport through the nu-

clear membrane, translocation of nascent polypeptides through the endo-

plasmic reticulum, etc. are to name a few in a large array of migration or

translocation processes in living organisms [50, 51]. The migration pro-

cess of molecules within the cell/nucleus is far from complex and involves

a cascade of processes.

W. H. Couter [52] invented a device with pair of electrodes across an

orifice filled with an electrolyte solution. Usually, it shows current read-

ing in the electrometer due to the ionic solution. Whenever a molecule

migrates through the pore, it blockades the current flow. DNA or poly-

mer sequencing through the nanopore is solely based on studying the

current signal. The migration of polymer through a narrow constric-

tion may be used for sequencing [53–55]. The primary motivation of

nanopore sequencing studies comes from the goal of reading the whole

human genome sequence [56]. Polymer migration studies can bring new

dimensions to customized drug deliveries, gene therapy, biological sens-

ing processes also [57, 58].

Though it seems straightforward to read the nucleotides from the
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current signal, polymer translocation entails many challenges in reality

[59]. Stochastic diffusion and fast migration often lead to erroneous

sequencing. The general picture that emerges is for accurate reading

of bases, slow migration of polymer must be ensured [57]. The poly-

mer migration time generally depends on the length of the polymer, ap-

plied external voltage, chemical and physical property of pore, etc [57].

These are broadly classified into two categories: (i) influence of geo-

metrical trapping, and (ii) field mediated migration. The free energy of

a single polymer with N independent configurations can be written as

F = E − TS = E − T log(N), where E is the interactive energy due to

monomer attractions. Now, in geometrical trapping polymer experiences

a restricted environment while threading inside the pore and loses a large

number of configurations [60]. This eventually increases the free energy

and forms a barrier across the pore [61, 62]. This is also known as the

entropic barrier. Single molecule studies revealed that the migration pro-

cess is delayed due to microfluidic channels (geometric confinements)

which enhances the readability of the sequence [63, 64]. Lam et. al.

[65] proposed the use of ultrathin nanoporous silicon nitride membranes

as entropic traps to confine polymers for long times within the nanochan-

nel. Whereas field induced polymer migrations are mostly dominated by

the applied electric field or chemical gradient across the pore [66, 67].

Wang and Muthukumar [68] experimentally observed that the transloca-

tion process of RNA inside a α-hemolysin protein pore was affected by the

pH-gradient across the pore. The presence of pH gradient (or solvent gra-

dient) arises due to the protonation of charged amino acid residues inside

the pore. Buyukdagl et al [69] showed that inclusion of pressure gradient

in a driven polymer migration results in extended migration time. Tsut-

sui et al [70] experimentally observed that a transverse electric field in

a silicon di-oxide nanochannel slowed down the biopolymer migration

velocity.

Migrations induced by chemical gradients along the migration axis

often forms globules in the poor solvent side and this globule acts as a
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ratchet to attract more segments from the good side [71, 72]. The ma-

nipulation of the solvent quality in presence of patchy channel makes the

translocation fast which helps in drug delivery through dendritic carrier

molecules [73]. Noteworthy and complex phenomenon happens when

solvent gradient or dielectric constant gradient is introduced in trans-

verse fashion within the nanopore such that the solvent quality differs

along the perpendicular direction of the migration axis. Ajdari and Prost

[74] theoretically predicted that DNA confined in a geometrical trap with

transverse gradient field in addition to uniform field along the flow may

confine DNA within the trap. Regtmeier[75] experimentally verified the

findings of Ajdari and Prost [74] by taking an inhomogeneous field along

with a constant field, which results in slow migration.

The chemical gradient inside the nanopore channel either in the hori-

zontal or transverse directions may have different effects on polymer mi-

gration and be involved in different biological implications. Motivated

by this, we study the polymer migration through an entropic trap in

presence of the gradient in the horizontal as well as in the transverse

direction. In order to model the horizontal and the transverse gradi-

ent field, we consider a varying non-bonded nearest neighbor attraction

among the monomers (ε). Here, we focus ourselves mostly on the issues

where the effective change in non-bonded nearest neighbor interaction

(gradient field) hinders the uniform migration in the framework of quasi-

equilibrium statistical mechanics.

A large number of theoretical and simulation studies describing the

complexity of the migration process rely on the quasi-equilibrium ap-

proach [76–78]. In theoretical quasi-static migration studies, where the

time taken by each successful migration step is greater than the relax-

ation time of the polymer, one can use Fokker-Planck equation [79–81]

to calculate the migration time. In such approach the migration is usu-

ally unidirectional. It is further assumed that the movement of polymer

is slow enough so that the diffusion coefficient of polymer can be consid-

ered as a constant parameter throughout the process [81].
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The aim of the present chapter is to illustrate the role of the solvent in-

teraction gradient (∆ε) in presence of an entropic trap on the migration.

The chapter is organized as follows. In section 2.2, we briefly describe

the model and method used to study the migration of polymer through

the channel in presence of an entropic trap. In section 2.3, we obtain the

free-energy landscape and calculated the associated migration time. We

have calculated the x and y- component of radius of gyration to study the

configurational properties of the polymer during the migration in Section

2.4. A summary of this work has been presented in section 2.5.

2.2 Model and Method

In this study, we model a polymer chain migrating through a non-uniform

channel with and without an entropic trap. The solvent interaction gradi-

ent varying along x and y direction are shown in Fig. 2.1(a-b) and Fig. 2.1

(c-d). respectively. First, we model the polymer chain as self-attracting-

self-avoiding walk (SASAW) on a square lattice [82–85]. Monomers are

sites occupied by the polymers, and interactions are among non-bonded

nearest neighbour monomers. The thermodynamic properties of a poly-

mer chain in a solvent of uniform quality is expressed in the form of

averages of the physical observables derived from the partition function.

The canonical partition function for the polymer chain of length N in a

homogeneous system can be written as

Z =
∑

all walks

τNp (2.1)

The summation is over all the possible walks and τ = exp(−βε) is the

Boltzmann weight corresponding to the non-bonded nearest neighbor.

Here, β = 1
KBT

, where KB is the Boltzmann constant and T is the tem-

perature. Np is the number of nearest neighbor pairs, where each pair

has energy ε. In this work, we have taken the chain length N = 28. We

also set KB = 1 and −1 < ε < 0 from here onward.

In order to study the effect of free energy barriers arising due to in-
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Figure 2.1. Schematic representations of polymer chain migration through an in-
homogeneous channel. Channel has three different regions (I, II, and III) of a certain
length (l1 = 14, l2 = 10 lattice units) width (h = 12 lattice units) and different
solvent quality (good, poor, and solvent): (a) Model A: Channel without entropic
trap and solvent interaction gradient (in region II) is along the x-direction; (b) Model
B: Channel with entropic trap of depth d = 10 lattice units and solvent interaction
gradient (in region II) is along the x-direction. The red dashed line shows the non-
bonded nearest neighbor pairs along x and y-direction and corresponding Boltzmann
weights are represented by τx and τy; (c) Model C is same as model B, but the sol-
vent interaction gradient inside an entropic trap (region II) acts along the transverse
direction (y-axis); (d) Model D is same as the model C, but the solvent interaction
gradient has the reverese sign in compare to model C.

homogeneity inside the channel, we introduce three different regions (I,

II, and III) of different dimensions and solvent quality (good or poor)

in presence (or absence) of entropic trap as shown in Fig. 2.1(a-d). For

the sake of simplicity, we introduce four different models, namely, Model

A, B, C, and D depending on the solvent gradient (along the channel or

perpendicular to the channel) and entropic trap Fig. 2.1 (a-d). Here, we

study migration properties in absence (Fig. 2.1(a): model A) and in pres-

ence (Fig. 2.1(b): model B) of entropic trap having the solvent interaction

gradient along x-axis while the other parameters remain constant.
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In model A and B (Fig. 2.1 (a,b)), region I and III have the dimension

of length (l1) and width (h) 14 and 12 lattice units, respectively. Whereas,

the middle region II of the model A has dimension of length (l2) and width

(h) 10 and 12 lattice units, respectively. The Model B has an entropic

trap of dimension of length (l2) 10 and depth (d) 10 lattice units. The

interest here is to study the migration of a polymer chain from region I

to region III and delineate the role of an entropic trap on the free energy

barriers and the migration time. Here, we introduce a solvent interaction

gradient (∆ε = ε
l2

) along the channel direction (x-axis). The strength of

the interaction associated with nearest neighbor pairs in this region may

be defined as ε(li2) = li2∆ε(l2), where i = 1, 2, 3.....10. It may be noted

here that the first layer of region II has the value of ε(l12 = 1) = 0 (good),

whereas the last layer of region II has the value of ε(l10
2 = 10) = −1 (poor)

for ∆ε = −0.1. Region II is the interface (indicated by thin and thick lines

in Fig. 1) between the two regions I and III as the solvent of region III

follows the solvent quality of last layer of region II depending on the value

of ∆ε. It is pertinent to mention here that for ∆ε = 0.0 the solvent quality

remains good across all regions of the channel in both models A and

B. Here, we show that this simple form of solvent gradient captures the

essential physics of migration by considering different nearest neighbor

interactions arising in the x- and y-directions.

In region I and III the Boltzmann weight for the non-bonded nearest

neighbor interaction is τ = exp(−βε). In the region II, the non-bonded

nearest neighbor interaction is uniform along y-direction and has weight

τy(x) = exp(−βε(x)). (2.2)

However, the non-bonded nearest neighbor involved in between x and

(x± 1) layers, the Boltzmann weight can be expressed as,

τx(x) = exp(−β
2

(ε(x) + ε(x± 1))) (2.3)

The model B is similar to the model A, except it has an entropic trap
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(l2 = 10 lattice units and d = 10 lattice units) in the region II as shown in

Fig. 2.1(b)).

In this work, the canonical partition function of the model systems

can be expressed as:

Zx =
∑

(Np1,Np3,Nx
p2,N

y
p2,x)

C(Np1, Np3, N
x
p2, N

y
p2, x)

τ
Nx

p2
x τ

Ny
p2

y τNp1τNp3 . (2.4)

Where Np1 and Np3 are the number of non-bonded pairs formed in the

regions I and III respectively. Nx
p2 and Ny

p2 are the the non-bonded nearest

neighbor contacts along x and y- direction, respectively in the region II.

The solvent quality inside the channel is good and poor in the Model C

and D (Fig. 2.1 (c,d)), respectively. However, the solvent gradient inter-

action is perpendicular to the direction of migration. In the model C, the

solvent gradient interaction decreases with the depth of the entopic trap,

whereas in the model D, it increases with the depth of the entropic trap.

This is analogous to the situation where the quality of the solvent is rela-

tively poor (low temperature regime) at the bottom layer of the model C.

Contrary to the model C, the entropic trap of the model D has relatively

good solvent (ε = 0) at the bottom i.e the bottom layer is at high tempera-

ture. In both the models C and model D, the gradient (∆ε = ε
d
) is defined

in such a way that the non-bonded pair at the bottom layer contributes

−1 < ε < 0. For these cases, interactions at any layer inside the entropic

trap may be defined as ε(di) = ε+di∆ε, where i = 1, 2, 3......10. The value

of ∆ε lies between 0 to -0.1 for the model C and 0 to 0.1 for model D.

The non-bonded nearest neighbor interaction inside the entropic trap

remains constant along the x-direction and its Boltzmann weight is given

by,

τx(y) = exp(−βε(y)). (2.5)

Whereas if any pair is taking place between y-th and (y ± 1)-th layers,
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then we express the Boltzmann weight as,

τy(y) = exp(−β
2

(ε(y) + ε(y ± 1))) (2.6)

In the equilibrium framework of statistical mechanics, it is difficult to

study the migration of polymer chain. However, if the process is slow in

such a way that the system achieves the quasi-static equilibrium at a given

instant of time. In such situation, it is possible to study the dynamics of

the system by using the Fokker-Planck equation. The basic ingredient of

the Fokker-Planck equation is the free energy of the system at any instant

of time for a given value of x. For this, we assume that the polymer

is migrating from the region I to region III and the free energy of the

system may be obtained by progressively fixing one end of the polymer

from x = 0 to x = 38, whereas other end of the polymer is free to be

anywhere inside the channel. We used the exact enumeration technique

[82] to calculate the partition function for a given value x by using the

following equation:

Zx =
∑

(Np1,Nx
p2,N

y
p2,x)

C(Np1, N
x
p , N

y
p , x)τ

Nx
p2

x τ
Ny

p2
y τNp1

(2.7)

whereNx
p2 andNy

p2, are the number of nearest neighbor contacts along

x-direction and along y-direction, respectively inside the entropic trap.

C(Np1, N
x
p2, N

y
p2, x) is the number of distinct configurations having Np1

contacts in the channel and Np2(= Nx
p + Ny

p ) contacts in the entropic

trap. The free energy of the system for a given value of x is given by

F x = −T log(Zx). (2.8)
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Figure 2.2. Variation of the free energy with anchoring coordinate (x) for
different solvent interaction gradient (∆ε): (a) for model A (b) for model B.

2.3 Free energy landscape

The migration process may be understood if one has the complete in-

formation of the free energy associated with each region of the channel.

In order to have a better understanding the effect of the entropic con-

finement on the migration process, we systematically calculate the free

energy of the system as a function of x, where one end of the chain is an-

chored. It may be noted that in both models A and B, region I has a good

solvent (ε = 0) and gradient acts along the x-direction and they differ

only in terms of entropic trap. For model A, when ∆ε = 0.0, the free en-

ergy remains constant throughout the channel Fig. 2.2(a). This implies

that monomer-monomer attractions remain absent (ε = 0) throughout

the channel for region I, II, and III. Now we systematically vary the near-

est neighbor attraction among the monomers at the interval of 0.1 in the

region III. This gives rise to the solvent interaction gradient in the region

II. As ∆ε decreases, one end of the region II (near to the poor side) be-

comes poorer compare to the side which is close to the good solvent. As

a result, the polymer prefers to move towards region II as free energy

decreases and approaches the free energy of region III. The migration

seen in model A closely resembles the characteristics of voltage driven

translocation [86]. The presence of entropic trap (model B) shows some

interesting behavior which can be seen in Fig. 2.2(b). The appearance of
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free energy barrier for low ∆ε and change in slope in free energy curve at

the interfaces of region I & II and region II & III are some notable obser-

vations which may influence the migration behavior inside the channel.

For ∆ε = 0.0, where the solvent quality throughout the channel remains

good in nature, the appearance of free energy barrier at the interfaces

of region I & II and region II & III is solely due to the entropic trap. As

∆ε decreases, the solvent quality of the region II becomes more poorer

compare to region I. The decrease in ∆ε favors the migration process eas-

ier. The free energy decreases gradually from region I to region II and

approaches the free energy of region III.

For both models the gradient enhances the migration process, how-

ever, the entropic trap reduces the process in comparison to model A. To

substantiate it, one can calculate the average time involved in migration

between the initial (region I) and final stage (region III). Since the free

energy of the polymeric system is known, one can employ Fokker-Planck

formalism to obtain the migration time from region I to region III. The

governing equation is given by

∂

∂t
p(x, t) = L(x)p(x, t), (2.9)

where p(x, t) is the probability distribution. L(x) is the Fokker-Planck

operator described by

L(x) =
1

b2

∂

∂x
D(x)exp(−F (x))

∂

∂x
exp(F (x)), (2.10)

where F (x) is the free energy of the polymer. D(x) is the diffusion coef-

ficient and b is the bond length. Following the method developed in Ref.

[77], we set D(x) = 1. Since, the present study is confined on the lattice,

we assigned the bond length to be unity and the migration time has been
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Figure 2.3. Variation of the migration time (τm) with ∆ε for model A and
model B. In the inset we show the region where migration time for the model
B exceeds the model A.

expressed in the following discrete form:

τ(x=0;x=38) =
38∑

x′=0,1,2,...38

∆x
′
exp(F (x

′
))

x
′∑

x′′=0

∆x
′′

exp(−F (x
′′
)) (2.11)

Here, the first summation adds the contribution of free energies from

x
′

= 0, 1, 2.., 38 to x
′

= 38, whereas the second summation sums up the

free energy contributions from x
′′

= 0 to x′. Here, we have taken ∆x” =

∆x
′
= 1 in lattice units.

The migration time required to reach region III from region I for model

A and B are shown in Fig. 2.3 as a function of ∆ε. It is evident from the

plots that for ∆ε = 0, the free energy barrier arising due to the entropic

trap (model B) offers slow migration in comparison to the model A. The

decrease in ∆ε corresponds to the reduction in the free energy which in

turn expedites the migration towards the region III. One of the interesting



36
Chapter 2. Effect of solvent gradient inside the entropic trap on polymer

migration

0 10 20 30 38
Position (x)

-24

-22

-20

-18

-16

-14

-12

F
re

e 
E

n
er

g
y

 
∆ε=0.00

∆ε=−0.01

∆ε=−0.02

∆ε=−0.03

∆ε=−0.04

∆ε=−0.05

∆ε=−0.06

∆ε=−0.07

∆ε=−0.08

∆ε=−0.09

∆ε=−0.10

0 10 20 30 38
Position (x)

-24

-22

-20

-18

-16

-14

-12

F
re

e 
E

n
er

g
y

 

∆ε=0.00

∆ε=0.01

∆ε=0.02

∆ε=0.03

∆ε=0.04

∆ε=0.05

∆ε=0.06

∆ε=0.07

∆ε=0.08

∆ε=0.09

∆ε=0.10

Model DModel C

Free energy 

barrier

Free energy 

well

(a) (b)

Figure 2.4. The free energy landscape for different values of ∆ε: (a) for the
model C; (b) for the model D. The arrows shown in Fig. (a) indicate the free
energy barrier and free energy well.

observations can be noted that for both models the migration time (τm)

decreases, however, around ∆ε ∼ −0.057, the migration time for model

A exceeds in comparison to the model B. This may be explained on the

basis of subtle competition between increase in entropy and solvent inter-

action gradient. We may substantiate this result with the argument that

due to entropic trap polymer exposure in the gradient (region II) also

increases, which eventually drives the polymer towards region III. As a

result one observes less migration time for model B compared to model A

for ∆ε < −0.057. As the anchor sites move away from the entropic trap,

the migration time approaches monotonically towards model A.

It would be interesting to study the effect of transverse gradient which

may be present in the entropic trap. In this context two situations may

arise: (i) the channel has a good solvent (ε = 0), while the entropic trap

contains a relatively poor solvent (model C); (ii) the channel contains

poor solvent (ε = −1), whereas the entropic trap has a relatively good

solvent (model D). In both cases we assigned transverse nearest neighbor

interaction gradient by substituting −0.1 < ∆ε < 0 for model C and

0.1 < ∆ε < 0 for model D. As a result the nearest neighbor attraction

at the bottom layer of the entropic trap will have the value −1 < ε < 0

for model C and 0 > ε > −1 for the model D. This ensures decrease in

solvent gradient with depth of the trap for the model C and increases in
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Figure 2.5. (a) Variation of the migration time with ∆ε. (a) for the model C;
(b) for the model D. The inset of Fig. (a) shows the minimum of migration
time for model C; (b) Same as (a), but for the model D.

solvent gradient with the depth of the entropic trap for the model D. This

is analogous to the situation where the bottom layer of entropic trap is at

lower temperature compared to the temperature of the channel. Contrary

to model C, the channel of model D has lower temperature compare to

the entropic trap.

Fig. 2.4 (a) shows the free energy landscape (for model C) as a func-

tion of x where one end of the polymer is anchored. For ∆ε = 0.0, the

solvent quality remains uniform in the entropic trap as well as across the

channel. One can observe the barrier in the free energy landscape which

is arising due to the confinement imposed by the entropic trap. Because

of the entropic trap, there is a significant decrease in the configurational

entropy of the polymer chain which gives rise to the barrier. As ∆ε de-

creases, the solvent quality of the trap turns out to be poorer compare to

the solvent quality of the channel. As a result, there is a decrease in the

free energy arising due to the solvent gradient which overcomes the en-

tropic barrier. A further decrease in ∆ε transforms the free energy barrier

to the well. It would be interesting to note that both free energy barrier

and well hinders the polymer movement across the channel. The time

involved in the migration process from region I to region III is minimum

around ∆ε ∼ −0.03. This corresponds to a net balance between entropic

barrier and solvent interaction gradient to the free energy.
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Since the channel in model D contains poor solvent all across the chan-

nel for ∆ε = 0, one can see the similar free energy barrier as seen in

model C. However, as solvent quality in the entropic trap becomes good

(∆ε > 0) the barrier height increases across the trap (Fig. 2.4). Unlike

model C, here the barrier height always increases. As a result one expects

larger migration time. The migration time for model C and D is shown

in Fig. 2.5. The model C shows the non-monotonic dependence on ∆ε

(Fig. 2.5(a)). When ∆ε decreases (∆ε < 0), free energy well is formed

across the trap. Here, polymer acquires the configuration of the globule

state and remains confined in the trap. As a result the time required for

the migration is found to be large. As ∆ε increases, the solvent quality

of the trap tends towards the good solvent and thus globule gets destabi-

lized due to increase in configurational entropy. In contrast to the model

C, the model D shows the migration time monotonically increasing with

∆ε Fig. 2.5 (b). This may be understood by making the solvent quality

good inside the trap and leads to the conformation of the polymer chain

in the swollen state. As the ∆ε increases the trap becomes more repul-

sive and the free energy barrier increases. An increase in barrier height

further enhances the migration time.

It is interesting to note that the migration time is nearly equal to

∆ε = 0 for both models C and D. This indicates that for the good sol-

vent channel (model C with ∆ε = 0) and poor solvent channel (model

D with ∆ε = 0), the polymer takes almost the same time. This is be-

cause the appearance in free energy barrier at ∆ε = 0 is solely entropic

and hence the same for both models. The presence of gradient (∆ε > 0)

inside the entropic trap makes the migration process slow.

2.4 Configurational properties of polymer

during migration

It would be interesting to investigate how the configurational properties

of the polymer change due to the solvent interaction gradient in the en-
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Figure 2.6. The average number of monomers inside the trap (〈NT 〉) for
different ∆ε: (a) for model C; (b) for model D.

tropic trap. For this, we first calculate the average number of monomers

(〈NT 〉) inside the trap as a function of x. It may be pointed here that the

trap coordinates are lying within 15 < x < 24. The figure Fig. 2.6 (a)

shows the fraction of monomers inside the trap (model C) as a function

of x which is almost negligible when the anchored sites are far away from

the trap. As the anchor site approaches towards the trap, 〈NT 〉 starts in-

creasing. As ∆ε decreases, a part of the polymer favors to be inside the

trap and tends to acquire the globule state. This behavior is also evident

from the free energy curve Fig. 2.4 (a). where the free energy decreases

before the anchor site reaches near the trap. This corresponds although

a fraction of segments remains in the swollen state due to the anchor

site, however, the remaining segment inside the trap forms the globule.

Fig. 2.6(b) shows the variation of 〈NT 〉 with x for model D. Here, we fo-

cus when the polymer is mostly confined in the region II i.e. inside the

trap. Here, the polymer remains in the globule state around the anchor

sites (outside the trap) and does not experience any effect of solvent in

the trap. When the anchor site is forced to be inside the trap, a part of the

polymer segment remains in the swollen state (inside the trap) whereas

the remaining part will be outside the trap, but in the globule state. When

∆ε→ 0 (i.e solvent in the channel and inside the trap remain the same),

it acquires the globule state inside the trap.

The variation in shape of polymer in terms of the radius of gyration
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Figure 2.7. (a) Variation of radius of gyration (〈R2
g〉) with x for different ∆ε for

model C; (b) Variation of x-component of radius of gyration (〈R2
gx〉) with x for

different ∆ε for model C; (c) Variation of y-component of radius of gyration
(〈R2

gy〉) with x for different ∆ε for model C; (d-f) Same as Fig. (a,b,c), but
for model D.

(〈R2
g〉) as a function of anchoring coordinates (x) for model C and D are

shown in Fig. 2.7 (a) & (d), respectively. For both models, we observe

slight increase in 〈R2
g〉 near the edge of the trap compare to the middle

of the trap. This is because, near the edge the polymer has the option

to spread along y-direction and that maximizes the monomer density at

the edge. As one moves towards the center of the trap, polymer can

spread in all directions and thus 〈R2
g〉 decreases for model C and increases

for model D Fig. 2.7 (a) & (d). At ∆ε ≈ −0.03 which corresponds to

the minimum migration time, also shows the least variation in 〈R2
g〉 all

across the channel for model C. As ∆ε decreases the quality of the solvent

becomes poorer for model C and hence 〈R2
g〉 decreases. As a result the

migration time also increases. On the other hand, in model D the solvent

quality tends towards a good solvent with ∆ε, and thus 〈R2
g〉 tends to its

swollen state value.
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Since the microscopic variation in shape arising due to confinement is

not quite apparent from Fig. 2.7 (a) & (d), therefore, we study the vari-

ation of polymer shape in terms of the x and y components of radius of

gyration as a function of x. The variation in 〈R2
gx〉 and 〈R2

gy〉 are shown

in Fig. 2.7(b-c) & Fig. 2.7(e-f) for model C and D respectively. One can

notice from the plots that the entropic trap in presence of the solvent in-

teraction gradient affects 〈R2
gy〉, whereas 〈R2

gx〉 remains almost the same.

It may be noted that the model C has relatively poor solvent inside the

trap, and thus there is a natural tendency to minimize its free energy,

even if the anchor site is outside the trap. This may be seen in the varia-

tion of both 〈R2
gx〉 and 〈R2

gy〉, when the anchor sites are outside the trap.

The most interesting observation is the increase in 〈R2
gy〉 as a function of

x and then sudden decrease for ∆ε < −0.03. This may be understood as

the bottom surface of the trap has a poor solvent (less temperature) and

thus a major fraction of the polymer chain prefers to stay in the globule

state, whereas its anchor site is outside the trap. As a result, the polymer

is forced to acquire the conformation along the side of the trap (y-axis)

and thus 〈R2
gy〉 increases. In contrast to model C, model D shows Fig. 2.7

(c,f) gradual decrease in 〈R2
gx〉 and increase in 〈R2

gy〉 as a function of x

inside the trap for a given chain length. When ∆ε = 0, the solvent all

across the channel is poor and the polymer remains in the globule state

inside the trap, as well as outside the trap. This is evident from Fig. 2.7

(c) and Fig. 2.7 (f) where both components of 〈R2
g〉 remains almost the

same. As ∆ε increases, the solvent inside the trap becomes good, the

y-component of 〈R2
g〉 increases. In this situation, polymer acquires the

"mushroom" shape in such a way that the major fraction of the polymer

prefers to be outside the trap in the globule form [87]. This in turns re-

duces the 〈R2
gx〉 which approaches towards 1 as shown in inset of Fig. 2.7

(e).
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2.5 Summary

In this chapter, we have studied the effects of solvent interaction gradi-

ent inside the entropic trap on the migration of polymer. Employing the

exact enumeration technique and by varying the anchoring sites of one

end of the anchored polymer, we have studied the migration of polymer

from one side (region I) to the other (region III) by assuming that the

system remains in the quasi-static equilibrium condition. We have con-

sidered solvent interaction gradient both in parallel and perpendicular to

the migration direction in region II. The free energy landscape of model

A (without entropic trap) and model B (with entropic trap) differs signif-

icantly and shows the influence of entropic trap. Using the Fokker-Planck

equation, we obtain the migration time which shows that as ∆ε decreases,

the migration time decreases. The exact calculation based on the short

chain revealed that for a certain value of ∆ε, the entropic trap may reduce

the migration time.

In contrast to model A and B where the gradient is taken along the

x-axis, we have explored the effect of transverse gradient (y-axis) in pres-

ence of entropic trap in model C and D. We have considered two possi-

bilities: the channel has a good solvent (high temperature) and solvent

confined in an entropic trap is poor (low temperature) and vice versa. We

have imposed a linear solvent interaction gradient and studied the migra-

tion behavior of polymer chain from region I to region III in presence of an

entropic trap. In this case, the migration time shows a non-monotonic be-

havior as a function of solvent interaction gradient for model C, whereas

monotonic increase in case of model D. At ∆ε ≈ −0.023, the free energy

barrier / well vanishes and at this value the migration time is found to be

the minimum. Interestingly, model D has the free energy barrier which

increases with ∆ε and hence migration time increases monotonically. We

have also explored the variation in shape of polymer inside the trap for

model C and D. We observed that the entropic trap has significant impact

on the y-component of 〈R2
g〉, whereas x-component remains almost the
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same.
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