Description	Page No.	
List of Figures	xiv	
List of Tables	xvii	
List of Abbreviations & Symbols	xviii	
Preface	xix	
Graphical Abstract	xxiii	
Chapter 1: General Introduction	1-13	
1.1 Introduction	1	
1.2 Problems associated with non-biodegradable food packaging	1	
1.3 Bio-based polymers used in food packaging applications	2	
1.3.1 Decomposition of bio-based polymers	2	
1.4 Nano-composites	4	
1.5 Nanofibers by electrospinning	4	
1.6 Impact of bio-based biodegradable polymers	5	
1.6.1 Food packaging		
1.6.2 Biomedical and pharmaceutical applications of biodegradable polymers		
1.6.2.1 Wound dressings		
1.6.2.2 Nanoparticle-mediated drug delivery system		
1.7 Research gap		
1.8 Objectives		
References	12	
Chapter 2: Biodegradable antimicrobial polymeric nanocomposite films for packaging 2.1 Introduction	15-83	
2.1.1 Bio-plastics	16	
2.1.2 Food packaging	17	
2.1.3 Foodborne pathogens	17	
2.1.4 Antimicrobial packaging	18	
2.1.4.1 Chitosan (CH) as antimicrobial packaging		
2.1.4.2 Silver nanoparticles (AgNPs) as antimicrobial material	20	

Contents

2.1.5 Electrospinning	22
2.1.6 Packaging of perishable meat products	22
2.2 Literature review	24
2.2.1 Biodegradation of plastic/polymer	25
2.2.2 Antimicrobial packaging	26
2.2.2.1 Polymeric antimicrobial composites of chitosan and their blends	28
2.2.2.2 Utilization of nanomaterials as antimicrobial agents in packaging	30
2.2.2.3 Silver nanoparticles (Ag-NPs)	31
2.2.2.4 Antimicrobial bio-nanocomposite films	34
2.2.3 Nanofibrous packaging	37
2.2.3.1 Electrospinning as a method of choice in packaging	39
2.2.4 Regulation for using nanomaterials in food packaging	43
2.3 Materials and methods	44
2.3.1 Materials	44
2.3.2 Collection & processing for preparation of Ocimum tenuiflorum leaf	44
extract 2.3.3 Green Synthesis of silver nanoparticles (AgNPs) via plant extract and Chitosan (CH)	45
2.3.3.1 UV–Visible spectrophotometry	45
2.3.4 Electrospinning solution	46
2.3.4.1 Preparation of CH/PVA/AgNPs solution for electrospinning	46
2.3.4.2 Preparation of fibrous composite nano-layers (FCNLs) through electrospinning2.3.5 Preparation of composite polymeric film	46 48
2.3.5.1 Diffusion of the active constituents	48
2.3.6 Physico-chemical characteristics	48
2.3.6.1 Electrical conductivity	48
2.3.6.2 Viscosity	48
2.3.6.3 Thickness	49
2.3.6.4 Solubility	49
2.3.6.5 Scanning electron microscopy (SEM)	49
2.3.6.6 Zeta (ζ) potential and particle size distribution	50
2.3.7 Water contact angle (WCA)	50
2.3.8 Fourier transforms infrared (FTIR) spectroscopy	50
2.3.9 X-ray diffraction (XRD)	51
2.3.10 Microbial Analysis	51
2.3.10.1 Culture media and microorganisms	51

2.3.10.2 In vitro antimicrobial activity	52
2.3.11 Antimicrobial application of FCNLs for meat packaging	52
2.3.12 Raw materials	53
2.3.12.1 Chitosan	53
2.3.12.2 Polyvinyl alcohol	54
2.4 Results and discussion	54
2.4.1 Analysis of UV–Visible spectra	54
2.4.2 Solution casting of polymeric film	57
2.4.2.1 The release profile of active constituents	58
2.5 Physico-chemical characteristics of electrospinning solution	59
2.5.1.1 Electrical conductivity	59
2.5.1.2 Viscosity	60
2.5.1.3 Thickness	61
2.5.1.4 Solubility	61
2.5.1.5 The SEM fingerprints	61
2.5.1.6 Zeta (ζ) potential of plant extract-AgNPs	65
2.5.2 Water contact angle (WCA)	66
2.5.3 Fourier Transform Infrared (FTIR) spectroscopy	67
2.5.4 X-ray diffraction (XRD)	68
2.5.5 Microbiological analysis	69
2.5.5.1 In vitro antimicrobial activity of film and FCNLs	69
2.5.6 Antimicrobial application of FCNLs for meat packaging	71
2.6 Conclusion	73
References	75

Chapter 3: Nano-fibrous scaffold with curcumin for anti-scar wound healing	85-147
3.1 Introduction	85
3.2 Literature review	89
3.2.1 Wound care	89
3.2.2 Skin	90
3.2.2.1 Layers of skin	90
3.2.3 Wound	93
3.2.3.1 Types of wounds	93
3.2.3.1.1 Acute wound	93

3.2.3.1.2 Chronic wound	93
3.2.3.2 Types of clinical wound healing	94
3.2.3.2.1 Primary intention wound healing process	94
3.2.3.2.2 Secondary intention wound healing process	95
3.2.3.2.3 Tertiary intention wound healing process	95
3.2.4 Wound healing mechanism	95
3.2.4.1 Hemostasis	97
3.2.4.2 The inflammatory phase	98
3.2.4.3 Proliferative phase	98
3.2.4.4 Maturation or remodeling phase	98
3.2.5 Wound dressings	99
3.2.5.1 Types of wound dressing	100
3.2.6 Components of advanced wound dressings	104
3.2.6.1 Polyvinyl pyrrolidone (PVP)	104
3.2.6.2 Cerium nitrate	104
3.2.6.3 Curcumin as a bioactive agent	105
3.2.6.3.1 Safety	105
3.3.6.3.2 Bioavailability	106
3.2.6.3.3 Application of curcumin	108
3.2.6.3.4 Wound healing action mechanisms of curcumin	108
3.2.6.3.5 Recent studies on curcumin application in wound healing	110
3.3 Materials and methods	111
3.3.1 Materials	111
3.3.2 Preparation of solution for electrospinning of curcumin and cerium loaded nanofibers fabrication	112
2.2.2.1 Thiskness	114
2.2.2.2.S. Let Wer	114
2.2.2.2 Solubility	114
3.3.3.3 Scanning electron microscopy (SEM) of nanofibers	114
3.3.3.4 Fourier Transforms Infrared (FTIR) Spectroscopy	114
3.3.5 X-ray diffraction (XRD)	115
3.3.4 Water contact angle (WCA)	115
3.3.5 Nanotiber characteristics	115
3.3.5.1 <i>In vitro</i> tree-radical scavenging efficacy of nanofibrous scatfolds	115
3.3.5.2 <i>In vitro</i> antimicrobial activity	116

3.3.6 Evaluation of the biocompatibility of the fibrous scaffolds	117
3.3.6.1 In vitro hemocompatibility assessment	117
3.3.6.2 Cytocompatibility assay (MTT assay)	117
3.3.7 In vivo open-wound healing	119
3.3.8 Histological examination	120
3.3.8.1 Histological examination of granulation tissues	120
3.3.8.2 Anti-oxidant enzyme activity in granulation tissues	120
3.3.8.2.1 Superoxide dismutase (SOD) assay	120
3.3.8.2.2 Catalase assay	121
3.3.8.3 Hydroxyproline content in granulation tissues	122
3.3.8.3.1 Standard curve for hydroxyproline	123
3.3.9 Statistical analysis	124
3.4 Results and discussion	125
3.4.1 Diameter and surface morphology of nanofibers	125
3.4.2 Physicochemical characteristics of nanofibers	127
3.4.3 Water contact angle	129
3.4.4 In vitro free-radical scavenging efficacy of nano-fibrous scaffolds	130
3.4.5 In vitro antimicrobial activity	131
3.4.6 Biocompatibility evaluation of the fibrous scaffolds	131
3.4.6.1 In vitro hemocompatibility assessment	131
3.4.6.2 Cytocompatibility assay (MTT assay)	133
3.4.7 Results of in vivo open-wound healing study	133
3.4.8 Histological examinations of granulation tissues	136
3.4.8.1 Anti-oxidant enzyme activity in granulation tissues	137
3.4.8.2 Hydroxyproline content in granulation tissues	140
3.5 Conclusion	141
References	142
Chapter 4: Nanoparticle-mediated drug delivery for biofilm-associated	149-184
infections 4.1 Introduction	140
4.1.1 Biofilm over wounds	149
4.1.2 Biofilm-associated nosocomial infections	149
	130

4.1.3 Strategies for biofilm eradication1504.1.4 Externally implanted devices (EIDs)150

4.1.5 Nanoparticle-mediated drug delivery	152
4.2 Literature review	153
4.2.1 Strategies for biofilm eradication	157
4.2.2 Nanoparticle-based drug delivery systems	160
4.3 Materials and methods	162
4.3.1 Materials and reagents	162
4.3.2 Biofilm formation and quantification	162
4.3.3 Scanning electron microscopy (SEM)	163
4.3.4 Water contact angle (WCA)	163
4.3.5 Preparation of Eudragit-RL100 nanoparticle encapsulated gentamicin sulfate (E-G-S)4.3.5.1 Drug entrapment efficiency	164 164
4.3.5.2 <i>In vitro</i> gentamicin sulfate release kinetic study	165
4.3.5.3 Standard curve for gentamicin sulfate (G-S)	165
4.3.6 Antimicrobial assessment	166
4.3.7 Determination of minimum inhibitory concentration (MIC) of gentamicin sulfate (G, S)	166
4.3.8 4.3.8 Determination of minimum biofilm inhibitory concentration (MBIC) of G-S and E-G-S	167
4.4 Results and discussion	167
4.4.1 Biofilm formation and quantification	167
4.4.2 Physical characteristic of EIDs by SEM	169
4.4.3 Water contact angle (WCA)	171
4.4.4 Physical characteristic of Eudragit-RL100 nanoparticle encapsulated gentamicin sulfate (E-G-S)	172
4.4.4.2 In vitro G. S. release kinetics	173
4.4.5 Minimum inhibitory concentration (MIC) of G-S	173
4.4.6 Minimum highlim inhibitory concentration (MBIC) of G-S	174
4.4.7 MBIC of Eudragit RI 100 panoparticle-encapsulated G-S (E-G-S)	175
4.5 Conclusion	176
References	1/8
	180
Chapter 5: Conclusions and future aspects	185-189
5.1 Conclusion	185
5.2 Future aspects	188
List of Publications	190

Líst of Fígures

Fig. No.	Description	Page No.
1.1	Commercial biodegradable thermoplastics	3
2.1	AgNPs utilization in commercial products	21
2.2	The fate of plastics in the aquatic environment	26
2.3	Different approaches for the synthesis of AgNPs	33
2.4	Schematic diagram displaying the active nanocomposite packaging concept	37
2.5	Packaging precursors for antimicrobial packaging in nanofibers	40
2.6	Functional electrospun and food packaging materials	42
2.7	Schematic diagram of electrospinning process and set-up	47
2.8	Absorption spectra of AgNPs under (a) Sunlight; (b) UV-light; (c) Raw materials	55
2.9	Chitosan-mediated green synthesized AgNPs; (a) UV-visible spectra; (b) SEM image of AgNPs; (c) Cumulative size distribution obtained through DLS method	57
2.10	Morphology of antimicrobial active film	58
2.11	Release profile of AgNPs and <i>Ocimum tenuiflorum</i> extract at 427 nm and 335 nm	59
2.12	SEM photo-micrographs of electrospun composite nano-layers; (a) P-100 NL; (b) P70-CH30 NL; (c) P70-CH30-Ag NL; (d) P60-CH40 NL; (e) P50-CH50 NL; (f) CH-100NL	63
2.13	Zeta potential of <i>Ocimum tenuiflorum</i> extract and AgNPs colloidal solution	65
2.14	FTIR spectra of film and composite nano-layers; (a) CH-100 film; (b) P70-CH30 NL; (c) P-100 NL; (d) P70-CH30-Ag NL	67
2.15	XRD pattern of film and composite nano-layers: (a) P70-CH30 NL; (b) P70-CH30-Ag NL; (c) P-100 NL; (d) CH-100 film	69
2.16	Microbial growth pattern in packed meat after 7 days: (a) Normal Plastic; (b) P70-C30-Ag NL; (c) P70-CH30 NL; (d) P-100 NL	72
2.17	Application of PVA/CH/AgNPs composite nano-layer for packaging of fresh meat	72
3.1	Layers of skin	92
3.2	Clinical wound healing (a)Primary intention wound healing	94
–	process, and (b)Secondary intention wound healing process	
3.3	Schematic representation of the concept of wound healing process	96
	assisted by a dressing material or skin graft	
3.4	Four phases of acute wound healing	99

Fig. No.	Description	Page No.
3.5	Absorption, metabolism and fate of curcumin after oral administration in rodents and humans	107
3.6	Effects of topical application of curcumin on different stages of wound healing	109
3.7	Schematic diagram of electrospinning set-up for preparing PVP- based curcumin and ceria loaded electrospun nanofiber	113
3.8	Reaction mechanism of hydroxyproline assay	123
3.9	Calibration curve of hydroxyproline	124
3.10	SEM fingerprints of nanofibers; (a) PVP nanofibers, (b) PVP-Ce nanofibers, (c) PVP-Ce-Cur nanofibers	125
3.11	Fiber characteristics: (a) FTIR spectra of PVP, curcumin, PVP-Ce and PVP-Ce-Cur nano-fibers, (b) XRD patterns of PVP-Ce and PVP-Ce-Cur nanofibers	128
3.12	Water contact angle for PVP NF, PVP-Ce-NF and PVP-Ce-Cur NF	130
3.13	Free-radical scavenging efficacy of PVP NF, PVP-Ce NF and PVP-Ce-Cur NF obtained through DPPH assay	131
3.14	<i>In vitro</i> biocompatibility of fibrous scaffolds: (a) hemocompatibility, (b) cytocompatibility of 3 T6-Swiss albino fibroblast cell lines on different scaffolds after 24 h, 48 h and 72 h incubation	133
3.15	Effect of dressing materials on healing of full thickness wound: (a) Images of wound healing on day 8 and 16, (b) percentage of wound healed following treatment with gauze, ciprofloxacin cream, PVP-	135
3.16	Histological images (H&E staining) of granulation tissues with gauze, ciprofloxacin cream, PVP-Ce NF and PVP-Ce-Cur NF treatment on day 8 and 16 at 10X microscopic resolution	137
3.17	<i>In vivo</i> effect of application of different nanofibers on endogenous enzymes viz. (a) SOD, (b) catalase in granulation tissues on day 8 and 16	139
3.18	<i>In vivo</i> effect of different dressings on hydroxyproline content in granulation tissue of Wistar rats on day 8 and 16 of post-wounding	140
4.1	Biofilm-related infections typically found in the human body	155
4.2	Calibration curve of Gentamicin sulfate (G-S) in PBS (pH 7.4)	166
4.3	Growth of E. coli biofilm over different materials	168
4.4	SEM images of catheter inner surfaces before and after E. coli biofilm formation; (a) Rubber catheter; (b) Biofilm over rubber catheter; (c) Foley catheter; (d) Biofilm over Foley catheter; (e) Endotracheal catheter; (f) Biofilm over endotracheal catheter	170
4.5	Contact angle of sessile water drop over different catheter surfaces	171
4.6	Size distribution of Eudragit RL-100 encapsulated gentamicin sulfate (E-G-S) nanoparticles. (a) SEM image; (b) Dynamic light	173

Fig. No.	Description	Page No.
	scattering (DLS) measurement of particle size distribution	
4.7	Drug release profile of E-G-S in PBS	174
4.8	Minimum inhibitory concentration (MIC) of G-S for <i>E. coli</i> by visual detection of colony forming units (CFU)	175
4.9	Biofilm inhibition pattern over different externally implanted medical devices (EIDs) with G-S	176
4.10	Comparision of minimum biofilm inhibitory concentration (MBIC): MBIC50 and MBIC90 for G-S and E-G-S.	177

List of Tables

Table No.	Description	Page No.
2.1	The advantages and disadvantages of bio-based packaging	24
2.2	Natural antimicrobial agents used in food packaging systems	27
2.3	Natural antimicrobial compounds used in the chitosan-based composite for antimicrobial food packaging	29
2.4	Use of bio-nanocomposite films in antimicrobial food packaging applications	35
2.5	Commonly used methods for nanofiber production	38
2.6	Electrospinning parameters (solution, processing, and ambient) and their effect on fiber morphology	
2.7	Electrospinning parameters used for preparing PVA-based nano- layers	
2.8	Properties of electrospinning solutions for making fibrous nano- layers	
2.9	Morphology, thickness, average fiber diameter and water contact angle of fibrous composite nano-lavers	
2.10	Antimicrobial activity of fibrous composite nano-layers and polymeric films against Gram-positive and Gram-negative bacteria	70
3.1	Four phases of healing of a full thickness wound	97
3.2	Function-based classification of available wound dressing products	101
3.3	Main classes of the moisture retentive wound dressings	102
3.4	Action of topical application of curcumin on different stages of wound healing	110
3.5	Parameters used for preparing electrospun PVP-based nanofibers	113
3.6	Morphology, composition, thickness, average fiber diameter and antimicrobial activity of fibrous dressings	126
4.1	Major pathogens involved in biofilm-associated infections	153
4.2	Factors responsible for chronic disease and antibiotic resistance in biofilms	157
4.3	Advantages and disadvantages of conventional therapies against biofilm	

Líst of Abbrevíatíons & Symbols

%	:	Percentage
0	:	Degree
μg	:	Microgram
С	:	Celsius
cm	:	Centimeter
h	:	Hour
kV	:	Kilo volt
mg	:	Milligram
min	:	Minute
mL	:	Milliliter
mm	:	Millimeter
S	:	Seconds
v/v	:	volume/volume
w/v	:	weight/volume
w/w	:	weight/weight
AgNPs	:	Silver nanoparticles
ANOVA	:	Analysis of variance
Ce	:	Cerium Nitrate Hexahydrate
СН	:	Chitosan
Cur	:	Curcumin
DLS	:	Dynamic light scattering
ECM	:	Extracellular matrix
E-G-S	:	Eudragit RL100 encapsulated gentamicin sulfate
EPS	:	Extracellular polymeric substances
FTIR	:	Fourier Transforms Infrared Spectroscopy
FTW	:	Full-thickness wounds
G-S	:	Gentamicin sulfate
H&E	:	Haematoxylin and staining
PVP	:	Polyvinyl pyrrolidone
ROS	:	Reactive oxygen species
rpm	:	Rotation per minutes
SD	:	Standard deviation
SEM	:	Scanning Electron Microscopy
SOD	:	Superoxide dismutase
UV-Vis	:	Ultraviolet-Visible
XRD	:	X-Ray Diffraction
λ_{max}	:	Wavelength maxima