

## SCHOOL OF MATERIALS SCIENCE AND TECHNOLOGY INDIAN INSTITUTE OF TECHNOLOGY (BANARAS HINDU UNIVERSITY) VARANASI - 221005, INDIA



Prof. Pralay Maiti School of Materials Science and Technology Tel # +91- 9935141321 Email: pmaiti.mst@itbhu.ac.in

## CERTIFICATE

It is certified that the work contained in the thesis titled **"Thermoplastic Polyurethane Ionomers as Gel Electrolyte for CdS Quantum Dots Sensitized Solar Cell"** by **Sunil Kumar** has been carried under my supervision and this work has not been submitted elsewhere for a degree.

It is further certified that the student has fulfilled all the requirement of

comprehensive examination, candidacy and SOTA for the award of Ph.D. degree.

Date: Place: IIT (BHU) Varanasi Prof. Pralay Maiti (Supervisor)

### DECLARATION

I, Mr. Sunil Kumar certify that the work embodied in this thesis is my own bonafied work and carried out by me under the supervision of "Prof. Pralay Maiti" from "21/07/2015 to 17/12/2021" at "School of Materials Science and Technology", Indian Institute of Technology (BHU) Varanasi. The matter embodied in this thesis has not been submitted for award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to research worker wherever their work cited in my work in this thesis. I further declare that I have not willfully copied any others work, paragraph, text, data results etc. reported in journal books magazines, reports, dissertations thesis etc. or available at websites and have not included them in this thesis and have not cited as my own work.

#### Date Place: IIT (BHU Varanasi

### Signature of the Student (Sunil Kumar)

#### Certificate by the Supervisor

It is certified that above statement made by the student is correct to the best of my knowledge.

Date

Supervisor **Prof. Pralay Maiti** School of Materials Science and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi 221005, India

Signature of the Coordinator/HOD

#### ACKNOWLEDGEMENTS

It's my great pleasure to acknowledge the help, support, encouragement and guidance that I have received from number of peoples in the course of completion of the thesis. I am extremely grateful to my research guide, **Prof. Pralay Maiti**, Professor, School of Materials Science and Technology, IIT (BHU), Varanasi for his valuable guidance, scholarly inputs and consistent encouragement I received throughout the research work. This work was possible only because of his scientific vision and unconditional support. I have spent contineousely 2.5 years in the School of Materials Science and Technology, IIT (BHU), Varanasi. During this period, I learned a lot of things along with research work which I hope will be helpful in my life. Remaining research periods was completed during service whenever I got leave from working institute. I would like to thank all the respected teachers of the school, **Prof. Rajiv Prakash, Dr. Chandana Rath, Dr. Akhilesh Kr. Singh, Dr. Chandan Upadhyay, Dr. Bholanath Pal, Dr. Ashish Kumar Mishra, Dr. Shrawan Mishra, Dr. Sanjay Singh, Dr. Nikhil Kumar for their valuable suggestions and encouragement during research work.** 

I am also grateful to my Research Program Evaluation Committee (RPEC) members **Prof. Nira Misra** from School of biomedical Engineering, **Prof. K. D. Mandal** from Department of Chemistry, IIT (BHU) I would like to express gratitude to **Dr. Pankaj Srivastava**, Associate Professor, Department of Chemistry, Institute of Science, Banaras Hindu University, and Varanasi for technical and critical support during device fabrication.

I gratefully acknowledge **Dr. Shantanu Das**, Assistant Professor, and Departments of ceromic engineering for availing electrochemical instrument and measurement during initial research phase. I also thank to my labmates **Dr. Dinesh Kumar Patel**, **Dr. Sunil Kumar**, **Dr.Akhand Pratap Singh**, **Dr. Arun Kumar Mahanta**, **Dr. Sudipta Senapati**, **Dr. Arpan Biswas**, **Dr. Anupama Gaur**, **Dr. Aparna Shukla** and **Dr. Dipti Saxena**, **Mr. Om** 

iii

Prakash, Mr. Ravi Prakash, Shivam Tiwari, Mr. Pravesh Kumar Yadav, Mr. Swapan Maity, Sudipta Bauri, Swikriti Tripathi, Amita santra, Shubham Mandal for the nice cooperation and pleasant company.

I gratefully acknowledge Central Instrumental Facility Centre, IIT (BHU), Varanasi, for providing various instrumental facilities. I have no words to thank my Mother (**Sunaina Devi**) and father (**Jayhind Prasad**) for their unconditional love and unwavering support at every stage of my life. I owe a lot to my wife (**Rangoli Jaiswal**) for her patience and cooperation and brothers (**Kamal and Arvind**) for their endless love and support, who are always there for me. My special thanks to my son (**Rishwik Jaiswal**) for continuous love and keeping patience during manuscript and thesis design.

I am grateful to all colleagues who have helped me in my struggle to achieve my dream of becoming a Ph. D. I am thankful to Dr. Pankaj Kumar Chaurasia, Assistant Professor, L.S. College, Muzaffarpur for the technical support during the manuscript design and management. I am also grateful to Dr. Sanjay (Principal, L.N.T. College) and Dr. Mamta Rani (Principal, R.B.B.M. College), B.R.A. Bihar University Muzaffarpur for cooperation and assistance to complete Ph.D. at academic ground.

Last but not the least, I express my deep sense of gratitude to Almighty God without his divine grace and blessing, above all this task would have been virtually impossible.

Date: Place: Varanasi

#### Sunil Kumar

Title of the Thesis: Thermoplastic Polyurethane Ionomers as Gel Electrolyte for CdS

**Quantum Dots Sensitized Solar Cell** 

Name of the Students: Sunil Kumar

Date: Place: IIT (BHU) Varanasi

Signature of the Student (Sunil Kumar)

#### **Copyright Transfer**

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the "Doctor of Philosophy".

Date: Place: Varanasi Signature of Student (Sunil Kumar)

**Note:** However, author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for author's personal use provided that the source and the institute's copyright notice are indicated.

# **CONTENTS**

## **Chapter 1: Introduction and Literature Review**

| 1.1   | Introduction                                                              | 1  |
|-------|---------------------------------------------------------------------------|----|
| 1.2   | Renewable energy sources and its global distribution                      | 1  |
| 1.3   | Solar cell                                                                | 2  |
| 1.3.1 | Components and design of solar cell                                       | 3  |
| 1.3.2 | Working principle of solar cell                                           | 3  |
| 1.3.3 | General classifications of solar cells                                    | 4  |
| 1.3.4 | Dye materials and dye sensitized solar cells                              | 5  |
| 1.3.5 | Perovskite materials and perovskite sensitized solar cells                | 7  |
| 1.3.6 | Quantum dots and quantum dots sensitized solar cells                      | 8  |
| 1.4   | Redox active couples/electrolyte and its various hole transporting phase  | 13 |
| 1.4.1 | Liquid electrolyte                                                        | 14 |
| 1.4.2 | Polysulfide redox couple                                                  | 15 |
| 1.4.3 | Gel polymer electrolyte                                                   | 16 |
| 1.4.4 | Solid polymer electrolyte                                                 | 19 |
| 1.5   | Electrolyte additives                                                     | 20 |
| 1.5.1 | Variation of redox mediation in polysulfide with different chemical       |    |
|       | environment                                                               | 22 |
| 1.6   | Electrocatalytic reaction of redox active electrolyte with photocathode   | 22 |
| 1.7   | Control of interfacial defects states and charge recombination phenomenon | 23 |
| 1.8   | Polyelectrolyte                                                           | 24 |
| 1.8.1 | Polyurethane ionomers                                                     | 26 |
| 1.9   | Scope and objective of present work                                       | 28 |
| 1.10  | Plan of the present work                                                  | 30 |

# **Chapter 2: Experimental Section**

| 2.1     | Synthesis of thermoplastic polyurethane and its functionalization       | 33 |
|---------|-------------------------------------------------------------------------|----|
| 2.1.1   | Materials                                                               | 33 |
| 2.1.2   | Synthesis of aliphatic polyurethane                                     | 33 |
| 2.1.3   | Functionalization of polyurethane chain                                 | 34 |
| 2.1.3.1 | Preparation of Functionalized polyurethane ionomer gel electrolyte      | 34 |
| 2.2     | Synthesis of polyurethane through variation of chain extenders (Diamine |    |

|        | and diol based chain extender)                                                     | 35 |
|--------|------------------------------------------------------------------------------------|----|
| 2.2.1  | Synthesis of polyurethane using polycaprolactone diol (PCL-diol)                   | 36 |
| 2.2.2  | Sulfonation of different hard segment content in polyurethane chain                | 36 |
| 2.2.3  | Preparation of polyurethane ionomer gel electrolytes                               | 36 |
| 2.3    | Synthesis of graphene Oxide and its functionalization through $\Upsilon$ - propane |    |
|        | sultone                                                                            | 37 |
| 2.3.1  | Synthesis of GO implanted polyurethane and its ionomer                             | 38 |
| 2.4    | Synthesis of CdS quantum dots and its surface quantization effect                  | 39 |
| 2.4.1  | Synthesis of CdS QDs using ethylenediamine (EDA)                                   | 39 |
| 2.4.2  | Synthesis of CdS QDs by using ethylenediaminetetraacetic acid (EDTA                | 39 |
| 2.4.3  | Synthesis of CdS QDs by using 3-mercaptopropeonic acid (MPA)                       | 40 |
| 2.5    | Fabrication of device                                                              | 41 |
| 2.5.1  | Washing and cleaning of FTO                                                        | 41 |
| 2.5.2  | Preparation of photoanode                                                          | 41 |
| 2.5.3  | Preparation of counter electrode or photocathode                                   | 41 |
| 2.5.4  | Fabrication of quantum dot sensitized solar (QDSS) cells                           | 41 |
| 2.6    | Characterization techniques                                                        | 42 |
| 2.6.1  | <sup>1</sup> H NMR spectroscopy                                                    | 42 |
| 2.6.2  | Fourier-transform infrared (FTIR) spectroscopy                                     | 43 |
| 2.6.3  | Thermogravimetric analysis (TGA)                                                   | 43 |
| 2.6.4  | Differential scanning calorimetry (DSC)                                            | 43 |
| 2.6.5  | UV-visible spectroscopy                                                            | 44 |
| 2.6.6  | X-ray diffraction                                                                  | 44 |
| 2.6.7  | Dynamic light scattering                                                           | 44 |
| 2.6.8  | Atomic force microscopy                                                            | 45 |
| 2.6.9  | Scanning electron microscopy                                                       | 45 |
| 2.6.10 | Transmission electron microscopy                                                   | 45 |
| 2.6.11 | cyclic voltammetry                                                                 | 46 |
| 2.6.12 | Linear sweep voltammetry                                                           | 46 |
| 2.6.13 | Electrochemical impedance microscopy                                               | 46 |
| 2.7    | Measurement and calculation                                                        | 47 |
| 2.7.1  | Degree of sulfonation in polyurethane hard segment content                         | 47 |
| 2.7.2  | Calculation of crystallinity                                                       | 47 |

| 2.7.3  | Estimation of optical band gap                                 | 47 |
|--------|----------------------------------------------------------------|----|
| 2.7.4  | Calculation of HOMO-LUMO energy levels                         | 47 |
| 2.7.5  | Ionic conductivity                                             | 48 |
| 2.7.6  | Electronic conductivity                                        | 48 |
| 2.7.7  | Electrolyte uptake or solvent absorbent power                  | 48 |
| 2.7.8  | Free electron lifetime measurement                             | 48 |
| 2.7.9  | Calculation of peak to peak separation potential               | 49 |
| 2.7.10 | Theoretical calculation of open circuit potential              | 49 |
| 2.8    | J-V characteristic measurement and its photovoltaic parameters | 49 |
| 2.8.1  | Short circuit current density (J <sub>SC</sub> )               | 49 |
| 2.8.2  | Open circuit potential or photovoltage (V <sub>OC</sub> )      | 50 |
| 2.8.3  | Fill factor (FF)                                               | 50 |
| 2.8.4  | Photovoltaic conversion efficiency (η)                         | 50 |

# Chapter 3: Functionalized Thermoplastic Poly (urethane-urea) as Hole Conductor for Quantum Dot Sensitized Solar Cell

| 3.1    | Introduction                                                              | 52 |
|--------|---------------------------------------------------------------------------|----|
| 3.2    | Results and discussion                                                    | 55 |
| 3.2.1. | Pendant group and its interaction with hard segment content of            |    |
|        | polyurethane chain                                                        | 55 |
| 3.2.2  | Electrochemical characteristic response of polyurethane ionomer           | 61 |
| 3.3    | Quantum dots, quantum confinement effect and its optimization             | 62 |
| 3.3.1  | Electrochemical characteristics of caped CdS particle and PANi            | 65 |
| 3.3.2  | Extent of interaction, chemical capping and particle size response of CdS | 66 |
| 3.4    | Fabrication of QDSS Cell and its solar (light) energy conversion          |    |
|        | response                                                                  | 69 |
| 3.4.1  | Energy levels, photosensitization and photovoltaic charge transfer        |    |
|        | Phenomenon                                                                | 69 |
| 3.5    | Photovoltaic reaction and hole conduction studies in QDSS cells           | 71 |
| 3.6    | Conclusions                                                               | 77 |

# Chapter 4: Redox Mediation through Integrating Various Chain Extenders in Active Ionomer Polyurethane Hard Segments in CdS Quantum Dot Sensitized Solar Cell

| 4.1   | Introduction                                                                       | 79  |
|-------|------------------------------------------------------------------------------------|-----|
| 4.2   | Results and discussion                                                             | 81  |
|       | Chain extension, structural variation and interaction of hydrophilic group in      |     |
| 4.2.1 | polyurethane chain                                                                 | 82  |
|       | Electrochemical properties of electrolyte responsive component in polyurethane     |     |
| 4.2.2 | ionomers                                                                           | 91  |
| 4.3   | MPA functionalized CdS QDs and quantum confinement effect on stabilized            |     |
|       | Structure                                                                          | 96  |
| 4.4   | Functionalized graphene oxide and extent of functional interaction of $\Upsilon$ - |     |
|       | propane sultone                                                                    | 98  |
| 4.5   | Electron lifetime studies and control of recombination center in polyurethane      |     |
|       | ionomers                                                                           | 100 |
| 4.6   | Fabrication scheme and interfacial alignment of energy levels in QDSS              |     |
|       | cells                                                                              | 102 |
| 4.7   | Photovoltaic properties of Quantum dot sensitized solar cells                      | 104 |
| 4.7.1 | Influence of different ionomer electrolyte matrix for photovoltaic reaction in     |     |
|       | QDSS cell                                                                          | 104 |
| 4.7.2 | Variation of chain length and functionality in ionomer electrolyte structure       | 106 |
| 4.8   | Conclusions                                                                        | 110 |

# Chapter 5: Multifunctional Graphene Oxide Implanted Polyurethane Ionomer Gel Electrolyte for Quantum Dots Sensitized Solar Cell

| 5.1   | Introduction                                                                | 112 |
|-------|-----------------------------------------------------------------------------|-----|
| 5.2   | Results and discussion                                                      | 114 |
| 5.2.1 | Structural and functional impact of pendant anion on GO functionalized      |     |
|       | polyurethane chain                                                          | 114 |
| 5.2.2 | Thermal and structural stabilization characteristics                        | 120 |
| 5.2.3 | Morphological and structure-function characteristics                        | 121 |
| 5.2.4 | Electrochemical and structure-activity characteristics                      | 122 |
| 5.3   | MPA functionalized QDs, functional structure and size quantization          |     |
|       | effect                                                                      | 126 |
| 5.4   | Interfacial energy levels, band structure and electron injection phenomenon | 129 |
| 5.4.1 | QDSSCs fabrication and Interfacial gel polyelectrolyte activity             | 131 |
|       |                                                                             |     |

| 5.5 | Photovoltaic   | performance | of | QDSSCs | via   | PUI   | and | PUI-GO | gel   |     |
|-----|----------------|-------------|----|--------|-------|-------|-----|--------|-------|-----|
|     | polyelectrolyt | es          |    |        | ••••• | ••••• |     |        | ••••• | 131 |
| 5.6 | Conclusions    |             |    |        |       |       |     |        |       | 135 |

# **Chapter 6: Conclusions and Future Perspectives**

| 6.1 | Conclusions              | 138 |
|-----|--------------------------|-----|
| 6.2 | Scope of the future work | 142 |
|     | References               | 144 |

# List of publications

**Conference contributions** 

## LIST OF SCHEME

| Scheme 1.1 | Schematic representation of energy levels (TiO <sub>2</sub> , Dye, electrolyte) and | 6  |
|------------|-------------------------------------------------------------------------------------|----|
|            | open circuit potential in DSS cell with three electrolyte (I/I3, [Co                |    |
|            | $(bpy)_{3}^{2+/3+}$ and $[Cu (dmp)_{2}]^{1+/2+}$                                    |    |
| Scheme 1.2 | Operating principle and schematic redox mediation in QDSS cell                      | 11 |
| Scheme 1.3 | The comprehensive energetic scheme of the density of states in ${\rm TiO}_2$        | 15 |
|            | for different molar concentration of salt in (a) Liquid (b) solid polymer           |    |
|            | electrolyte                                                                         |    |
| Scheme 1.4 | Schematic illustration of energy level diagram, photoexciton                        | 20 |
|            | generation, potential barrier and hole transport across multiphases                 |    |
|            | within CdSe sensitized solar device showing electron injection with                 |    |
|            | simplified potential diagram                                                        |    |
| Scheme 1.5 | Schematic diagram of charge transport with role of additive in                      | 22 |
|            | polysulfide electrolyte in QDSS cell                                                |    |
| Scheme 1.6 | General schematic reaction pathways for polyurethane ionomer                        | 28 |
|            | synthesis                                                                           |    |
| Scheme 2.1 | Synthetic reaction scheme of GO and its functionalization                           | 38 |
| Scheme 2.2 | Schematic representation of synthesis and surface functionalization of              | 40 |
|            | CdS quantum dots                                                                    |    |
| Scheme 2.3 | Schematic fabrication of basic QDSS cell                                            | 42 |
| Scheme 3.1 | Schematic reaction mechanism of polyurethane synthesis and its                      | 56 |
|            | chemical functionalization                                                          |    |
| Scheme 3.2 | HOMO-LUMO energy levels of sulfonated polyurethane and its                          | 70 |
|            | alignment with band structure of $TiO_2$ and CdS quantum dots.                      |    |
|            | Photosensitization and charge transport mechanism with hole                         |    |
|            | conducting sulfonated polyurethane gel matrix                                       |    |
| Scheme 3.3 | Schematic mechanism of photovoltaic reaction                                        | 71 |
| Scheme 4.1 | (A) Chemical structure of chain extenders (1) EDA (2) BD (3) HDA                    | 82 |
|            | (4) DDA (5) PDA. (B) Schematic representation of (a) Synthesis of                   |    |
|            | ether based polyurethanes through variation of chain extenders and                  |    |
|            | structural modification of hard segment contents in polymer chain (b)               |    |
|            | Synthesis of ester based polyurethane by maintain chain extending unit              |    |
|            | (EDA) constant. (c) Fabrication of QDSS cell through structural                     |    |

|            | integration of components in layer design and indication of pathways      |     |
|------------|---------------------------------------------------------------------------|-----|
|            | for charge transport under photo illumination                             |     |
| Scheme 4.2 | (a) Systematic representations of energy level, band diagram and its      | 103 |
|            | interfacial alignment. (b) Charge transport and recombination             |     |
|            | pathways at the interface photoanode/ionomer electrolyte/counter          |     |
|            | electrode. (c) Possible functional mechanism (photovoltaic reaction) of   |     |
|            | ionomer electrolyte with QDs and counter electrode                        |     |
| Scheme 5.1 | Schematic presentation of polyurethane ionomer (PUI) bearing              | 115 |
|            | electrolyte active groups                                                 |     |
| Scheme 5.2 | Schematic reaction pathway for synthesis of multifunctional graphene      | 116 |
|            | oxide implanted polyurethane ionomer                                      |     |
| Scheme 5.3 | Fabrication of thin film quantum dots sensitized solar cell via insertion | 131 |
|            | of gel polyelectrolyte (PUI-GO) between photoanode and counter            |     |
|            | 103electrode                                                              |     |

# LIST OF FIGURES

| Figure 1.1                                           | (a) The distribution ratio of different energy resources at global scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                       |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
|                                                      | showing 19% of the total contribution comes from renewable energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
|                                                      | sources. Data from International Energy Agency (iea.org) (b) Elevation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |
|                                                      | ratio of renewable energy during 1965-2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| Figure 1.2                                           | Electrical energy generation by energy resources on global level in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                       |
|                                                      | 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| Figure 1.3                                           | Components, configuration and design of third generation (3G) solar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4                       |
|                                                      | cell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Figure 1.4                                           | Nanoparticle size dependent absorption (color variation) enables tuning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                       |
|                                                      | of colloidal quantum dot spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         |
| Figure 1.5                                           | (a) Schematic presentation of absorption transition, interfacial charge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                      |
|                                                      | transport and various recombination pathways occurring at the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |
|                                                      | interface of $TiO_2/QDs$ /electrolyte. (b) Systematic representation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                                      | surface trap, defect states and charge recombination happening on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
|                                                      | surface of quantum dots                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| Figure 1.6                                           | Classifications of hole transport redox active phases (materials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14                      |
| Figure 1.6<br>Figure 1.7                             | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14<br>25                |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its                                                                                                                                                                                                                                                                                                                                                                              | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of                                                                                                                                                                                                                                                                                                               | 14   25   59            |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of<br>polyurethane and sulfonated polyurethane at various level of                                                                                                                                                                                                                                               | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1               | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of<br>polyurethane and sulfonated polyurethane at various level of<br>functionalization                                                                                                                                                                                                                          | 14<br>25<br>59          |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1<br>Figure 3.2 | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in $d_{6}$ -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of<br>polyurethane and sulfonated polyurethane at various level of<br>functionalization<br>Polyurethane and its functionalized matrix: sulfonation at hard segment                                                                                                                                                      | 14<br>25<br>59<br>60    |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1<br>Figure 3.2 | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of<br>polyurethane and sulfonated polyurethane at various level of<br>functionalization<br>Polyurethane and its functionalized matrix: sulfonation at hard segment<br>content with variation of sulfonating agent. (a) UV-visible spectra of                                                                     | 14     25     59     60 |
| Figure 1.6<br>Figure 1.7<br>Figure 3.1<br>Figure 3.2 | Classifications of hole transport redox active phases (materials)<br>Chemical structures of polyelectrolyte polymers<br>(a) <sup>1</sup> H NMR investigation for polyurethane and its functionalized<br>matrix. The spectra were recorded after dissolving the sample in d <sub>6</sub> -<br>DMSO solvent. (b) FTIR study of polyurethane and its functionalized<br>matrices FT-IR spectra shows that the intensity of stretching frequency<br>increases with degree of sulfonation and interaction. (c) TEM image of<br>SPU-3 film. (d) XRD pattern of polyurethane urea film and its<br>functionalized structure. (e) Thermogravimetric analysis of<br>polyurethane and sulfonated polyurethane at various level of<br>functionalization<br>Polyurethane and its functionalized matrix: sulfonation at hard segment<br>content with variation of sulfonating agent. (a) UV-visible spectra of<br>pure PU and SPUs with variable content of sulfonating agent. (b) | 14     25     59     60 |

|            | transition. (c) Solution phase cyclic voltammetry of solvent NMP, PU     |    |  |  |
|------------|--------------------------------------------------------------------------|----|--|--|
|            | and SPU-1 with scan rate of 20 mV/s at room temperature. (d) Cyclic      |    |  |  |
|            | voltammetry of SPU-2, SPU-3 and SPU-4. (e) EIS measurement               |    |  |  |
|            | solution phase PU, SPU-2 and SPU-3 for the measurement of charge         |    |  |  |
|            | transfer resistance                                                      |    |  |  |
| Figure 3.3 | UV-visible absorption spectra of Ethylenediamine (EDA) caped CdS         | 63 |  |  |
|            | QDs to investigate extent of capping around CdS particle. (b)            |    |  |  |
|            | Estimation of direct band gap (Tauc's plot)                              |    |  |  |
| Figure 3.4 | (a) UV-visible absorption spectra of various EDTA caped CdS solid        | 64 |  |  |
|            | thin film. (b) Tauc's plot for estimation of direct band gap. (c) UV-    |    |  |  |
|            | visible absorption spectra of thin film on layered structure. (d) Tauc's |    |  |  |
|            | plot for estimation of direct band gap                                   |    |  |  |
| Figure 3.5 | Electrochemical characteristic response: (a) Cyclic voltammetry          | 66 |  |  |
|            | measurement of EDA caped CdS at various concentration of capping         |    |  |  |
|            | agent. (b) Cyclic voltammetry of EDTA caped CdS through variation        |    |  |  |
|            | of concentration of Sulfide ion in EDTA caped CdS solutions with         |    |  |  |
|            | scan rate of 10 mV/s measured at room temperature. (c) Cyclic            |    |  |  |
|            | voltammetry of optimized EDTA caped CdS and PANi Solution                |    |  |  |
| Figure 3.6 | (a) SEM image of uncapped CdS and EDTA caped CdS. SEM revealed           | 69 |  |  |
|            | that capping reduced the agglomeration as a result little homogeneous    |    |  |  |
|            | distribution of particle.(b) AFM image of caped CdS nanoparticle. (c)    |    |  |  |
|            | TEM image of EDTA caped CdS QDs with inset histogram of particle         |    |  |  |
|            | size distribution. Image displayed spherical particle distribution with  |    |  |  |
|            | maximum size range $4 \pm 0.7$ nm. (d) DLS measurement of EDTA           |    |  |  |
|            | caped CdS QDs showing solvated dynamic size as 8, 11 and 15 nm for       |    |  |  |
|            | different band gap particle.(e) FTIR spectra of uncapped CdS , EDTA      |    |  |  |
|            | and EDTA caped CdS                                                       |    |  |  |
| Figure 3.7 | (a) Room temperature fabrication and layered assembly of Photoanode,     | 74 |  |  |
|            | polyurethane ionomer gel and counter electrode. (b) J-V characteristic   |    |  |  |
|            | curve of QDSS cell through photosensitization $FTO/TiO_2/CdS-4$ using    |    |  |  |
|            | liquid ionomer electrolyte (SPU-1) in DMSO.(c) J-V characteristic        |    |  |  |
|            | measurement (In dark and light) of QDSS cell using polyurethane          |    |  |  |
|            | ionomer gel (SPU-1 and SPU-2) through photosensitization of              |    |  |  |

|            | $FTO/TiO_2/CdS$ (Eg = 2.65 eV). (d) Photovoltaic response (J-V curve)                   |    |
|------------|-----------------------------------------------------------------------------------------|----|
|            | of QDSS cell using CdS (Eg = $2.69eV$ ) and SPU-3 ionomer gel. (e) J-                   |    |
|            | V characteristic measurement of QDSS cell via photosensitization of                     |    |
|            | FTO/TiO <sub>2</sub> /CdS-4 and FTO/TiO <sub>2</sub> /CdS-4/CB (carbon black) electrode |    |
|            | using SPU-4 ionomer gel.                                                                |    |
| Figure 3.8 | (a) J-V characteristic curve of QDSS cells through variation of                         | 75 |
|            | interface structure between FTO/TiO <sub>2</sub> /CdS-4 and SPU-3 ionomer gel.          |    |
|            | (b) Solar energy conversion characteristic curves. (c) Photovoltaic J-V                 |    |
|            | characteristic curve of QDSS cells using SPU-3 ionomer gel and                          |    |
|            | influence of quantum confinement effect in CdS QDs. (d) solar energy                    |    |
|            | conversion characteristic plots for estimation of efficiency                            |    |
| Figure 4.1 | Structural content of urethane linkage and functionalized urethane                      | 84 |
|            | linkage in polyurethane chain (b) Solution phase <sup>1</sup> H NMR spectra of          |    |
|            | short chain (BD) and long chain (DDA) extended polyurethanes and its                    |    |
|            | ionomer matrix in solvent $d_6$ -DMSO with their spectral peaks                         |    |
|            | resolution in the range of chemical shift ( $\delta = 0 - 9$ ppm). (c) Solid thin       |    |
|            | film based FTIR spectra of short chain (BD) and long chain (DDA)                        |    |
|            | extended polyurethanes and its ionomer matrix with spectral resolution                  |    |
|            | of 4 cm <sup>-1</sup> . (d) Thermogravimetric analysis (TGA) of short chain (BD)        |    |
|            | and long chain (DDA) extended polyurethanes and its ionomer matrix.                     |    |
|            | (e) Differential scanning calorimetry (DSC) of short chain (BD) and                     |    |
|            | long chain (DDA) extended polyurethanes and its ionomer matrix in                       |    |
|            | scanning temperature range of 25-250°C                                                  |    |
| Figure 4.2 | (a) Thermogravimetric analysis (thermal stability) for ether based                      | 86 |
|            | polyurethane and its ionomer matrix under different chain extending                     |    |
|            | units (structural variation of HSC). (b) DSC measurements of                            |    |
|            | polyurethane ionomers under different hard segment content due to                       |    |
|            | integration of chain extenders                                                          |    |
| Figure 4.3 | (a) Solid state FTIR spectra of ester (PCL-diol) based polyurethane and                 | 88 |
|            | its ionomer matrix. (b) Thermogravimetric analysis of ester based                       |    |
|            | polyurethane, ionomer matrix and composite ionomer matrix. (c) DSC                      |    |
|            | measurements of synthesized ester based polyurethane. (d) DSC                           |    |
|            | measurements of ionomer matrix and composite ionomer matrix                             |    |

| Figure 4.4 | Solid state UV-visible absorption spectra of short chain (BD) and long                 |           |
|------------|----------------------------------------------------------------------------------------|-----------|
|            | chain (DDA) extended polyurethanes and its ionomer matrix. (b)                         |           |
|            | $(\alpha h \upsilon)^2$ vs. hu plots for estimation of energy gap from absorption edge |           |
|            | of obtained spectra. (c) UV-visible absorption spectra of polyurethanes                |           |
|            | and its ionomer matrix under different chain structure. (d) Tauc's plots               |           |
|            | of absorption spectra to estimate energy gap from absorption edge. (e)                 |           |
|            | UV-visible absorption spectra of PU-PCL-EDA, SPU-PCL-EDA and S                         |           |
|            | (PU+CB+EDA). (f) Tauc's plot                                                           |           |
| Figure 4.5 | Effect on absorption spectra of PU-DDA with variation of weight ratio                  | 91        |
|            | of sulfonating agent (ratio of weight of NaH to weight of $\Upsilon$ - propane         |           |
|            | sultone). (b) Tau's plot to estimate energy gap                                        |           |
| Figure 4.6 | (a) Solution phase cyclic voltammetry measurements of short chain                      | 93        |
|            | (BD) and long chain (DDA) extended polyurethanes and its ionomer                       |           |
|            | matrix with a scan rate of 20 mV/s operated at room temperature. (b)                   |           |
|            | Solution phase cyclic voltammetry measurement for different ionomer                    |           |
|            | electrolyte (influence of chain structure on redox properties). (c) Cyclic             |           |
|            | voltammetry characterization of ionomer electrolyte in pristine and                    |           |
|            | composite phase (influence of functional group on redox properties (d)                 |           |
|            | Electrochemical impedance spectroscopy measurements in solution                        |           |
|            | phase of polyurethanes (PU-BD and PU-DDA) and its ionomer matrix                       |           |
|            | for the estimation of electrical (ionic) conductivity at room                          |           |
|            | temperature. (e) EIS measurement and influence of chain structure on                   |           |
|            | ionic conductivity of polyurethane ionomers. (f) I-V characteristic                    |           |
|            | measurements of ionomer gel as thin film on FTO (electronic                            |           |
|            | conductivity measurements                                                              |           |
| Figure 4.7 | (a) Solid state UV-visible absorption spectra of free CdS and MPA                      | <u>98</u> |
|            | caped CdS particles under variation of concentration of MPA                            |           |
|            | molecule. (b) Tauc's plot to estimate band gaps from absorption edge.                  |           |
|            | (c) TEM image of MPA caped CdS nanoparticles. (d) UV-visible                           |           |
|            | absorption spectra of thin film Ti - nanooxide (photocatalyst)                         |           |
|            | photosensitizer, SGO and multi layered structure to characterize photo                 |           |
|            | harvesting properties. (e) Solution phase CV measurements of caped                     |           |
|            | CdS particles to investigate redox properties. (f) Energy levels and                   |           |

|             | band diagram for different CdS nanoparticles                                                                                         |            |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|
| Figure 4.8  | (a) TEM image of sulfonated graphene oxide (b) Solid state FTIR                                                                      |            |
|             | spectra of GO and SGO. (c) XRD measurements of GO and SGO (d)                                                                        |            |
|             | CV measurements of GO and SGO (e) ESI measurements for GO,                                                                           |            |
|             | SGO and MPA caped CdS QDs. (F) electrocatalytic and corrosion                                                                        |            |
|             | behaviour of SGO with reference to : (a) Coated Layered structure of                                                                 |            |
|             | fabricated device. (b) J-V characteristic measurements of QDSS cells<br>using SPU-EDA ionomer electrolyte on different interfaces of |            |
|             |                                                                                                                                      |            |
|             | photoanode.(c) J-V curves QDSS cells with SPU-HDA ionomer                                                                            |            |
|             | electrolyte (d) J-V curve of QDSS cells using SPU-PDA ionomer                                                                        |            |
|             | electrolyte. Each ionomer gel consists of 30% (w/v)                                                                                  |            |
| Figure 4.9  | Bode plot for ionomer electrolyte in solution phase (a) influence on                                                                 | 101        |
|             | free electron lifetime measurement on the surface of active group of                                                                 |            |
|             | different chain extended ionomer electrolyte (b) influence on lifetime                                                               |            |
|             | with oxygenic functionalities in pristine and composite ionomer                                                                      |            |
|             | structure. (c) Bode plots for QDs and SGO in solution phase. (d)                                                                     |            |
|             | Charge transport and recombination -activation on PANi coated CdS                                                                    |            |
|             | photoanode. (e) Charge transport and recombinations on SGO coated<br>photoanode sensitized device                                    |            |
|             |                                                                                                                                      |            |
| Figure 4.10 | (a) Coated Layered structure of fabricated device. (b) J-V characteristic                                                            | 106        |
|             | measurements of QDSS cells using SPU-EDA ionomer electrolyte on                                                                      |            |
|             | different interfaces of photoanode.(c) J-V curves QDSS cells with                                                                    |            |
|             | SPU-HDA ionomer electrolyte (d) J-V curve of QDSS cells using                                                                        |            |
|             | SPU-PDA ionomer electrolyte. Each Ionomer gel electrolyte 30%                                                                        |            |
|             | (w/v)                                                                                                                                |            |
| Figure 4.11 | (a) Photovoltaic curves of QDSS cells using SPU-BD and SPU-DDA                                                                       | <u>108</u> |
|             | with direct free interface of photoanode/counter electrode. (b)                                                                      |            |
|             | Photovoltaic curves of QDSS cells using SPU-BD and SPU-DDA at                                                                        |            |
|             | the interface doped photoanode/counter electrode.(c) Influence on                                                                    |            |
|             | photovoltaic curves of QDSS cells using SPU-EDA and SPU-DDA at                                                                       |            |
|             | different interface of photoanode/counter electrode. (d) Photovoltaic                                                                |            |
|             | curves of QDSS cells using SPU-PCL-EDA and composite S                                                                               |            |
|             | (PU+CB)-PCL-EDA at different interfaces of photoanode/counter                                                                        |            |

|                                                                   | electrode. Each ionomer gel consists of 30% (w/v)                                |     |  |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------|-----|--|
| Figure 4.12                                                       | J-V characteristic curve of QDSS cells with variation of chain structure 10      |     |  |
|                                                                   | in ionomer electrolyte under photovoltaic reaction with ionomer gel              |     |  |
|                                                                   | 20% (w/v) (a) PANi coated photoanode (FTO/TiO <sub>2</sub> /CdS/PANi) (b)        |     |  |
|                                                                   | SGO coated photoanode FTO/TiO <sub>2</sub> /CdS/SGO                              |     |  |
| Figure 5.1                                                        | (a) <sup>1</sup> H NMR spectra of pristine poly (urethane-urea) and polyurethane | 117 |  |
|                                                                   | ionomer (PUI). (b) FTIR spectra of poly (urethane-urea) and its                  |     |  |
|                                                                   | ionomer                                                                          |     |  |
| Figure 5.2                                                        | (a) Solution state 1H NMR spectra of PU-GO and PUI-GO showing                    | 118 |  |
|                                                                   | spectral peaks in downfield and upfield regions. (b) Solid state FTI             |     |  |
|                                                                   | spectra of PU-GO and PUI-GO showing specific and characteristic                  |     |  |
|                                                                   | peaks. (c) Solid state UV-visible absorption spectra of PU-GO, PUI               |     |  |
|                                                                   | and PUI-GO showing shifted red shifted absorption band. (d) Tauc's               |     |  |
|                                                                   | plot for investigation of energy gap and structural confinement effect           |     |  |
| Figure 5.3                                                        | (a) TGA curves of PU-GO (0.5%), PUI and PUI-GO (0.5%). (b) DSC                   | 121 |  |
|                                                                   | thermogram of PU-GO (0.5%) and its ionomer (PUI-GO)                              |     |  |
| Figure 5.4                                                        | TEM image of PUI-GO $(0.5\%)$ . (b) AFM image of PU-GO $(0.5\%)$ and             | 124 |  |
| PUI-GO (ionomer) film spin coated on silicon wafer. (c) SEM image |                                                                                  |     |  |
|                                                                   | of PU-GO (0.5%) and PUI-GO                                                       |     |  |
| Figure 5.5                                                        | (a) Solution phase cyclic voltammetry of PU-GO (0.5%), Pristine PUI              | 124 |  |
|                                                                   | and PUI-GO recorded at room temperature with scan rate of 20 mV/s.               |     |  |
|                                                                   | (b) Electrochemical impedance spectroscopy (EIS) of PU-GO (0.5%),                |     |  |
|                                                                   | PUI and PUI-GO (0.5%). (c) Tafel plot for the investigation of                   |     |  |
|                                                                   | electrocatalytic activity and corrosion inhibition. (d) Bode plots for the       |     |  |
|                                                                   | investigation of lifetime of free electron on the surface of electrolyte         |     |  |
|                                                                   | active group) in PUI and PUI-GO (0.5%)                                           |     |  |
| Figure 5.6                                                        | (a) Solid state FTIR spectra of free CdS (uncapped) and MPA capped               | 127 |  |
|                                                                   | CdS. (b) Fe-SEM image of free CdS (c) Fe-SEM image of MPA                        |     |  |
|                                                                   | capped CdS. (d) AFM image of MPA capped CdS coated on silicon                    |     |  |
|                                                                   | wafer                                                                            |     |  |
| Figure 5.7                                                        | (a) Solid state UV-visible absorption spectra of of free CdS and MPA             | 128 |  |
|                                                                   | capped CdS. (b) Tauc's plot for determination of band gap through                |     |  |
|                                                                   | absorption edge transition. (c) Dispersed phase cyclic voltammetry               |     |  |

|             | (CV) of MPA capped CdS. (d) EIS plot for estimation of electrical                             |     |
|-------------|-----------------------------------------------------------------------------------------------|-----|
|             | conductivity of MPA capped CdS                                                                |     |
| Figure 5.8  | (a) Energy levels of constituents materials including polyelectrolyte for                     |     |
|             | assembly of QDSS cells. (b) The possible photoanode electrolyte                               |     |
|             | interface showing increased density of photoexcited electron in FTO                           |     |
|             | for efficient conversion                                                                      |     |
| Figure 5.9  | (a) J-V solar characteristic measurements of QDSS cells using gel                             | 132 |
|             | polyelectrolytes with various composition of graphene oxide under the                         |     |
|             | illumination of 100 mW/cm <sup><math>2</math></sup> intensity of white neutral LED light. (b) |     |
|             | Power vs. Voltage plot to calculate photovoltaic conversion efficiency                        |     |
| Figure 5.10 | (a) Photovoltaic characteristic curves of designed QDSSCs with                                | 134 |
|             | TiO <sub>2</sub> /MPA-CdS/SGO/Gel polyelectrolyte/Pt-FTO configuration (b)                    |     |
|             | Power vs. voltage plot for calculation of conversion efficiency                               |     |

#### Table 1.1 Properties and repeating structures of the most common polymer 17 matrices used to prepare gel electrolytes Table 1.2 with polysulfide 19 various composite polymer electrolytes and photovoltaic values for CdS sensitized solar cell Table 1.3 Photovoltaic parameters and photoactive materials of QDSCs based on 22 polysulfide electrolytes with different additives Table 3.1 Calculation of HOMO-LUMO energy levels with UV-visible absorption 61 spectra and electrochemical cyclic voltammetry measurement in window -2V to +2VTable 3.2 UV-visible and electrochemical parameters and its values 66 for photocatalyst, EDTA capped CdS QDs and PANi Table 3.3 74 Influence on photovoltaic parameters via tuning HOMO-LUMO energy levels of sulfonated polyurethane under different size or band gap Quantum dots as photosensitizer Table 3.4 Structure of Quantum dot sensitized solar cell consisting of optimized 74 sulfonated polyurethane ionomer gel (matrix). The photovoltaic physical parameter and its values are calculated accordingly under photo illumination with 100 mW/cm<sup>2</sup> intensity of light operated at room temperature Size quantization effects of CdS QDs on photovoltaic parameters and its Table 3.5 76 values measured at constant hole conducting layer or hole conducting electrolyte FTIR Wavenumber (cm<sup>-1</sup>) of Polyurethanes and polyurethane ionomers 85 Table 4.1 Table 4.2 Electrocatalytic redox reaction in ionomer segment at the interface of 93 different ionomer electrolyte/counter electrode (Pt) Table 4.3 electronic conductivity of polyurethane ionomers developed as thin film 95 over the surface of FTO Table 4.4 Photovoltaic characteristics of QDSS cells fabricated with PANi coated 109 photoanode (FTO/TiO<sub>2</sub>/MPA-CdS/PANi) and ionomer gel matrix with different electrolyte structure (sulfonated polyurethane ionomers) Table 4.5 Photovoltaic characteristic measurements of QDSS cells fabricated with 109 SGO coated photoanode (FTO/TiO<sub>2</sub>/MPA-CdS) and ionomer gel matrix

## LIST OF TABLES

|           | with different electrolyte structure (sulfonated polyurethanes)         |     |  |
|-----------|-------------------------------------------------------------------------|-----|--|
| Table 5.1 | Estimation of electrochemical parameters and characteristic values from |     |  |
|           | electrochemistry of cyclic voltammetry for polyelectrolyte solutions    |     |  |
| Table 5.2 | Photovoltaic parameters for the measured QDSS cells using gel           | 132 |  |
|           | polyelectrolytes with different composition                             |     |  |

# **LIST OF ABBREBIATIONS**

| UV                        | Ultraviolet                              |
|---------------------------|------------------------------------------|
| FTIR                      | Fourier transforms infrared spectroscopy |
| SEM                       | Scanning Electron Microscopy             |
| TEM                       | Transmission Electron Microscopy         |
| DLS                       | Dynamic Light Scattering                 |
| CV                        | Cyclic Voltammetry                       |
| J <sub>SC</sub>           | Short circuit current density            |
| V <sub>OC</sub>           | Open Circuit Voltage                     |
| FF                        | Fill Factor                              |
| PCE                       | Photovoltaic conversion efficiency       |
| η                         | Efficiency                               |
| CE                        | Counter electrode                        |
| PTMG                      | Polytetramethyleneglycol                 |
| HMD                       | Hexamethylene diisocyanate               |
| СЕ                        | Counter electrode                        |
| P <sub>MAX</sub>          | Maximum power density                    |
| НОМО                      | Highest occupied molecular orbital       |
| LUMO                      | Lowest unoccupied molecular orbital      |
| QDs                       | Quantum dots                             |
| QDSSCs                    | Quantum dots sensitized solar cells      |
| $\mathbf{E}_{\mathbf{g}}$ | Energy gap                               |
| R <sub>edox</sub>         | Redox potential                          |
| σ                         | Ionic conductivity                       |
| HSC                       | Hard segment content                     |
| PU                        | Polyurethane                             |
| PUI                       | Polyurethane ionomer                     |
| PE                        | Polyelectrolyte                          |
| SPU                       | Sulfonated polyurethane                  |
| SPUIG                     | Sulfonated polyurethane ionomer gel      |
| LE                        | Liquid electrolyte                       |
| GPE                       | Gel polymer electrolyte                  |

| R <sub>CT</sub>  | Charge transfer resistance             |
|------------------|----------------------------------------|
| GO               | Graphene Oxide                         |
| SGO              | Sulfonated grapheme Oxide              |
| ESI              | Electrochemical impedance spectroscopy |
| LSV              | Linear seep Voltammetry                |
| TGA              | Thermogravimetric analysis             |
| DTA              | Differential temperature analysis      |
| DSC              | Differential scanning Calorimetry      |
| T <sub>Gel</sub> | Gel transition temperature             |
| Tg               | Glass transition temperature           |
| T <sub>m</sub>   | Melting Temperature                    |
| PS               | Photosensitizer                        |
| ETL              | Electron transport layer               |
| HTL              | Hole transport layer                   |
| CEM              | Counter electrode material             |

#### PREFACE

Quantum dot sensitized solar cells (QDSSCs) are highly interesting because of multiexciton generation (MEG) nature that can be used in achieving stable and higher efficiency solar cells. QDSCs, having the advantages of low-cost assembling process, economically viable materials, and intrinsic optoelectronic properties of QD sensitizers, are regarded as attractive candidates for the low-cost third generation solar cells. The collaborative performance of QDSCs is dependent on the charge excitation from the QD sensitizer, injection into the metal oxide (TiO<sub>2</sub>), and transport in the circuit, as well as the transfer of the photogenerated holes and regeneration of the redox active electrolyte. The work intensifies the development of highly-efficient electrolyte matrix in the general field of QDSCs. Redox active polymer electrolyte plays an important role to drive reversible and bidirectional charge transport within electronic device i.e., battery and photovoltaic device (solar cell). Redox active liquid electrolyte destroys the device structure due to corrosion, leakage and high penetration. Liquid electrolyte creates poor device performance and durability. Gel polymer electrolyte draws more attention towards electrolytic function because of better adhesion and interfacial contact. Research scientists have developed more number of redox active ionic couples (inorganic / organic couples and complex ions) for Quantum dot sensitized solar cell. Photovoltaic conversion efficiencies were found to be degraded due to poor performance of electrolyte. Recently, Science and technologies have ignited to develop highly efficient gel polymer electrolyte through functionalization, grafting or structural variation. Redox potential and electrical conductivity play a key role to estimate photovoltage of the device. Device efficiency can be improved by tuning the redox potential of electrolyte. Therefore, researchers are trying to develop composite gel polymer electrolyte to enhance the stability and durability of device. Gel polymer electrolytes provide an attractive choice for maintaining good ionic conductivity and reducing the cell leakage problems.

Hence the main objective of thesis is to develop efficient gel polymer electrolyte by using thermoplastic polyurethane ionomer. Thermoplastic pristine polyurethanes does not have sufficient electrical conductivity. However, electrical conductivity can be created through chemical and structural modification around hard segment content in polyurethane chain. By using chemistry, polyurethanes were converted into conductive matrix due to functionalization or grafting of redox active pendant group on urethane linkage. Short chain ionic group structurally modifies the physical properties of native polyurethanes. The ionic pendant group is preferred due to hydrophilic and stabilization efficiency in polyurethane chain. By changing the chemical environment around urethane linkage, redox properties have been tuned. The differential electrolytic (hole conduction) behaviour was observed with better interconnection in composite ionomer structure. Polyurethane ionomers having more oxygenic rich functional groups, showed efficient hole conduction because of greater interaction with nanopores of photoanode. Finally, GO implanted polyurethane ionomers have been developed for Quantum dots sensitized solar cell. The photovoltaic parameters were observed to be improved due to enhanced electrical conductivity and passivation effect of resultant gel polyelectrolyte. The complete synthesis, characterization and photovoltaic studies of the materials in QDSS cell have been discussed in the thesis. In summary, it can be concluded that polar functional groups are observed more efficient in electrolyte structure. The resultant gel polyelectrolyte functions as better substitute of traditional polysulfide electrolyte due to combined effect of redox mediation as well as interfacial passivation effect on photoanode.