Chapter 2: Theoretical Background and Literature Review

This chapter presents the theoretical background related to a CBIR system and a comprehensive literature review related to the work presented in the thesis.

With the rapid advancement of digital imaging technologies and the use of large volume image databases in various applications, it becomes imperative to build an automatic and an efficient image retrieval system. Content-based image retrieval (CBIR) is most emerging and vivid research area in computer vision, in which unknown query image assigns to the closest possible similar images available in the database. CBIR system for general-purpose as well as mammogram images databases is a highly challenging problem because of the large size of the database, feature indexing, semantic and sensory gap, pre-processing limitations, the difficulty of understanding images, searching and browsing issues.

Feature is the property of an object, which can discriminate an object from others. Usually humans use colour, shape and texture to analyse and recollect the contents of an image [7, 24-26]. Also, CBIR systems use these features for the indexing of images, which are archived along with the images by performing similarity match between query image features with those in the database. Therefore, it is natural to use features based on these attributes for image retrieval.

2.1 Features Extraction for CBIR system

2.1.1 Colour Features

Colour is one of the most widely used visual features in content-based image retrieval [24]. While we can perceive only a limited number of gray levels, our eyes are able to distinguish thousands of colours and a computer can represent even millions of distinguishable colours in practice. Colour has been successfully applied to retrieve images, because it has very strong correlations with the underlying objects in an image. Moreover, colour feature is robust to background complications, scaling, orientation, perspective, and size of an image. Although we can use any colour space for computation of a colour histogram HSV (hue, saturation, value), HLS (hue, lightness, saturation), and CIE colour spaces (such as CIELAB, CIELUV) have been found to produce better results as compared to the RGB space. Since these colour spaces are visually (or perceptually) uniform compared to the RGB, they are found to be more effective to measure colour similarities between images [27]. There are variants of colour features are used in literature, some introduction of few are as follow:

• Colour Histogram

Colour histogram is one of the most important descriptor used in content-based image retrieval; which shows, how many pixels in an image are of a particular colour [28]. Colour histogram is represented as bar chart, where each bar (bin) represents a particular colour of the colour space being used. For the purpose of saving time, here we have reduced the number of bins through quantization, by taking colours that are very similar to each other and putting them in the same bin. For an M×N image I, the colours in that image are quantized to $Q_1, Q_2...Q_{32}$. The colour histogram H (I) = [H₁, H₂, ..., H₃₂], where H_i represents the number of pixels in colour Q_i . The colour histogram also represents the possibility of any pixel, in image I, that in colour Q_i .

$$Probality(Prob \in Q_i) = \frac{H_i}{M \times N}$$
(2.1)

Colour Coherence Vector

One problem with the colour histogram based similarity measure approach is that the global colour distribution doesn't reflect the spatial distribution of the colour pixels locally in the image. This cannot distinguish whether a particular colour is sparsely scattered all over the image or it appears in a single large region in the image. The colour coherence vector-based [29] approach was designed to accommodate the information of spatial colour into the colour histogram. Here we can classify each pixel in an image, based on whether it belongs to a large uniform region.

• Colour Moments

Colour moment is a compact representation of colour features to discriminate a colour image. It has been shown that most of the colour distribution information is captured by the three low-order moments [30]. These are mean, standard deviation and skewness, reflect the average colour value in the image, colour deviation from the mean, and degree of asymmetry in the distribution, respectively.

Colour Correlogram

The weak point of the histogram method is lack of space information in colour. Colour correlogram is technique proposed to integrate spatial information with colour histograms. For each pixel in the image, the correlogram approach needs to go through

all the neighbours of that pixel. So the colour correlogram shows how the spatial autocorrelation of colour changes with distance [31].

• Fuzzy Colour Histogram (FCH)

Colour histogram considers neither the colour similarity across different bins nor the colour dissimilarity in the same bin. Therefore, it is sensitive to noisy interference such as illumination changes and quantization errors. To address these concerns, a new colour histogram representation, called fuzzy colour histogram (FCH), by considering the colour similarity of each pixel's colour associated to all the histogram bins through fuzzy-set membership function [32]. This feature is robust to quantization error and changes in light intensity.

• Colour Difference Histogram (CDH)

Most of the existing histogram techniques merely count the number or frequency of pixels. However, the unique characteristic of CDHs is that they count the perceptually uniform colour difference between two points under different backgrounds with regard to colours and edge orientations in $L^*a^*b^*$ colour space [33]. This method pays more attention to colour, edge orientation and perceptually uniform colour differences, and encodes colour, orientation and perceptually uniform colour difference via feature representation in a similar manner to the human visual system.

Colour Layout Descriptors

A colour layout descriptor (CLD) is designed to capture the spatial distribution of colour in an image [34]. The feature extraction process consists of two parts; grid based representative colour selection and discrete cosine transform (DCT) with quantization.

Chromaticity Moments

This feature has resolve the issue of long histogram, only a small number of features, called chromaticity moments, are required to capture the spectral content (chrominance) of an image[35]. Chromaticity moments are characterized by their two dimensional shape and two dimensional distribution.

2.1.2 Texture Feature and Key Point's Detector

Texture is a very interesting image feature that has been used for characterization of images, with application in content-based image retrieval [36]. There is no single formal definition of *texture* in the literature. However, a major characteristic of texture is the repetition of a pattern or patterns over a region in an image. Brief description of some dominating texture features are as follow:

• Gray level Co-occurrence Matrix (GLCM)

GLCM is a statistical approach for computing the co-occurrence probability of different combinations of grey levels in an image [37]. The matrix element $G(p, q \mid \Delta x, \Delta y)$ is the relative frequency, where two pixels are separated by a pixel distance ($\Delta x, \Delta y$) within a given neighborhood, one with intensity *p* and the other with intensity *q*.

Let I(x, y) is an image with size $M \times N$ and gray levels g ranging from 0 to g-1. Then GLCM matrix for an image I, parameterized by an offset $(\Delta x, \Delta y)$ is defined as [29, 35]:

$$G_{\Delta x,\Delta y}(p,q) = \sum_{x=1}^{M} \sum_{y=1}^{N} \begin{cases} 1, \text{ if } I(x,y) = p \text{ and } I(x + \Delta x, y + \Delta y) = q \\ 0, & \text{otherwise} \end{cases}$$
(2.2)

• Tamura Texture

By observing psychological behaviour of human visual perception, Tamura proposed the texture representation using computational approximations to the three main texture features of: coarseness, contrast, and directionality [38]. Where *Coarseness* is the measure of average regions that have the same intensity, *Contrast* is the measure of distinctness of the texture pattern and Directionality is the measure of direction of the grey values within the image.

• Wavelet Transform based Features

Wavelet transform is a signal processing technique extensively used in texture analysis & extraction of visual texture features based on multi-resolution decomposition of the images, and representing textures in different scales [39-40]. Wavelet transform, transforms the images into a multi-scale representation with lower computational cost. When we apply discrete wavelet transform (DWT) to the input images, it decomposes the images into four parts (LL, LH, HL and HH). Further, low-low sub-bands are decomposed, and repeat for LL sub band as desired number of decomposition. Statistical features like mean, standard deviation, skewness, kurtosis etc. of the transform coefficients are used as a feature vector.

• Gabor Filter based Features

Gabor filter is an example of linear wavelet filters, capturing energy at a specific frequency and a specific direction, and frequently used in many image processing applications such as; synthesis of images, segmentation, edge detection, pattern recognition etc. In all such applications, it is necessary to analyse the spatial frequency parts of an image in a localized manner using a Gaussian envelope [41]. Frequency and orientation representations of Gabor filters are similar to those of the human visual

system, and they have justified being appropriate for extracting useful texture features from an image.

A two dimensional Gabor function g(x, y) is defined as:

$$g(x,y) = \frac{1}{2\pi\sigma_x\sigma_y} exp\left[-\frac{1}{2}\left(\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2}\right) + jw(x\cos\theta + y\sin\theta\right]$$
(2.3)

where space constants σ_x and σ_y define the Gaussian envelope along the X and Yaxes, w is modulation frequency and θ is orientation.

After applying Gabor filters on the images with different orientation at different scale, we obtain an array of transformed coefficients. Mean square energy, Mean amplitude of these Gabor coefficients are used to represent the homogenous texture feature of the region. But this features is computational intensive as compare to other transform.

• Local Binary Patterns

Local binary patterns (LBP) are a computationally light weighted texture features, derived from the local neighbourhood of each pixel in the image [42]. This operator treats each pixel as a center pixel, and calculates the difference of center pixel with neighbourhood pixel, and multiplies it with a binary image window.

Despite these textures, four pioneering texture and edge features have paved the way to the significant advance in content-based visual retrieval on large-scale multimedia database. The first one is the introduction of invariant local visual feature SIFT [43]. SIFT is demonstrated with excellent descriptive and discriminative power to capture visual content in a variety of literature. It can well capture the invariance to rotation and scaling transformation and is robust to illumination change. The second

work is the introduction of Edge in the image is considered an important feature to represent the content of the image. In MPEG-7, there is a descriptor for edge distribution in the image. This edge histogram descriptor proposed for MPEG-7 [44] consists only of local edge distribution in the image. That is, since it is important to keep the size of the histogram as small as possible for the efficient storage of the metadata. SURF (Speed Up Robust Feature) is one of the most and popular interest point detector and descriptor which has been published by Bay et al. [45]. It is widely used in most of the computer vision applications. The SURF has been proven to achieve high repeatability and distinctiveness. Other texture and key points descriptors which are actively used in CBIR are Histogram of gradient [46], Binary Robust invariant scalable key points (BRISK)[47], Features from accelerated segment test (FAST) [48] etc.

2.1.3 Shape Features

Shape is another image feature applied in CBIR. Shape can roughly be defined as the description of an object minus its position, orientation and size [3]. Therefore, shape features should be invariant to translation, rotation, and scale, for an effective CBIR, when the arrangement of the objects in the image is not known in advance. To use shape as an image feature, it is essential to segment the image to detect object or region boundaries; and this is a challenge. Techniques for shape characterization can be divided into two categories. The first category is boundary-based, using the outer contour of the shape of an object. The second category is region-based, using the whole shape region of the object. The most prominent representatives of these two categories are Fourier descriptors, chain code, polygon approximation, moment invariants,

curvature scale space descriptor, angular radial transform, image moments, and geometric features etc. [49-52].

2.2 Similarity Measures

Generally image descriptors are proposed along with its distance measure to match the descriptors. The most commonly distance measure used and reported in the literature which computes the dissimilarity between descriptors is the Euclidean distance. If the Euclidean distance between two descriptors is less, it means two descriptors are more likely to be similar; hence the corresponding images are also similar. Other common distances are *L1*, *Cosine*, *Canberra*, *D1*, *and Chi-square* etc. [53-56]. The fundamental work of similarity measure is to find the dissimilarity between the descriptors of two images.

Let the descriptors of two images are as follow:

$$F^{a} = F^{a}(1) F^{a}(2), \dots, F^{a}(n)$$

 $F^{b} = F^{b}(1) F^{b}(2, \dots, F^{b}(n))$

where *n* is the dimension of feature vectors. The different distances are defined as follows:

• Euclidean Distance (ED):

$$ED(F^{a}, F^{b}) = \left(\sum_{i=1}^{n} (F^{a}(i) - F^{b}(i))^{2}\right)^{\frac{1}{2}}$$
(2.4)

• *L1* Distance:

$$L1(F^{a}, F^{b}) = \left(\sum_{i=1}^{n} \left| F^{a}(i) - F^{b}(i) \right| \right)$$
(2.5)

• The *D1* Distance

$$D1(F^{a}, F^{b}) = \left(\sum_{i=1}^{n} \frac{\left|F^{a}(i) - F^{b}(i)\right|}{\left|1 + F^{a}(i) + F^{b}(i)\right|}\right)$$
(2.6)

• Canberra Distance (*CD*):

$$Canberra(F^{a}, F^{b}) = \left(\sum_{i=1}^{n} \frac{\left|F^{a}(i) - F^{b}(i)\right|}{\left|F^{a}(i) + F^{b}(i)\right|}\right)$$
(2.7)

• Chi-square Distance

$$Chisq(F^{a}, F^{b}) = \left(\frac{1}{2}\sum_{i=1}^{n} \frac{(F^{a}(i) - F^{b}(i))}{(F^{a}(i) + F^{b}(i))}\right)$$
(2.8)

2.3 Literature Review of CBIR System for General Images

A number of general-purpose image search engines have been developed using different variants of colour, texture and shape features with different variants of similarity measures [56-59]. Recent researches on CBIR are also going on the fusion of dominating features and the role of similarity measures. A brief Literature review of general CBIR system is given in Table 2.1

Authors	Description	Limitations/	Database	Performance
		Issues	Used	Parameters
Walia and	Used colour difference	Extra pre-	Wang,	Precision(P),
Pal [9]	histogram (CDH) and	processing	VisTex,	Recall (R),
	Angular Radial Transform	efforts are	and OT-	and P-R
	C			
	based features that capture	required, uses	Scene	Graph
	the colour, texture and shape	exhaustive linear	Database	

Table 2.1: Brief description of various CBIR systems

	information of an image, and	search in the		
	finally to make system more	entire database		
	effective, they used fusion			
	framework to combines the			
	ranking results			
Ela <i>et al</i> .	Used Multiple SVM	Lack aspects of	Wang	
[23]	classifiers with wavelet	generalization		
	features, and reduced the			
	searching time of retrieval			
Liu and	Based on uniform colour	Searching time	Wang	Precision,
Yang [33]	difference between colours	and feature		Recall,
	and edge orientation, which	dimension issue		Accuracy
	cover a wealthy visual	(256 features)		
	content for retrieval			
Malik &	Used quantized histogram	Uses traditional	Corel-	Precision ,
Baharudin	statistical texture features	searching	1000	Recall, and
[54]	from the discrete cosine	technique, loss		F-measure
	transform (DCT) blocks of	of information		
	the image. For the effective	up to some		
	matching various distance	extent		
	metrics are used			
Yue et al.	Used colour histogram (CH)	Feature	Wang	Precision,
[60]	and texture features based on	dimension is		Recall,
	a co-occurrence matrix to	high due to use		Accuracy

	form feature vectors. These	of CH, colour		
	fused features were analysed	co-occurrence		
	by constructing weights of	matrix required		
	feature vectors, and	more time for		
	conveyed that, fused features	indexing, further		
	retrieval brings a better	uses exhaustive		
	visual feeling than the single	linear search in		
	feature retrieval	the entire		
		database		
Jalab [61]	Used colour layout	Size of feature	Wang	Precision,
	descriptor (CLD) and Gabor	vector,performa		Recall, P-R
	filter, and concluded that,	nce is not robust		graph
	combining the colour and	& effective,		
	texture features in CBIR	Semantic gap		
	systems leads to more	and searching		
	enhancing results for image	time		
	retrieval.			
Shen et al.	Firstly, they segmented an	Extra pre-		Precision,
[62]	image into regions and	processing time	Wang	Recall,
	further extracted local	for		Accuracy
	colour, texture and CENsus	segmentation,		
	Transform hISTogram	required more		
	features for indexing and	searching time		
	retrieval			
1				

Irtaza <i>et al</i> .	Presented Neural Network	Risk of mis-	Wang,	Precision,
[63]	based architecture for	association,	Coil	Recall,
	content based image	semantic		Average
	retrieval, where the feature	association		precision &
	extraction method was based	using		Recall class
	on depth-texture analysis	backpropagation		wise
	using wavelet packets and	neural networks,		
	Eigen values of Gabor	and Class		
	filters. For correct image	finalization		
	retrieval, a partial supervised	through K-		
	learning scheme was	nearest		
	introduced, based on K-	neighbours		
	nearest neighbours of a			
	query image			
Rahimi and	Used Intra class features	Lack of	Wang,	Classification
Moghadda	based on the concept of co-	generalization in	VisTex	rate,
m [64]	occurrence matrix,	retrieval	images	Retrieval
	Distribution of Colour and	performance,		rate, ROC
	inter class features based on	required more		curve
	dual-tree complex wavelet	searching time		
	transform, (SVD), and			
	conceptual segmentation			
Liu <i>et al</i> .	Retrieval based on new	Complex,	Wang	Precision,
[65]	image descriptor (Micro	feature		Recall, and

	Structure Descriptor-MSD),	dimension is		P-R curve
	uses edge orientation	moderately high		
	similarity, and built upon	(72 features),		
	underlying colours in micro-	issue of		
	structures	searching time		
Zhang et	Used physiological structure	Feature		Precision,
al. [66]	of human eyes and visual	dimension is	Wang	Recall,
	perception based hybrid	high (110	(Corel-	Average P-R
	information descriptors	features), Issue	1000 and	curve
	(HIDs), consisting of mutual	of searching	10,000),	
	information descriptors	time, more	Oliva	
	(MIDs) and self-information	indexing time	and	
	descriptors (SIDs)	required for	Caltech	
		extraction of		
		MID and SID		
	Based on colour texture and	More time		
Zhao et al.	shape features: Used colour	required for	Wang	Precision
[67]	distribution entropy (CDE),	feature indexing	database	
	colour level co-occurrence	due to use of		
	(CLCM) and invariant	Invariant		
	moments. The similarity	moments and		
	measure matrix is based	Colour level co-		
	upon Euclidean distance	occurrence (i.e.		
		more than 1.2		

		seconds are		
		required for an		
		image of size		
		256×256), uses		
		linear search		
Mistry et	Used hybrid feature with	Huge dimension	Wang	Precision
<i>al</i> .[68]	various distance measure. i.e.	of feature	database	
	Spatial domain features	vector, Uses		
	including colour auto-	Exhaustive		
	correlogram, colour	linear search in		
	moments, HSV histogram	the entire		
	features, and frequency	database.		
	domain features like			
	moments using SWT,			
	features using Gabor wavelet			
	transform			
Singh &	They have introduced fast	Required	Corel-	Precision
Kaur [69]	and efficient image retrieval	relatively extra	5K,	
	system based on colour and	feature indexing	Corel-	
	texture features. The colour	time and	10K,	
	features are represented by	exhaustive linear	UKbench	
	colour histograms and	search in the	and	
	texture features are	entire database	Holidays	
	represented by block			

	difference of inverse			
	probabilities and block			
	variation of local correlation			
	coefficients			
Wang <i>et al</i> .	Introduced an effective	Work only for	Wang	
[70]	colour image retrieval	colour		
	method based on texture,	dominated		
	which uses the colour co-	images, uses		
	occurrence matrix to extract	direct similarity		
	the texture feature and	between two		
	measure the similarity of two	images tends to		
	colour images.	search entire		
		database.		
Wang <i>et al</i> .	New and effective colour	database. Complex and	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by	database.Complexandrequiredextra	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture	database.Complexandrequiredextraprocessingtime	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For	database.Complexandrequiredextraprocessingtimeforfeature	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape	database. and Complex and required extra processing time for feature extraction, uses	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape features, fast colour	database. and Complex and required extra processing time for feature extraction, uses linear search for	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape features, fast colour quantization with clusters	database. and Complex and required extra processing time for feature extraction, uses linear search for retrieval	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape features, fast colour quantization with clusters merging, steerable filter	database. and Complex and required extra processing time for feature extraction, uses linear search for retrieval	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape features, fast colour quantization with clusters merging, steerable filter decomposition, and pseudo-	database. and Complex and required extra processing time for feature extraction, uses linear search for retrieval	Wang	Precision
Wang <i>et al</i> . [71]	New and effective colour image retrieval scheme by combining colour, texture and shape information. For colour , texture and shape features, fast colour quantization with clusters merging, steerable filter decomposition, and pseudo- Zernike moments are	database. and Complex and required extra processing time for feature extraction, uses linear search for retrieval	Wang	Precision

Banerjee et	Proposed significant clusters	Feature	Wang	Precision,
al. [72]	points around significant	dimension is		Recall,
	curvature regions using	high, Extra step		Accuracy
	fuzzy set theoretic approach,	(more time) of		
	and extracted invariant	feature selection		
	colour features. Minimum	has added.		
	redundancy-maximum			
	relevance (mRMR) based			
	informative feature selection			
	technique are used to find			
	most relevant features			
Ealami	Firstly extracted colour and	Extra time	CIFAR-	Average
[73]	texture features then apply	needed for	10	Precision and
	dimensionality reduction,	selecting the	Wang,	Recall
	artificial neural network	features due to	Oxford	between
	(ANN) and matching	training of ANN	Flowers	different
	strategy. The ANN serves as		dataset	aspects
	a classifier, so that the			
	selected features of query			
	image are the input and its			
	output is one of the multi			
	classes that have the largest			
	similarity to the query image			
Das <i>et al</i> .	Used RF for feature	Extra time	Wang	Precision,

[74]	reweighting where weights	needed for		Recall,
	in the similarity measure are	learning of		Average P-R
	modified using feedback	model for		curve
	samples as returned by the	Relevance		
	user	feedback,		
		performance		
		factor		
Dubey et	Proposed brightness	Application	Phos	Average
al. [75]	invariant colour	specific retrieval	Natural	precision
	transformation based on a	framework	Illuminat	rate, average
	multi-channel based		ion	recall rate,
	illumination compensation,		database,	Retrieval &
	generic model for various		Two	Overall
	features, which retrieval		Corel	average P-R,
	performances are preserved		Synthesiz	Average P-R
	in the case of illumination		ed	Curve
	change		Illuminat	
			ion	
			Database	
Ganar <i>et al</i> .	Based on colour, texture and	Required	Wang	Precision and
[76]	shape features using direct	additional	database	Recall
	similarity measure. Global	feature		
	colour histogram and local	dimension and		
	colour histogram, co-	time for		

	occurrence matrix and	indexing, uses		
	gradient method are used for	linear search		
	colour, texture and shape			
	features respectively			
Afifi and	Ranklet Transform and the	Extra Pre-	Wang	Precision and
Ashour	colour feature are used as a	processing step,		Recall
[77]	visual feature to represent	No any analysis		
	the images. To speed up the	of invariant		
	retrieval time, images are	properties are		
	clustered according to their	shown for		
	features using k-means	Ranklet		
	clustering algorithm	Transform		
Alsmadi	Used feature set is composed	Feature	Wang	Precision,
Alsmadi [78]	Used feature set is composed of colour signature with the	Feature dimension is	Wang	Precision, Recall , P-R
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture	Feature dimension is high, meta-	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a	Feature dimension is high, meta- heuristic	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation	Feature dimension is high, meta- heuristic approaches take	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic	Feature dimension is high, meta- heuristic approaches take extra pre-	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic	Feature dimension is high, meta- heuristic approaches take extra pre- processing time	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm	Feature dimension is high, meta- heuristic approaches take extra pre- processing time for the	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge) is	Feature dimension is high, meta- heuristic approaches take extra pre- processing time for the optimization of	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge) is achieved between the	Feature dimension is high, meta- heuristic approaches take extra pre- processing time for the optimization of results, uses	Wang	Precision, Recall , P-R Curve
Alsmadi [78]	Used feature set is composed of colour signature with the shape and colour texture features. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge) is achieved between the features of the query image	Feature dimension is high, meta- heuristic approaches take extra pre- processing time for the optimization of results, uses linear search for	Wang	Precision, Recall , P-R Curve

	database images			
Varish and	In this work, colour feature	Uses exhaustive	Wang	F-Score,
Pal[79]	is extracted from the	linear search for		Precision,
	quantized histograms of Hue	retrieval,		Recall
	(H) and Saturation (S)	Additional pre-		
	components while texture	processing steps		
	feature is extracted from	which losses the		
	computed gray level co-	colour		
	occurrence matrices	information.		
	(GLCMs) of each sub image			
	of discrete wavelet transform			
	(DWT) of Value (V)			
	component of HSV colour			
	image			
Chun et al.	Based on an efficient	Uses exhaustive	Wang	Precision,
[80]	combination of	linear search for		Recall
	multiresolution colour	retrieval		
	(correlogram) and texture			
	features. The colour and			
	texture features are extracted			
	in multiresolution wavelet			
	domain. The dimension of			
	the combined feature vector			
	is determined at a point			

	where the retrieval accuracy			
	becomes saturated			
Huang et	Used colour and texture	Uses exhaustive	Wang	Precision,
<i>al.</i> [81]	features. As its colour	linear search for		Recall
	features, colour moments of	retrieval		
	the Hue, Saturation and			
	Value (HSV) are used. As its			
	texture features, Gabor			
	texture descriptors are			
	adopted. Users assign the			
	weights to each feature			
	respectively and calculate			
	the similarity with combined			
	features of colour and texture			
	according to normalized			
	Euclidean distance			
Liu <i>et al</i> .	Used LBP based texture and	Limited	Wang	Precision and
[82]	colour histogram based	performance and		Recall, P-R
	colour features for image	feature		Curve
	retrieval and classification	dimension is		
		moderately high,		
		further also uses		
		exhaustive linear		
		search in the		

		entire database		
Li et al.	In this work, colour texture	Lack of	Two	Precision and
[83]	retrieval method is	generalization	large	Recall
	introduced by using copula	aspects, works	texture	
	model based on Gabor	well for texture	databases	
	wavelets. Four copula	dominated	ALOT	
	schemes are developed, and	images	and STex	
	accordingly four KLDs			
	distance of the copula			
	schemes are introduced for			
	colour texture image			
	retrieval			
Zhang [84]	In this work, a method	Traditional	MPEG-7	Precision, P-
Zhang [84]	In this work, a method combining both colour and	Traditional method uses	MPEG-7 for	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is	Traditional method uses exhaustive linear	MPEG-7 for natural	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query,	Traditional method uses exhaustive linear search,	MPEG-7 for natural image	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are	Traditional method uses exhaustive linear search, performance is	MPEG-7 for natural image retrieval	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using	Traditional method uses exhaustive linear search, performance is not good,	MPEG-7 for natural image retrieval test	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using CIEL*u*v* colour space for	Traditional method uses exhaustive linear search, performance is not good, moderate feature	MPEG-7 for natural image retrieval test	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using CIEL*u*v* colour space for colour features. Then the top	Traditional method uses exhaustive linear search, performance is not good, moderate feature dimension	MPEG-7 for natural image retrieval test	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using CIEL*u*v* colour space for colour features. Then the top ranked images are re-ranked	Traditional method uses exhaustive linear search, performance is not good, moderate feature dimension	MPEG-7 for natural image retrieval test	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using CIEL*u*v* colour space for colour features. Then the top ranked images are re-ranked according to their Gabor	Traditional method uses exhaustive linear search, performance is not good, moderate feature dimension	MPEG-7 for natural image retrieval test	Precision, P- R Curve
Zhang [84]	In this work, a method combining both colour and texture features of image is proposed. Given a query, images in the database are firstly ranked using CIEL*u*v* colour space for colour features. Then the top ranked images are re-ranked according to their Gabor texture features. Results	Traditional method uses exhaustive linear search, performance is not good, moderate feature dimension	MPEG-7 for natural image retrieval test	Precision, P- R Curve

	improves retrieval			
	performance significantly			
Höschl &	Histogram-based image	Designed	1,000	SNR,
Flusser	retrieval method which is	especially for	pictures	Retrieval
[85]	proposed for noisy query	additive noises,	randomly	matching rate
	images. Where invariant	limited	gathered	
	moments features in	performance and	from	
	grayscale and colour	required	Flickr	
	histograms are taken, and	exhaustive		
	finally, images are retrieved	search for		
	according to histogram	retrieval		
	similarity			
Huang et	In this method, the colour	Feature	Corel-	Precision,
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour	Feature dimension is	Corel- 1000	Precision, Recall, and
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour space in combination with	Feature dimension is high, slow in	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV	Feature dimension is high, slow in indexing, and	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for	Feature dimension is high, slow in indexing, and slow in	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al.</i> [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the improved Zernike moments	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al.</i> [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the improved Zernike moments are used for shape feature	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al</i> . [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the improved Zernike moments are used for shape feature extraction, and the gray level	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al.</i> [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the improved Zernike moments are used for shape feature extraction, and the gray level co-occurrence matrix is used	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve
Huang <i>et</i> <i>al.</i> [86]	In this method, the colour moment in RGB colour space in combination with the colour histogram in HSV colour space is used for colour feature extraction, the improved Zernike moments are used for shape feature extraction, and the gray level co-occurrence matrix is used for texture feature extraction.	Feature dimension is high, slow in indexing, and slow in searching time	Corel- 1000	Precision, Recall, and P-R curve

used	for	indexing	and		
retriev	al				

From the literature review of CBIR systems for general images presented in the Table 2.1, following observations are made:

- Most of discussed methods use exhaustive linear search in the entire database which slow the response of query.
- Most of discussed methods are slow in feature extraction and indexing and have used extra pre-processing effort
- Feature dimension is high
- Faces a problem of semantic gap between low-level features and high level understanding
- Also the CBIR performance is not so encouraging for some methods, cover a limited number of aspects, and face a problem of generalizations

2.4 Literature Review for Mammogram Classification and Retrieval

Due to the rapid growth of digital mammograms, posed a great challenge and creates a need to develop new automated tools which help radiologists to retrieve and analyse current images with past stored images [87]. There is increasing interest in the use of CBIR techniques to diagnose the stage of breast cancer, because it supports radiologists in their decision to find out similar historical cases from the pre-stored database, and help radiologist for comparing the current case with past cases [88]. Unlike text-based retrieval and manual classification, content-based approaches index images using texture, colour, and shape. Due to the complexity of the pre-processing operation, CBIR

for mammogram database faces a considerable computational burden. Therefore, mammogram classification is important because it categories the images into different classes based on its appearance, and treated as a pre-processing step to speed up the accuracy, searching time and retrieval performances of CBIR systems [88-91]. Furthermore, mammogram classifications can be treated as computer-aided diagnosis (CAD) system which helps for the early diagnosis of breast cancer by detecting cancer in the mammogram. Therefore, due to the significant importance of mammogram classification for the retrieval and diagnosis, we have also gone through the state-of-art methods of this area. Table 2.2, presents the brief introduction of the state-of-art methods for mammogram classification. In this table, we briefly discussed about the used techniques, and achieved performances for the corresponding benchmark databases.

State-of-art	Used feature extraction and	Accuracy & other	Used database
methods	classification model	performance measures	
Srivastava et	Manual cropping + CLAHE	Accuracy: 87%,	MIAS
al. [89]	enhancement + Modified Fuzzy	Sensitivity: 95%	
	C-means segmentation with	Specificity:75%,	
	statistical and texture based	Accuracy: 87.50%,	
	feature extraction+ Relevant	Sensitivity: 95.83%,	
	feature selection using GA-	Specificity: 62.50%	
	Mutual Information + SVM-		
	MLP Classification. Also tested		
	feature set selection using		

Table 2.2: State-of-art methods for mammogram classification

	sequential feature selection with k-NN + k- nearest		
	neighbour (k-NN) Classifier		
Beura <i>et al</i> .	Extracted GLCM feature from	For MIAS:	MIAS, DDSM
[90]	2- level wavelet domain +Back	Specificity=97.0%	
	propagation neural networks	Accuracy 94.2%	
	(BPNN) classifier	For DDSM:	
		Specificity=97.9%,	
		Accuracy=97.4%	
Pratiwi M et	GLCM based texture feature	Highest achieved	MIAS
al. [92]	extraction from different	Accuracy, Sensitivity	
	orientations + Radial Basis	Specificity, 93.98%	
	Function Neural Network	94.44% 93.62%	
	(RBFNN) classifier	respectively	
Tzikopoulos et	Combination of Fractal texture	Accuracy=84.47-	MIAS
al. [93]	features and Statistical features,	85.3%	
	Support vector machine		
	classifier		
Buciu et al.	Gabor wavelets and principle	Specificity=60.86%,	MIAS
[94]	component analysis (PCA),	AUC = 0.79,	
	Support Vector Machine	Sensitivity=97.56%,	
	classifier		
Prathibha et	DWT based texture features +	<i>AUC</i> = 0.95	MIAS

al. [95]	Nearest neighbour classifier		
Liu <i>et al</i> .[96]	Multiresolution analysis,	Accuracy=84.2%	MIAS
	wavelet and statistical features		
	+ Binary tree classifier		
Subashini et	Statistical features + Support	Accuracy= 86.67%	MIAS
al.[97]	vector machine classifier		
Wang <i>et al</i> .	Histogram features+ Back	Accuracy=71%	MIAS
[98]	propagation Neural network		
	classifier		
Muhimmah et	Histogram features in multi	Accuracy=77.57%	MIAS
al. [99]	resolution domain+ DAG-SVM		
	classifier		
Oliver <i>et al</i> .	Textural and Morphological	Specificity=91%	MIAS
[100]	features + Sequential feature		
	selection +k-NN classifier		
Miller &	Texture features based on Laws	Accuracy=80%	MIAS
Astley [101]	with Bayesian classifier		
Karahaliou et	Four different feature sets based	Best achieved	DDSM
al. [102]	on texture (first-order statistics,	classification accuracy	
	gray level co-occurrence	89%, Sensitivity	
	matrices (GLCM), gray level	90.74% and	
	run length matrices (GLRM)	specificity 86.96%).	
	and Laws' texture energy		
	Measures + k-NN classifier.		

Mutaz <i>et al.</i>	GLCM features + ANN	Sensitivity=91.6%,	MIAS
[103]	Classifier	Specificity=84.17%	
Petrosian et	Spatial-Gray Level Dependence	76 % specificity,	Local database
<i>al</i> .[104]	and textural features + Decision	89%-sensitivity	of 180
	tree classifier		mammograms
Kinoshita et	Texture and segmented Shape	Accuracy=81%	Local database
al.[105]	features with a three layer feed-		
	forward NN.		
Sameti et	Photoelectric, Optical density,	Accuracy=72%	Locally
al.[106]	textural features with		collected 58
	discriminant analysis classifier		mammograms
Dhahbi et al.	Discrete curvelet transform + t	Accuracy=91.27%	MIAS and
[107]	test ranking for feature	for MIAS database	DDSM
	selection +k-NN classifier		
Mudigonda et	GLCM and polygon modelling	Accuracy=83%	MIAS+local
al. [108]	(Gradient based and texture		images
	features) with jack-knife		(39-MIAS+15
	classification		local) total 54
			images
Brijesh et al.	Statistical features with fuzzy -	Accuracy=77.8–	Nijmegen
[109]	neural network classifier	83.3%	database
Liyang <i>et al</i> .	Statistical features in multiple	Accuracy=85%	697
[110]	view mammogram with SVM		mammograms
	and kernel Fisher discriminant		from 386

	(KFD)		cases
Szekeley et al.	Statistical features, Texture	Accuracy=88%	Local database
[111]	features and combining multi-		
	resolution Markov random		
	models + decision trees		
	classifier		
Alolfe et al.	Forward stepwise linear	Accuracy=82.5%	MIAS and
[112]	regression method with a		Local database
	combined classifier of SVM		
	and linear discriminate		
	analysis(LDA)		
Jona <i>et al</i> .	Gray level co-occurrence	Accuracy=94.0%	MIAS
[113]	matrix based statistical features		
	+ SVM classifier		
G"orgel et al.	DWT based texture features,	Accuracy rate=84.8%	MIAS
[114]	SVM classifier		
G"orgel et al.	Stationary wavelet transform	Accuracy rate=96.0%	MIAS
[115]	(SWT)+SVM Classifier		
Rashed et al.	Used fractional amount of	Accuracy=87.06%	MIAS
[116]	biggest different types of		
	Daubechies wavelets		
	coefficients in multilevel		
	decomposition.		
Dheeba et al.	Pre-processing +Laws texture	Sensitivity=94.167%,	216 sample

[117]	features+ Classification	using	Precision=92.12%	mammogra	ms
	Swarm Optimized V	Vavelet	Accuracy=93.67%	from	54
	Neural Network		AUC=0.9685	patients	

Further, brief descriptions of some state-of-art methods for the retrieval of digital mammograms are as given:

Wei et al [118], used 4 different gray level co-occurrence matrices, constructed in order to compute each ROI in the 0° , 45° , 90° , and 135° directions, each with unit pixel distance of 5. Further, 11 Haralick statistical features are computed from each matrix and Euclidean distance based similarity measure is used for retrieval. In another contribution Wei et al [119] used Gabor filtering (Orientation=6, Frequency=4) on the underlying image, applied probability distribution and then computes Contrast, Angular second moment, Inverse difference Moment, Entropy, Variance and Correlation based statistical features to describe the textural pattern of the mammogram. Further *ED* is used as a similarity measure.

For the article Sun and Zhang [120], texture structure of mammographic image was firstly extracted by the maximum and minimum of local intensity. Then, a new texture feature based on gradient differences in 8-connected neighbours is introduced. Further combined with the weighted moments, the new descriptor was given as an index for mammographic image retrieval.

Wiesmuller and Chandy [121] has extracted gray level aura matrix from each ROI to capture the texture information. Afterwards for finding the most relevant mammograms, Euclidean distance similarity from every feature vector in the database to the query image feature vector is calculated. Eisa et al [122] investigated the retrieval of mass and calcification mammograms from the MIAS database using texture and moment-based features.

In Quellec et al [123], the biorthogonal and orthogonal wavelets within the adaptive lifting scheme framework have been evaluated for the retrieval of mammograms from the DDSM database and is compared with the retrieval methods based on Daubechies 4-tap wavelet (Db4) and Zernike moments.

In Chores [124], classification and retrieval of benign and malignant type mammograms are given. For indexing, they used the Gabor and GLCM based texture features with addition to shape features.

Chandy et al [125] have used gray-level statistical matrix for capturing the texture features of the mammogram. Further, using this matrix they have extracted four statistical texture features for the retrieval of mammograms from mammographic image analysis society (MIAS) database. In another framework [126] they have used neighbouring feature search selection method for various combinations of texture features.

From the literature review for mammogram classification and retrieval presented in Table 2.2. and discussed subsequently, the following observation are made:

- From the literature review, it is found that most of classification and retrieval methods have used/ incorporated or introduced different variants of texture features viz. grey level statistical matrices, GLCM, SWT, Gabor filters and wavelets.
- Most CBIR methods [118-126] for mammogram are based on the manual cropping for avoiding the artifacts.
- Manually cropping of ROI from the given ground truth.

- This manual pre-processing requires too much time and is labour intensive to implement.
- Further, these retrieval methods use exhaustive linear search in the entire database. It means these approaches compare the matching (calculating the similarity measures) from all the mammograms of database, which slow down the response time.
- and have limited retrieval performances.

This thesis, addresses above mentioned issues and challenges related to design and development of CBIR system and incorporated the new approaches at preprocessing and feature extraction level, and applied the machine learning techniques, which alleviate the above issues.

2.5 Benchmark Databases

To evaluate the performance of proposed general frameworks, the experiments have been performed on *Wang* (Corel-1000, Corel-10000), and *Oliva and Torralba* (OT-Scene) image databases [127, 128]. *Wang* database contains 10 different classes of images, each class having 100 images of Africa people, Beaches, Buildings, Buses, Dinosaurs, Elephants, Flowers-Roses, Horses, Hills-Mountains, and Foods-Fruits with resolution of 256*384 or 384*256 pixels. For Corel-10000 database there are 100 different class of images and each class have 100 images.

Fig. 2.1: Sample images of Wang database

Fig. 2.2: Sample images of OT database

OT scene database is created by MIT researchers which contains 2688 images of 8 different classes. These categories include: 360 images of Coast, 328 images of

forest, 260 images of Highway, 308 images of Inside city, 374 images of Mountains and hills, 410 images of Open Country, 292 images of Street , and Tall Building with 356 images. Sample images of these databases are shown in Fig.2.1 and Fig. 2.2.

• Mammographic image analysis and society (MIAS) database [129]

To evaluate the performance of retrieval frameworks for the diagnosis of breast cancer using mammogram, mammographic images analysis society (MIAS) is taken. In MIAS database ground truth details of mammographic images (size 1024*1024 pixels) are given with corresponding ids. This database contains 115 images from Abnormal and 207 images from Normal classes. During retrieval reported ground truth information are used for the identification of normal and abnormal masses. Further abnormal mammogram is classified into 6 different categories, including 19 images in architectural distortion, 15 in asymmetry, 29 images in calcification, 15 in circumscribes masses, 15 in ill-defined masses and 19 in speculated mass.

Fig. 2.3: Sample mammograms of different classes

Fig. 2.3 shows the sample mammograms and their manual cropped ROIs from the MIAS database containing the following classes. From left to right and top to bottom: architectural distortion (ARCH), asymmetry (ASYM), calcification (CALC), circumscribed masses (CIRC), ill-defined masses (MISC), speculated masses (SPIC) and normal [125].

2.6 Performance Metrics

Confusion Matrix: The *confusion matrix* is a useful tool for analysing how well your classifier can recognize images of different classes:

Predicted Class		
 Positive	Negative	Total

Table 2.3: Confusion matrix to measure the performance of the classifiers

Positive	TP	FN	Р
Negative	FP	TN	Ν

The performance of the classifiers is measured by the quantity of True positive (TP), True Negative (TN), False Positive (FP), False Negative (FN). Where TP (True Positive) is the number of positive instances that are classified as positive, FP (False Positive) is the number of negative instances that are classified as positive, TN (True Negative) is the number of negative instances that are classified as negative and FN (False Negative) is the number of positive instances that are classified as negative and FN (False Negative) is the number of positive instances that are classified as negative. By using these quantities standard accuracy, sensitivity, specificity, precision, MCC and ROC area performance measures are defined as:

Precision: Precision is defined as the proportion of instances classified as positive that are really positive.

$$Precision = \frac{TP}{TP + FP}$$
(2.9)

For retrieval context this precision can also be defined as:

$$Precision = \frac{Number of relevant images retrieved}{Total number of retrieved images}$$
(2.10)

Recall: Recall is defined as the proportion of positive instances that are correctly classified as positive.

Recall (Classifier) =
$$\frac{TP}{TP+FN}$$
 (2.11)

This recall can be defined as:

$$Recall(CBIR) = \frac{Number of relevant images retrieved}{Number of relevant image in database}$$
(2.12)

Accuracy: Accuracy is defined as the proportion of instances that are correctly classified.

$$Accuracy = \frac{TP+TN}{TP+FN+FP+TN}$$
(2.13)

FP Rate: It is the probability that a classifier produces erroneous results as positive results for negative instances.

$$FP Rate = \frac{FP}{FP+TN}$$
(2.14)

F-Measure: This measure is approximately the average of the two when they are close. The two measures are sometimes used together in the F1 **Score** (or **f-measure**) to provide a single measurement for a system.

$$F - Measure = \frac{2 (Precision \times Recall)}{(Precision + Recall)}$$
(2.15)

Matthew's correlation coefficient (*MCC***):** The *MCC* is a balanced measure that considers both true and false positives and negatives. The *MCC* can be obtained as

$$MCC = \frac{(TP)(TN) - (FP)(FN)}{\sqrt{[TP + FP][TP + FN][TN + FP][TN + FN]}}$$
(2.16)

Receiver operating characteristics (*ROC*): The *ROC* is a graph that shows the performance of a classifier by plotting *TP* rate versus FP rate at various threshold settings. Area under *ROC* curve (AUC) of a classifier is the probability that the classifier ranks a randomly chosen positive instance higher than a randomly chosen negative instance.

Speedup: Proposed work, searching time improvement as compare to conventional exhaustive search can be estimated using Speedup metric, which are calculated using following formula:

$$Speedup = \frac{Total number of images in the database}{Total Number of images in the cluster}$$
(2.17)

Random Index (RI): The random index measure is used for the evaluation of segmentation and clustering algorithms. The random index between ground truth image (GT) and segmented image (S) is calculated by summing the number of pixel pairs with same label and number of pixel pairs having different labels in both S and GT, and then dividing it by total number of pixel pairs. RI values lie between 0-1, where higher value of RI indicates perfect segmentation.

2.7 Conclusions

In this chapter, the theoretical backgrounds related to content-based image retrieval as well as literature review are presented. At first, brief overview of feature extraction methods, similarity measures were presented, which provided basis for computer vision applications as discussed in subsequent chapters of the thesis. Further, in this chapter a literature survey of prominent approaches for of general CBIR system as well as for mammogram application was discussed and research gaps were identified.