Table of Contents

CERTIFICATE	2	
DECLARATION BY THE CANDIDATE	3	
COPYRIGHT TRANSFER CERTIFICATE	4	
ACKNOWLEDGEMENT	5	
ABSTRACT	11	
LIST OF FIGURES	13	
LIST OF TABLES	16	
1 Introduction	17	
1.1 Dyes and their classification	18	
1.2 Treatment of the Dyeing Wastewater and Current Challenges	21	
1.3 Objectives and Scope of the Study	22	
1.4 Organization of Thesis	23	
2 Literature on the treatment methodologies for removal of dyes from the wastewater 25		
2.1 Physical Methods	26	
2.2 Biological Methods	27	
2.3 Chemical Methods	30	
2.3.1 Fenton process		31
2.3.2 Photo-catalysis process		33
2.3.3 Ozonation process		35
2.4 Integration of the AOPs with biological methods	37	
2.4.1 Integration of Fenton with biodegradation		38

	2.4.2	Integration of photocatalysis with biodegradation	39		
	2.4.3	Integration of ozonation with biodegradation	40		
3	Materi	al and Methods	43		
3.1	l Ma	aterials and Chemicals	43		
3.2	2 Pro	eparation of synthetic dye wastewater	44		
3.3	3 Mo	plecular characterization of the efficient isolated bacteria	44		
3.4	4 Bio	odegradation experiments in a batch reactor	45		
3.5	5 Bio	preactor configuration and immobilization of packing material	46		
3.0	5 An	alytical methods	47		
	3.6.1	UV-Vis Spectrophotometry	47		
	3.6.2	Biochemical Oxygen Demand (BOD)	47		
	3.6.3	Chemical Oxygen Demand (COD)	48		
	3.6.4	Total Organic Carbon (TOC)	48		
3.8 Toxicity Analysis49			49		
3.8.1 Phytotoxicity			49		
	3.8.2 E	Bacterial toxicity	49		
4	4 Improved Bacterial Growth Kinetic Model using Indigenously Isolated Strain Bacillus				
Subtilis MN372379 in the Degradation of Congo Red Dye 51					
4.1	l Th	e conventional approach to determine the bacterial growth rate	52		
4.2	4.2 Time-Averaged Bacterial Growth Rate Incorporating the Metabolite Inhibition: an				
Improved Approach Proposed in the Present Study 54					
4.3	3 Tii	me-averaged substrate utilization rate: An approach proposed in	the present study		
	56				

	4.4	Ide	ntification of the Efficient Dye-Degrading Bacterial Isolate	57	
	4.5	Bac	cterial Growth Kinetics	58	
	4.5	5.1	Degradation of the Synthetic Wastewater at Different Initial Dye	Concentrations	58
	4.5	5.2	Determination of the specific bacterial growth rate time-averag	ed over the entr	ire
	log	g pha	se for incorporating metabolite inhibition		60
	4.5	5.3	Nature of metabolite inhibition in the decelerating part of log phase	se	62
	4.5	5.4	Incorporation of time-averaged bacterial growth rate account	unting metabol	ite
	inh	nibiti	on in the bacterial growth models with substrate inhibition		63
	4.6	Pro	cess optimization for the maximum dye utilization	66	
	4.6	5.1	Optimization of the initial dye concentration		66
	4.6	5.2	Optimization of the initial inoculum size		67
5	Inv	vestig	ation of External Mass Transfer during Biodegradation of Con	go Red Dye in	ıa
Re	ecircu	lating	g Packed Bed Bioreactor	71	
	5.1	Bio	reactor configuration	73	
	5.2	Bac	cterial immobilization and acclimatization in the Congo Red dye e	environment in t	the
	RPBI	B 74			
	5.3	Ma	ss Transfer Study: Theoretical Method	75	
	5.3	3.1	Concentration profile and observed biodegradation rate in the RPI	3B	75
	5.3	3.2	Modification in the material balance equation to account for r	ecirculation in	an
	RP	PBB	76		
	5.3	3.3	Evaluation of external mass transfer in the RPBB		77
	5.4	Res	ults and Discussion	79	
	5.4	4.1	Effect of inlet mass flow rate on the overall rate of dye removal in	the RPBB	80

5.4.2	Determination of the correlation for external mass transf	fer coefficient	81
5.4.3	Determination of the Colburn factor for external mass tr	ansfer coefficient	83
5.4.4	Effect of recirculation flow rate on the external mass tra	nsfer	84
5.5 C	Conclusion	85	
6 Optin	nization for Minimizing the Cost of Ozonation of Highly C	Concentrated Textile	Dyeing
Wastewate	er in a Bubble Column Reactor	87	
6.1 E	Experimental Setup	89	
6.2 D	Design of experiment	90	
6.3 D	Dye removal and electricity consumption at various initial dy	ye concentration 9	91
6.4 D	Development of an empirical correlation for the average spec	cific electricity consu	mption
during t	he ozonation of Reactive Blue dye	93	
6.4.1	Measurement of the SEC_{av} for the DOE		93
6.4.2	Statistical modeling for the SEC _{av} using RSM		94
6.5 E	affect of process variables on the average specific elec	tricity consumption	in the
ozonatio	on of Reactive Blue dye	96	
6.5.1	Effect of inlet ozone concentration		97
6.5.2	Effect of initial pH level		97
6.5.3	Effect of initial dye concentration		98
6.6 C	Optimization of process variables to minimize SEC_{av}	98	
6.7 N	Nodel verification and cost analysis	99	
6.8 C	Conclusion	100	

7 Phyto-/	Geno-Toxicity Assessments of the Dyeing Wastewater treate	ed with A	naerobic-
Aerobic Bio	odegradation (AnAB) vs. Ozonation-Aerobic Biodegradation	(OAB)	Processes
101			
7.1 Cor	nfiguration of AnAB and OAB systems	104	
7.2 Bac	cterial immobilization and their acclimatization to the SDW in the	FBBR	107
7.3 Per	formance evaluation of the hybrid AnAB and OAB systems	108	
7.3.1	COD removal		108
7.3.2	Color removal		110
7.3.3	Overall Performance AnAB and OAB System against varied of	rganic load	ding rates
	111		
7.4 To	cicity assessment	113	
7.4.1	Phytotoxicity analysis		113
7.4.2	Bacterial toxicity analysis		115
7.5 Cor	nclusion	118	
8 Conclus	sion and Future Aspects	120	

Bibliography 9 List of Publications 10

122

146