Table of Content

Chapter-1 Introduction	1
1. Introduction	1
1.1 Biomass	7
1.2 Chemical composition of biomass1.2.1 Cellulose1.2.2 Hemicellulose1.2.3 Lignin1.2.4 Extractives	8 9 9 9 10
1.3 Technologies for converting biomass to energy1.3.1 Biochemical conversion technologies1.3.2 Thermochemical conversion technologies	11 11 12
Chapter-2 Literature Survey	17
2.1 Biomass classification	18
2.2 Physicochemical characterization of biomass	19
2.3 Kinetic analysis of biomass	19
2.4 Pyrolysis of biomass	20
 2.5 Bio-oil yield operating parameters for biomass pyrolysis 2.5.1 Temperature 2.5.2 Heating rate 2.5.3 Carrier gas (Inert) flow rate 2.5.4 Feedstock size 2.5.5 Residence time 	22 22 23 24 24 25
2.6 Response surface methodology (RSM)	25
2.7 Products of pyrolysis2.7.1 Pyrolytic liquid (Bio-oil)2.7.2 Pyrolytic gases2.7.3 Solid product (Biochar)	27 27 28 28
2.8 Knowledge gaps and hypothesis	29
2.9 Aim and Objectives	29
Chapter-3 Material and methods	31
3. Introduction	32
3.1 Collection and preparation of biomass	32
3.2 Physicochemical characterization and thermal degradation studies3.2.1 Proximate study3.2.2 Ultimate analysis3.2.3 Calorific value	33 33 34 35

3.2.4 Bulk density	35
3.2.6 Biofuel reactivity	30 36
3.2.7 Fiber analysis	36
3.3 FTIR analysis	37
3.4 Thermogravimetric analysis	37
3.5 Kinetic parameters estimation	38
3.5.1 Isoconversional model free methods	39
3.5.2 Model fitting method	41
3.6 Reaction Mechanism and $z(\alpha)$ Master Plots	42
3.7 Thermodynamic analysis	44
3.8 Experimental setup	44
Chapter-4 Pyrolysis behavior of low value biomass (Lagerstroemia speciosa see	d):
Evaluation of kinetic, thermodynamics and product characterization	46
4.1 Introduction	47
4.2 Physicochemical characteristics of LS biomass	48
4.3 Thermal analysis	49
4.4 Design of experiment using RSM	49
4.5 Physicochemical characterization of pyrolysis products	50
4.6 Results and discussion	51
4.6.1 Characteristics	51
4.6.2 Van-Krevelen plot	52
4.6.3 FTIR analysis of biomass	54
4.6.4 Thermal stability profile and influence of heating rates	55
4.6.5 Kinetic analysis	58
4.6.6 Evaluation of Reaction Mechanism	62
4.6.7 Inermodynamic Parameters	04 67
4.0.8 Compensation effect	67
4.6.0 Physicochemical characterization of the bio-oil	73
4.6.11 FTIR analysis of bio-oil	74
4.6.12 GCMS analysis of bio-oil	75
4.6.13 1H-NMR analysis of bio-oil	76
4.6.14 Physicochemical characterization of biochar	77
4.7 Conclusion	80
Chapter-5 Pyrolysis of mustard straw: Evaluation of optimum process paramet	ærs,
kinetic and thermodynamic study	82
5.1 Introduction	83
5.2 Physicochemical characterization of MS biomass	84

	5.3 Thermogravimetric analysis	84
	5.4 Kinetic analysis	84
	5.5 Pyrolysis Experimental setup	85
	5.6 Design of Experiments (DOE)	85
	5.7 Bio-oil characterization	86
	5.8 Results and discussion	87
	5.8.1 Characteristics	87
	5.8.2 Thermal study	88
	5.8.3 Impact of heating rates	89
	5.8.4 Kinetic analysis using isoconversional methods	90
	5.8.5 Model fitting kinetics	94
	5.8.6 Thermodynamic analysis	95
	5.8.8 Bio-oil characterization	103
	5.8.9 FTIR analysis of MS biomass and bio-oil	103
	5.8.10 GCMS analysis	101
	5.9 Conclusion	107
([°] hanter-6 Pyrolysis behavior of low value biomass (Seshania bisninosa) to elu	icidate
it	ts bioenergy potential: Kinetic, thermodynamic and pyrolysis factor optimize	tion
b	pased on response surface methodology	108
	6.1 Introduction	109
	6.2 Physicochemical characterization of SB	110
	6.3 Thermogravimetric analysis (TGA)	110
	6.4 Design of experiments (DOE)	110
	6.5 Pyrolysis Experimental setup	111
	6.6 Physicochemical characterization of pyrolysis products	112
	6.7 Results and discussion	113
	6.7.1 Characteristics	113
	6.7.2 FTIR study of SB	115
	6.7.3 Thermal analysis	116
	6.7.4 Effect of heating rate	117
	6.7.5 Kinetic analysis using model free methods	120
	6.7.7 Thermodynamic analysis	125
	6.7.8 Compensation effect	127
	6.7.9 Pyrolysis parameter optimization using RSM	133
	6.7.10 Bio-oil characterization	139
	6.7.11 FTIR analysis of the bio-oil	140
	(7.12 COMS anglusis	1.4.1
	6.7.12 GCMS analysis	141

6.8 Conclusion	144
Chapter-7 Conclusion and Suggestion for Future Work	146
7. Summary and Suggestion for future work	147
7.1 Conclusion	147
7.2 Suggestions for Future Work	149
References	151
Appendices	179
List of Publications	201

List of Figures

Page	No.
------	-----

Fig. 1.1: Classification of available biomass resources in India	8
Fig. 1.2: Chemical structure of biomass	10
Fig. 1.3: Burning of various agricultural wastes in the field	16
Fig. 2.1: Biomass classification: groups, varieties, and species	18
Fig. 3.1: Photographs of selected biomasses	33
Fig. 3.2: Schematic diagram of pyrolysis experimental setup: 1- N ₂ cylinder, 2-Mass	s flow
meter, 3-Stainless steel reactor, 4-Electric furnace, 5-Thermocouple, 6- Fu	ırnace
controller, 7-Biomass, 8-Biomass holder, 9-Condenser, 10-Bio-oil collector, 1	1-Ice,
12- Cotton filter, 13- Gas collector	45
Fig. 4.1: Van-Krevelen diagram for different biomass and coals	53
Fig. 4.2: Functional group analysis of LS biomass using FTIR analyzer	55
Fig. 4.3: (a) Thermal stability profile of LS biomass at 10 °C min ⁻¹ heating rate, (b)	Effect
of dynamic heating rates on the TG profile, and (c) Effect of dynamic heating ra	tes on
the DTG profile	57
Fig. 4.4: Curve fitting of LS against model free methods	60
Fig. 4.5: Variation in activation energy value with respect to conversion	62
Fig. 4.6: Theoretical and experimental plots for prediction of solid-state re	action
mechanism using Criado method (Z-master plot)	64
Fig. 4.7: Correlation between activation energy and pre-exponential factor of LS bio	omass
	67
Fig. 4.8: 3-Dimensional response surface and contours plots of bio-oil production	vs (a)
heating rate and temperature (b) flow rate of N_2 and temperature (c) heating rate	te and
inert gas (N ₂) flow rate	70
Fig. 4.9: Experimental and predicted bio-oil yields	71
Fig. 4.10: FTIR analysis of the LS bio-oil	74
Fig. 4.11: GCMS analysis of the LS bio-oil	76
Fig. 4.12: 1H-NMR analysis of LS bio-oil	77
Fig. 4.13: Van-Krevelen diagram of LS biochar along with other reported biochar	80
Fig. 4.14: (a) FE-SEM, and (b) EDX analysis of LS biochar	80

Fig. 5.1: TG and DTG curves of MS biomass at a heating rate of a) 10, b) 15, c) 25,	, and d)
40 °C/min	90
Fig. 5.2: Arrhenius plot for calculation of activation energy using OFW and KAS	92
Fig. 5.3: Change in activation energy with respect to progressive conversion	92
Fig. 5.4: Comparison of experimental and predicted bio-oil yield	102
Fig. 5.5: Three-dimensional response surface and bio-oil yield contour plots again	inst (a)
heating rate and temperature (b) sweeping gas flow rate and temperature (c) l	heating
rate and sweeping gas flow rate	103
Fig. 5.6: FTIR analysis of MS biomass and MS bio-oil	105
Fig. 5.7: GCMS analysis of MS bio-oil	107
Fig. 6.1: Van-Krevelen diagram for SB with other testified biomass	115
Fig. 6.2: FTIR analysis of SB biomass	116
Fig. 6.3: (a) Thermal analysis of SB at 10 °C/min, (b) TG profile at dynamic heating	ng rates
and (c) DTG thermograph at dynamic heating rates	119
Fig. 6.4: Curve fitting of pyrolysis of SB against model free methods	123
Fig. 6.5: Variation of activation energy with progressive conversion	123
Fig. 6.6: (a) $z(\alpha)z(0.5)$ with progressive conversion at various heating rates; (b) at 10
°C/min; (c) 20 °C/min; (d) 30 °C/min; (e) 40 °C/min; and (f) 50 °C/min	127
Fig. 6.7: Correlation between pre-exponential factor and activation energy; (a) OF	W and
(b) VZK method	133
Fig. 6.8: Actual and predicted values of the SB bio-oil	137
Fig. 6.9: Effects of surface response of bio-oil yield in three dimensions, (a) temp	erature
and heating rate, (b) N_2 flow rate and temperature, and (c) N_2 flow rate and	heating
rate	138
Fig. 6.10: FTIR analysis of SB bio-oil	140
Fig. 6.11: GCMS analysis of the bio-oil	141
Fig. 6.12: (a) Van-Krevelen diagram, and (b) FE-SEM coupled with EDX of the SB	biochar
	144

List of Tables

Page No.
Table 1.1: Production of crude oil in India in Thousand Metric Tons (TMT)2
Table 1.2: Consumption of petroleum products in India in Thousand Metric Tons (TMT)
3
Table 1.3: State wise and source wise installed capacity of grid interactive biomass power
7
Table 2.1: Typical chemical composition of different biomass groups18
Table 3.1: Algebraic expressions for $f(\alpha)$ and $g(\alpha)$ for the most frequently used mechanisms
of solid-state processes 43
Table 4.1: Physicochemical study of the LS biomass along with some other reported
biomass 53
Table 4.2: Assessed and average activation energy values by different techniques from
conversion 61
Table 4.3: Thermodynamic parameters for LS biomass based on OFW, KAS and
Vyazovkin method at heating rate of 10°C/min66
Table 4.4: Actual and expected response values from RSM and ANN using the
experimental design matrix 71
Table 4.5: Analysis of variance (ANOVA) for the quadratic response model: Bio-oil 72
Table 4.6: Physicochemical characterization of LS bio-oil and compared with gasoline and
diesel fuel 73
Table 4.7: Physicochemical characterization of LS biochar along with other reported
biochar 79
Table 5.1: Physiochemical properties of MS biomass with comparison to other biomass
87
Table 5.2: Kinetic analysis of MS biomass using model free methods93
Table 5.3: Kinetic analysis of MS biomass using CR method94
Table 5.4: Thermodynamic analysis of MS biomass at heating rate of 10, 15, 25 and 40
°C/min 97
Table 5.5: Central composite design (CCD) matrix and results100
Table 5.6: Results of ANOVA for the response of MS bio-oil using a quadratic model101
Table 5.7: Characteristics of MS bio-oil and diesel104

Table 6.1: Physicochemical characteristics of SB biomass along with of	other reported
biomass	114
Table 6.2: Activation energy with respect to conversion obtained from different	ent model free
techniques	124
Table 6.3: Thermodynamic analysis of the SB biomass	131
Table 6.4: CCD experimental matrix and results	136
Table 6.5: ANOVA analysis of the quadratic model	136
Table 6.6: Physicochemical characterization of bio-oil and compared with d	liesel fuel 139
Table 6.7: Physicochemical characterization of SB biochar along with o	other reported

biochars

143