CERTIFICATE

It is certified that the work contained in the thesis titled 'Pyrolysis behaviour of low value biomass towards renewable fuel and valuable chemicals' by Ahmad Nawaz has been carried out under my supervision. This work has not been submitted elsewhere for a degree. It is further certified that the student has fulfilled all the requirements of the comprehensive examination, Candidacy, and SOTA for the award of Ph. D. degree.

isor 8 22 Super Dr. Pradeep Kumar (Associate Professor) Chemical Engineering & Technology Frechnology (BHU), Varanasi – 221005, India tu Uniter aranes

DECLARATION BY THE CANDIDATE

I, Ahmad Nawaz, certify that the work embodied in this thesis is my bonafide work and carried out by me, under the supervision of Dr. Pradeep Kumar from December 2017 to August 2022 at the 'Department of Chemical Engineering & Technology,' Indian Institute of Technology (BHU), Varanasi. The matter embodied in this thesis has not been submitted for the award of any other degree/diploma. I declare that I have faithfully acknowledged and given credits to the research workers wherever their works have been cited in my work in this thesis. I further declare that I have not willfully copied any other's work, paragraphs, text, data, results, etc., reported in journals, books, magazines, reports, dissertations, thesis, etc., or available on websites and have not included them in this thesis and have not cited as my work.

Date: 168222 Place: Indian Institute of Technology (BHU), Varanasi

Ahmad Nawa] (Ahmad Nawaz)

CERTIFICATE FROM THE SUPERVISOR

It is certified that the above statement made by the student is correct to the best of my

knowledge

Head of the department Prof. V.L Yadav Department अभगादमहिती दिव में ngineering & राजावनिक अभगादिती एस रोगोंगकी विभाग Ind सिंग में राजात्वन मिर्गेया के Tech. BHU) जारतीय गोंगोंगई। संस्था-/india जिस्ती के Tech. BHU) जारतीय गोंगोंगई। संस्था-/india जिस्ती के Tech. BHU) जारतीय गोंगोंगई। संस्था-/india जिस्ती के Tech. जारतीय गोंगोंगई। संस्था-/india जिस्ती के Tech. जारा में प्रार्थने के त्याविष्ठ के Tech. जारा प्रार्थने / Varanasi-221005

1618122 Supervisor

Dr. Pradeep Kumar (Associate Professor) Department of Cherchart Programmering & Transformer Professor And Control (BHU), Indian Institute of Technology Varanastrand Bit Astronomy of Technology Varanastrand Bit Astronomy of Technology

COPYRIGHT TRANSFER CERTIFICATE

Title of the Thesis: 'Pyrolysis behaviour of low value biomass towards renewable fuel and valuable chemicals'

Name of the Student: Ahmad Nawaz

Copyright Transfer

The undersigned hereby assigns to the Indian Institute of Technology (Banaras Hindu University) Varanasi all rights under copyright that may exist in and for the above thesis submitted for the award of the **DOCTOR OF PHILOSOPHY**

Date: 16/08/2022 Place: Indian Institute of Technology (BHU), Varanasi

Note: However, the author may reproduce or authorize others to reproduce material extracted verbatim from the thesis or derivative of the thesis for the author's personal use provided that the source and the institute's copyright notice are indicated.

Department of Chemical Engineering & Technology

Ahmad Nawaz

(Ahmad Nawaz)

ACKNOWLEDGEMENT

I am very grateful to my supervisor **Dr. Pradeep Kumar** for his consistent help, encouragement, valuable discussions, and faith in me during the entire period of my research work. I would not have been able to complete this thesis without his utmost involvement and invaluable efforts. He motivated me to pursue research problems and the need for persistent effort to accomplish the goal. He is the real definition of the best teacher, friendly and behind for all problems of not only mine but all students. Besides my supervisors, I would like to thank RPEC members: **Prof. V.L Yadav** and **Dr. Vishal Mishra** for their insightful comments and encouragement.

I sincerely thank **Prof. V.L Yadav**, Head of the Department of Chemical Engineering & Technology, and the former Head, **Prof. P.K Mishra**, for providing all the research facilities to accomplish my research in the Department. My sincere thanks are also to all the respected faculty members of the Department of Chemical Engineering & Technology for their constant inspiration and valuable suggestions.

My special thank goes to **Prof. S.N Upadhyay**, Emeritus Professor, Department of Chemical Engineering & Technology, IIT (BHU), who taught me a lot during the entire journey to convert the present work into the shape of a thesis.

I am thankful to all my seniors/juniors and friends Vikas Kumar Pandey, Shivesh Sabbarwal, Shyam Sunder Rao, Ganesh swain, Bineeta Singh, Vivek Patel, Satyansh Singh, Tapas Das, Anuj Prajapati, Ravi Saini, Sanjeev Verma, Sharvan Kumar, and Dheeraj Jaiswal for their constant encouragement and making joyful and memorable moments at IIT (BHU), Varanasi.

I am also thankful to all the lab and workshop staff, specially **Shri Chandralal Ji**, **Shri Vinay Kumar Ji**, **Shri Lal Bahadur Ji**, **Shri Umesh Singh Ji**, **Shri Varun Ji**, **Shri Ankit Ji**, and all the office staff. I would also like to extend my heartiest thanks to **Prof. Rajiv Prakash** (Prof.-in-charge, CIFC) and his technical team, especially **Mr. Durgesh Prasad Gupta**, for providing the research facilities. I would also like to acknowledge **AIRF** (**JNU**), **New Delhi**, **India**, for providing the GCMS facility.

I would also like to acknowledge the Ministry of Human Resource Development (MHRD),

New Delhi, India, and Scheme for Promotion of Academic and Research Collaboration (SPARC), India, for financial support.

Last but not least, I would like to express my deepest gratitude to my family and my parents for giving my life in the first place, educating me, and for their unconditional support and encouragement to pursue my interest.

I also wish to thank all my friends and the person whose names have not been mentioned on this piece of paper for extending their cooperation directly or indirectly.

Date:

Ahmad Nawaz

Place: IIT (BHU) Varanasi

(Ahmad Nawaz)

Dedicated To My Beloved Parents

Table of Content

Chapter-1 Introduction	1
1. Introduction	1
1.1 Biomass	7
1.2 Chemical composition of biomass1.2.1 Cellulose1.2.2 Hemicellulose1.2.3 Lignin1.2.4 Extractives	8 9 9 9 10
1.3 Technologies for converting biomass to energy1.3.1 Biochemical conversion technologies1.3.2 Thermochemical conversion technologies	11 11 12
Chapter-2 Literature Survey	17
2.1 Biomass classification	18
2.2 Physicochemical characterization of biomass	19
2.3 Kinetic analysis of biomass	19
2.4 Pyrolysis of biomass	20
 2.5 Bio-oil yield operating parameters for biomass pyrolysis 2.5.1 Temperature 2.5.2 Heating rate 2.5.3 Carrier gas (Inert) flow rate 2.5.4 Feedstock size 2.5.5 Residence time 	22 22 23 24 24 25
2.6 Response surface methodology (RSM)	25
2.7 Products of pyrolysis2.7.1 Pyrolytic liquid (Bio-oil)2.7.2 Pyrolytic gases2.7.3 Solid product (Biochar)	27 27 28 28
2.8 Knowledge gaps and hypothesis	29
2.9 Aim and Objectives	29
Chapter-3 Material and methods	31
3. Introduction	32
3.1 Collection and preparation of biomass	32
3.2 Physicochemical characterization and thermal degradation studies3.2.1 Proximate study3.2.2 Ultimate analysis3.2.3 Calorific value	33 33 34 35

3.2.4 Bulk density	35
3.2.6 Biofuel reactivity	30 36
3.2.7 Fiber analysis	36
3.3 FTIR analysis	37
3.4 Thermogravimetric analysis	37
3.5 Kinetic parameters estimation	38
3.5.1 Isoconversional model free methods	39
3.5.2 Model fitting method	41
3.6 Reaction Mechanism and $z(\alpha)$ Master Plots	42
3.7 Thermodynamic analysis	44
3.8 Experimental setup	44
Chapter-4 Pyrolysis behavior of low value biomass (Lagerstroemia speciosa see	d):
Evaluation of kinetic, thermodynamics and product characterization	46
4.1 Introduction	47
4.2 Physicochemical characteristics of LS biomass	48
4.3 Thermal analysis	49
4.4 Design of experiment using RSM	49
4.5 Physicochemical characterization of pyrolysis products	50
4.6 Results and discussion	51
4.6.1 Characteristics	51
4.6.2 Van-Krevelen plot	52
4.6.3 FTIR analysis of biomass	54
4.6.4 Thermal stability profile and influence of heating rates	55
4.6.5 Kinetic analysis	58
4.6.6 Evaluation of Reaction Mechanism	62
4.6.7 Inermodynamic Parameters	04 67
4.0.8 Compensation effect	67
4.6.10 Physicochemical characterization of the bio-oil	73
4.6.11 FTIR analysis of bio-oil	74
4.6.12 GCMS analysis of bio-oil	75
4.6.13 1H-NMR analysis of bio-oil	76
4.6.14 Physicochemical characterization of biochar	77
4.7 Conclusion	80
Chapter-5 Pyrolysis of mustard straw: Evaluation of optimum process paramet	ers,
kinetic and thermodynamic study	82
5.1 Introduction	83
5.2 Physicochemical characterization of MS biomass	84

	5.3 Thermogravimetric analysis	84
	5.4 Kinetic analysis	84
	5.5 Pyrolysis Experimental setup	85
	5.6 Design of Experiments (DOE)	85
	5.7 Bio-oil characterization	86
	5.8 Results and discussion	87
	5.8.1 Characteristics	87
	5.8.2 Thermal study	88
	5.8.3 Impact of heating rates	89
	5.8.4 Kinetic analysis using isoconversional methods	90
	5.8.5 Model fitting kinetics	94
	5.8.6 Inermodynamic analysis	95
	5.8.8 Bio-oil characterization	103
	5.8.9 FTIR analysis of MS biomass and bio-oil	103
	5.8.10 GCMS analysis	105
	5.9 Conclusion	107
([°] hanter-6 Pyrolysis behavior of low value biomass (Sesbania bisninosa) to el	ucidate
it	ts bioenergy potential: Kinetic, thermodynamic and pyrolysis factor optimiz	ation
b	based on response surface methodology	108
	6.1 Introduction	109
	6.2 Physicochemical characterization of SB	110
	6.3 Thermogravimetric analysis (TGA)	110
	6.4 Design of experiments (DOE)	110
	6.5 Pyrolysis Experimental setup	111
	6.6 Physicochemical characterization of pyrolysis products	112
	6.7 Results and discussion	113
	6.7.1 Characteristics	113
	6.7.2 FTIR study of SB	115
	6.7.3 Thermal analysis	116
	6.7.4 Effect of heating rate	117
	6.7.5 Kinetic analysis using model free methods	120
	6.7.7 Thormodynamic analysis	125
	6.7.8 Compensation effect	127
	6.7.9 Pyrolysis parameter optimization using RSM	133
	6.7.10 Bio-oil characterization	139
	6.7.11 FTIR analysis of the bio-oil	140
		1 4 1
	6.7.12 GCMS analysis	141

6.8 Conclusion	144
Chapter-7 Conclusion and Suggestion for Future Work	146
7. Summary and Suggestion for future work	147
7.1 Conclusion	147
7.2 Suggestions for Future Work	149
References	151
Appendices	179
List of Publications	201

List of Figures

Page	No.
------	-----

Fig. 1.1: Classification of available biomass resources in India	8
Fig. 1.2: Chemical structure of biomass	10
Fig. 1.3: Burning of various agricultural wastes in the field	16
Fig. 2.1: Biomass classification: groups, varieties, and species	18
Fig. 3.1: Photographs of selected biomasses	33
Fig. 3.2: Schematic diagram of pyrolysis experimental setup: 1- N ₂ cylinder, 2-Mass	s flow
meter, 3-Stainless steel reactor, 4-Electric furnace, 5-Thermocouple, 6- Fu	ırnace
controller, 7-Biomass, 8-Biomass holder, 9-Condenser, 10-Bio-oil collector, 1	1-Ice,
12- Cotton filter, 13- Gas collector	45
Fig. 4.1: Van-Krevelen diagram for different biomass and coals	53
Fig. 4.2: Functional group analysis of LS biomass using FTIR analyzer	55
Fig. 4.3: (a) Thermal stability profile of LS biomass at 10 °C min ⁻¹ heating rate, (b)	Effect
of dynamic heating rates on the TG profile, and (c) Effect of dynamic heating ra	tes on
the DTG profile	57
Fig. 4.4: Curve fitting of LS against model free methods	60
Fig. 4.5: Variation in activation energy value with respect to conversion	62
Fig. 4.6: Theoretical and experimental plots for prediction of solid-state re	action
mechanism using Criado method (Z-master plot)	64
Fig. 4.7: Correlation between activation energy and pre-exponential factor of LS bio	omass
	67
Fig. 4.8: 3-Dimensional response surface and contours plots of bio-oil production	vs (a)
heating rate and temperature (b) flow rate of N_2 and temperature (c) heating rate	te and
inert gas (N ₂) flow rate	70
Fig. 4.9: Experimental and predicted bio-oil yields	71
Fig. 4.10: FTIR analysis of the LS bio-oil	74
Fig. 4.11: GCMS analysis of the LS bio-oil	76
Fig. 4.12: 1H-NMR analysis of LS bio-oil	77
Fig. 4.13: Van-Krevelen diagram of LS biochar along with other reported biochar	80
Fig. 4.14: (a) FE-SEM, and (b) EDX analysis of LS biochar	80

Fig. 5.1: TG and DTG curves of MS biomass at a heating rate of a) 10, b) 15, c) 25,	, and d)
40 °C/min	90
Fig. 5.2: Arrhenius plot for calculation of activation energy using OFW and KAS	92
Fig. 5.3: Change in activation energy with respect to progressive conversion	92
Fig. 5.4: Comparison of experimental and predicted bio-oil yield	102
Fig. 5.5: Three-dimensional response surface and bio-oil yield contour plots again	inst (a)
heating rate and temperature (b) sweeping gas flow rate and temperature (c) l	heating
rate and sweeping gas flow rate	103
Fig. 5.6: FTIR analysis of MS biomass and MS bio-oil	105
Fig. 5.7: GCMS analysis of MS bio-oil	107
Fig. 6.1: Van-Krevelen diagram for SB with other testified biomass	115
Fig. 6.2: FTIR analysis of SB biomass	116
Fig. 6.3: (a) Thermal analysis of SB at 10 °C/min, (b) TG profile at dynamic heating	ng rates
and (c) DTG thermograph at dynamic heating rates	119
Fig. 6.4: Curve fitting of pyrolysis of SB against model free methods	123
Fig. 6.5: Variation of activation energy with progressive conversion	123
Fig. 6.6: (a) $z(\alpha)z(0.5)$ with progressive conversion at various heating rates; (b) at 10
°C/min; (c) 20 °C/min; (d) 30 °C/min; (e) 40 °C/min; and (f) 50 °C/min	127
Fig. 6.7: Correlation between pre-exponential factor and activation energy; (a) OF	W and
(b) VZK method	133
Fig. 6.8: Actual and predicted values of the SB bio-oil	137
Fig. 6.9: Effects of surface response of bio-oil yield in three dimensions, (a) temp	erature
and heating rate, (b) N_2 flow rate and temperature, and (c) N_2 flow rate and	heating
rate	138
Fig. 6.10: FTIR analysis of SB bio-oil	140
Fig. 6.11: GCMS analysis of the bio-oil	141
Fig. 6.12: (a) Van-Krevelen diagram, and (b) FE-SEM coupled with EDX of the SB	biochar
	144

List of Tables

Page No.
Table 1.1: Production of crude oil in India in Thousand Metric Tons (TMT)2
Table 1.2: Consumption of petroleum products in India in Thousand Metric Tons (TMT)
3
Table 1.3: State wise and source wise installed capacity of grid interactive biomass power
7
Table 2.1: Typical chemical composition of different biomass groups18
Table 3.1: Algebraic expressions for $f(\alpha)$ and $g(\alpha)$ for the most frequently used mechanisms
of solid-state processes 43
Table 4.1: Physicochemical study of the LS biomass along with some other reported
biomass 53
Table 4.2: Assessed and average activation energy values by different techniques from
conversion 61
Table 4.3: Thermodynamic parameters for LS biomass based on OFW, KAS and
Vyazovkin method at heating rate of 10°C/min66
Table 4.4: Actual and expected response values from RSM and ANN using the
experimental design matrix 71
Table 4.5: Analysis of variance (ANOVA) for the quadratic response model: Bio-oil 72
Table 4.6: Physicochemical characterization of LS bio-oil and compared with gasoline and
diesel fuel 73
Table 4.7: Physicochemical characterization of LS biochar along with other reported
biochar 79
Table 5.1: Physiochemical properties of MS biomass with comparison to other biomass
87
Table 5.2: Kinetic analysis of MS biomass using model free methods93
Table 5.3: Kinetic analysis of MS biomass using CR method94
Table 5.4: Thermodynamic analysis of MS biomass at heating rate of 10, 15, 25 and 40
°C/min 97
Table 5.5: Central composite design (CCD) matrix and results100
Table 5.6: Results of ANOVA for the response of MS bio-oil using a quadratic model101
Table 5.7: Characteristics of MS bio-oil and diesel104

Table 6.1: Physicochemical characteristics of SB biomass along with o	ther reported
biomass	114
Table 6.2: Activation energy with respect to conversion obtained from different	ent model free
techniques	124
Table 6.3: Thermodynamic analysis of the SB biomass	131
Table 6.4: CCD experimental matrix and results	136
Table 6.5: ANOVA analysis of the quadratic model	136
Table 6.6: Physicochemical characterization of bio-oil and compared with d	iesel fuel 139
Table 6.7: Physicochemical characterization of SB biochar along with o	ther reported

biochars

143

Abbreviation	Nomenclature
MMT	Million Metric Tons
MTOE	Million Tons of Oil Equivalent
TMT	Thousand Metric Tons
GHG	Green House Gas
MW	Mega Watt
MNRE	Ministry of New Renewable Energy
IREDA	Energy Development Agency Limited
MPa	Mega Pascal
HTC	Hydrothermal Carbonization
TGA	Thermogravimetric analysis
DTG	Differential Thermogravimetric
FTIR	Fourier Transform Infrared Spectroscopy
GCMS	Gas Chromatography Mass spectroscopy
NMR	Nuclear magnetic resonance
RSM	Response Surface Methodology
OFAT	One Factor At a Time
CCD	Central Composite Design
ANOVA	Analysis of Variance
LS	Lagerstroemia speciosa
MS	Mustard straw
SB	Sesbania bispinosa
MC	Moisture content
AC	Ash content
VM	Volatile matter
FC	Fixed carbon
C, H, N, and S	Carbon, Hydrogen, Nitrogen, and Sulfur
EA	Elemental analyzer
HHV	Higher heating value
ATR	Attenuated total reflection
OFW	Ozawa Flynn Wall

List of Abbreviations

KAS	Kissinger Akahira Sunose
TM	Tang Method
ST	Starink method
VZK	Vyazovkin method
CR	Coats Redfern
PID	Proportional Integral Derivative
rpm	Revolution per minute
ASTM	American Society for Testing and Materials
EDX	Energy Dispersive X-ray
FE-SEM	Field Emission Scanning Electron Microscopy
NIST	National Institute of Standards and Technology
ICTAC	International Confederation of Thermal Analysis and Calorimetry
MCT	Molecular collision theory

Symbol	Nomenclature
A	Pre-exponential factor (s ⁻¹)
Т	Temperature (degree Celsius or kelvin)
Ε	Activation energy (kJ/mol)
E_{α}	Activation energy (variation with conversion)
α	Conversion
t	Time (second or minute)
K(T)	Temperature dependent rate constant
m _i	Initial weight
m	Instantaneous weight
m_{∞}	Final weight
R	Universal gas constant (8.314 J/mol.K)
β	Heating rate (°C/min)
$f(\alpha)$	Reaction model based function of conversion
$g(\alpha)$	Integral conversion function
С	Constant
ΔG	Change in Gibb's free energy (kJ/mol)
ΔH	Change in enthalpy (kJ/mole)
ΔS	Change in entropy (J/mol.K)
h	Plank's constant (6.626×10 ⁻³⁴ Js)
K _b	Boltzmann constant (1.381×10 ⁻²³ J/K)
T_{m}	Peak temperature
\mathbb{R}^2	Regression coefficient

List of symbols

Preface

Energy is regarded as a critical component for the worldwide development and financial prosperity of present-day society. However, rising energy use in recent years has resulted in issues such as depletion of fossil-based energy resources and ecological destruction. The agricultural, industrial, transportation, and residential sectors have an increased energy demand. Over the last two to three decades, significant global research and development efforts have been devoted to developing different renewable energy supplies to meet energy demand while decreasing environmental challenges. Renewable energy resources such as biomass, solar, wind, and hydro have been identified as potential possibilities for a country like India. Lignocellulosic biomass has received substantial consideration over other renewable energy resources due to its inherent advantages. Biomass has drawn the attention of policymakers and academics worldwide among the many categories of renewable energy sources because of its renewable and sustainable character and its continuous and extensive availability in various forms. In this thesis, three different types of low-value biomass such as Lagerstroemia speciosa (LS), mustard straw (MS), and Sesbania bispinosa (SB), were chosen as a feedstock for pyrolysis in order to determine their bioenergy potential. The LS biomass was collected from the campus of IIT (BHU) Varanasi, whereas the MS and SB biomass was collected from the village (Bindwal) of Azamgarh district, Uttar Pradesh, India. The samples were dried and then powdered to get the desired particle size. Further, physicochemical characterization such as proximate, ultimate, and fiber analyses were carried out. The calorific value and bulk density were also measured to determine the energy content and ease in storage and transportation, respectively. The FTIR spectroscopy was carried out to determine the different functional groups attached to the respective biomasses, whereas thermogravimetric analysis was carried out to determine the thermal stability of the biomass.

Chapter-1 deals with the introduction of energy scenario in India. This chapter describes the production and consumption of different petroleum products in India. Further, the classification and properties of the available biomass resources have been described. The chemical composition of the biomass, such as hemicellulose, cellulose, and lignin, and the technologies applied for converting biomass into valuable products were presented.

Chapter-2 mainly deals with the physicochemical characteristics of different types of biomasses reported in previously published literature. The kinetic analysis of different types of biomasses using different models was studied. The thermal pyrolysis based on different operating conditions of various types of biomass and their optimum pyrolytic yield were presented. The yield of pyrolysis products, for example, type of biomass, catalyst employed, heating rate, feedstock size, sweeping gas (N₂) flow rate, reactor layout, and temperature, were studied. The pyrolysis products were optimized using response surface methodology (RSM) based on central composite design (CCD). The research gaps were identified from the literature. The scope and objectives of the present research work are described.

Chapter-3 deals with material and methods, collection, and preparation of the biomass. The preliminary characterization of the sample such as proximate analysis (moisture content, volatile matter, ash, and fixed carbon content), ultimate analysis (carbon, hydrogen, nitrogen, and sulfur), calorific value, bulk density, fiber analysis (cellulose, hemicellulose, and lignin) were carried out using the standard protocols, whereas thermal degradation analysis was carried out using a thermogravimetric analyzer. Fourier transform infrared spectroscopy (FTIR) was employed for the determination of functional groups present in the biomass. The kinetic and thermodynamic parameters were also calculated using the respective equations. This chapter also comprises the details of the experimental setup used in different experimental works.

Chapter-4 aims to investigate the thermochemical characteristics and thermal degradation behavior of LS biomass. LS sample was characterized by proximate study, elemental study, calorific value, fiber analysis, and thermal stability study, whereas; isoconversional models such as Ozawa-Flynn-Wall (OFW), Kissinger Akahira Sunose (KAS), Vyazovkin (VZK), Tang method (TM), and Starink method (ST) were used for performing the kinetic study. The physicochemical study of LS revealed its bioenergy capability to create renewable fuel and valued compounds. Further, isoconversional models such as OFW, KAS, TM, ST, and VZK yielded average activation energy of 164, 154.35 154.63, 154.61, and 141.93 kJ/mol. The master plot and thermodynamic study of LS confirmed that the pyrolysis process passed through multifaceted reaction mechanisms. Important pyrolysis parameters such as heating rate, temperature, and inert gas (N₂) flow rate were optimized using the Response Surface Methodology (RSM). The experimental findings revealed that the optimum condition for the maximum bio-oil yield (45.6%) production was: temperature = 550° C, heating rate = 65° C/min, and N₂ flow rate = 60ml/min; however, at this condition, the predicted bio-oil yield using RSM was 44.98%. The obtained bio-oil was characterized based on its physicochemical properties such as GCMS, FTIR, and 1H-NMR.

Chapter-5 aims to investigate the thermochemical characteristics and thermal degradation behavior of mustard straw. The model-free methods of Ozawa-Flynn-Wall (OFW), Kissinger Akahira Sunose (KAS), and Vyazovkin were employed for kinetic analysis and Coats-Redfern (CR) method was employed for elucidating the reaction mechanism. Response surface methodology (RSM) with a central composite design technique was employed to optimize the pyrolysis process parameters to gain the maximum amount of bio-oil. The highest bio-oil yield (44.69%) was obtained at the heating rate of 25 °C/min and a temperature of 500°C under inert conditions (N₂ gas flow rate=100 ml/min). Further, FTIR and GCMS analysis of bio-oil revealed the presence of different functional groups and valuable chemicals, whereas physicochemical characterization revealed its fuel characteristic. The results confirmed the suitability of mustard straw as a feedstock for obtaining cleaner fuel and value-added products.

Chapter-6 deals with the aim of optimizing the process parameters and experimental situations for the pyrolysis of *Sesbania bispinosa* (SB) to acquire the utmost bio-oil yield. A stainless steel fixed bed reactor was employed for pyrolysis to attain the pyrolysis product. The thermogravimetric analyzer (TGA) was employed to measure the thermal degradation profile at dynamic heating rates. The model-free approaches of Ozawa Flynn Wall (OFW), Kissinger Akahira Sunose (KAS), Tang (TM), Starink (ST), and Vyazovkin (VZK) were used to predict kinetic parameters. The average activation energy obtained was 181.37, 180.63, 180.91, 180.90, and 161.31 kJ/mol using the OFW, KAS, TM, ST, and VZK methods, respectively. The thermal pyrolysis results revealed that the highest bio-oil yield (42.53 wt. %) was achieved at a temperature of 585 °C, a heating rate of 60 °C/min, and an inert flow rate of 125 ml/min. Characterization results of biochar confirmed its candidacy to be used in different industrial applications.

Chapter-7 presents the overall summary, including important conclusions and the scope of future work.