Table of Contents

List of Figures x	i
List of Tables x	xiii
List of Abbreviations x	xiv
Preface x	XV
Chapter 1: Introduction	
1.1 Global warming and energy security	1
1.1.1 Global warming and Climate change	1
1.1.1.1 Global warming	1
1.1.1.2 Climate change	2
1.1.1.3 Causes of climate change	3
1.1. 2 Energy security	3
1.2 Pollution control and green energy over fossil	4
1.3 Renewable energy and alternative energy solutions	5
1.4 Limitation/ problem with Renewable energy	6
1.5 Type of energy storage solutions	6
1.5.1 The battery is an alternating grid-scale energy storage solution	8
1.5.2 Limitation of conventional metal-ion (Li-ion and Na -ion) battery	9
1.6 Parameters of performances for grid-scale energy storage	9
1.6.1 Redox flow battery technology for grid-scale energy storage app	olication
10	
1.6.2 Metal-sulphur battery technology for grid-scale energy storage app	olication
11	
1.6.3 Metal-air battery technology for grid-scale energy storage application	on 13
1.6.3.1 Development of metal-air battery	14
1.6.3.2 Type Metal-air batteries	15
1.6.3.3 Metal anode and Working principle of the metal-air battery	16
1.6.3.4 Air cathode and role of cathode supported OER (Oxygen Evolutio	on
Reaction) and (Oxygen Reduction Reaction) ORR catalyst	17
1.6.3.4 .1 Overpotential	18
1.6.3.4 .2 Tafel slope	19
1.6.3.4 .3 Exchange current density (i0)	19

1.6.3.5 Survey of OER (Oxygen Evolution Reaction) and (Oxygen Reduction	
Reaction)ORR catalysts with different lattice structures	20
1.6.3.5.1 OER and ORR activity of transition/noble metal oxides	21
1.6.3.5.2 Role of eg electron on ORR/OER activity of Spinel and perovskite-ty	pe
Oxide materials	21
1.6.3.5.3 Role of e_g electron on ORR activity of Perovskites (ABO ₃) metal oxid	des
	24
1.7 Pseudocapacitors or Supercapacitors for grid-scale energy storage	
Application	25
1.7.1 Development of pseudocapacitors	26
1.7.2 Classification of Pseudocapacitance	27
1.7.3 Psedocapative materials with different lattice structur	28
1.7.3.1 .1 Fe-O _x redox mediator type materials	28
1.7.3.2 .2 VO _x -based redox mediator type materials	29
1.7.3.3 .3 MnO _x -based redox type materials	29
1.7.3.4 RuO ₂ -based Redox mediator type materials	29
1.7.3.5 CoO _x -based Redox mediator type materials	29
1.7.3.6 TiO ₂ (B) cationic intercalation type materials \dots	30
1.7.3.7 T-Nb ₂ O ₅ cationic intercalation type materials	30
1.7.3.8 Perovskite Oxides anionic intercalation type materials	31
1.8 Materials showing both OER/ORR catalysis and pseudocapacitance	32
References	35

Chapter 2: Synthesis and Characterization Techniques

2.1 Overview	49
2.2 Materials Synthesis techniques	49
2.2.1 Solid-state or Ceramic method	50
2.2.2 sol-gel auto combustion method	50
2.2.3 Co-precipitation method	51
2.3 Characterization Techniques	52
2.3.1 X-ray Diffraction (XRD)	52
2.3.2 High-Resolution Scanning Electron Microscope (HR-SEM)	54
2.3.3 High-Resolution Transmission Electron Microscope (HR-TEM)	56

2.3.4Thermogravimetric analysis (TGA)	58
2.3.5 Fourier transform infrared (FTIR) spectroscopy	58
2.3.6 UV-Visible Spectrophotometer	60
2.3.7 Raman Spectroscopy	61
2. 3.8 X-ray Photoelectron Spectroscopy (XPS)	62
2.3.9 BET (Brunauer, Emmett, and Teller) specific surface area analysis	64
2.4 Electrode Fabrication and Cell Assembly	65
2.4.1 Electrode fabrication	65
2.4.2 Cell Assembly	66
2.4.3 Electrochemical characterization techniques	67
2.4.3.1 Linear sweep voltammetry (LSV)	67
2.4.3.2 Cyclic voltammetry (CV)	68
2.4.3.3 Chemical Kinetic of pseudocapacitors from cyclic voltammetry curve	69
2.4.3.4 Charge-discharge (Chronopotentiometry)	71
2.4.3.5 Electrochemical Impedance Spectroscopy (EIS)	73
References	75

Chapter-3: Ni stabilized Rock-Salt structured CoO; Co_{1-x}Ni_xO: Tuning of e_g electrons to Development a Novel OER Catalysts

3.1 Introduction	79
3.2 Materials Synthesis and characterizations	80
3.2 .1 Electrochemical Studies	81
3.3 Results and Discussion	82
3.3.1 XRD and Crystal structure	82
3.3.2 SEM analysis	83
3.3.3 Fourier transform infrared spectroscopy (FTIR) analysis	84
3.3.4 X-ray photoelectron spectroscopy (XPS) analysis	84
3.3.5 Linear Swept voltammetry (LSV) and Electrochemical Impedance	
Spectroscopy (EIS) analysis 1M KOH electrolyte	85

3.3.6 Linear Swept voltammetry (LSV) and EIS measurements in different	
molar KOH electrolyte	87
3.3.7 Linear Swept voltammetry and EIS measurements in 5M KOH electroly	te
	87
3.3.8 Comparative Tafel slope in 1M and 5M KOH	88
3.3.9 Showing stability of OER catalyst in 5M KOH	91
3.3.10 Role of eg electrons on OER and ORR catalyst	91
3.4 Conclusions	93
References	94

Chapter 4: Investigation of Role of Sr and Development of Superior Sr doped Hexagonal

$BaCoO_{3\cdot\delta}$ Perovskite Bifunctional OER/ORR Catalyst in Alkaline

Media

4.1 Introduction	99
4.2 Materials Synthesis and characterization	100
4.2.1 Electrochemical Studies	101
4.3 Results and Discussion	102
4.3.1 Crystallographic characterization	102
4.3.2 Brunauer-Emmett-Teller (BET) analysis	104
4.3.3 Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray	
Analysis (EDX) analysis	104
4.3.4 Transmission electron microscopes (TEM) analysis	105
4.3.5 X-ray photoelectron spectroscopy (XPS) analysis	106
4.3.6 Temperature-dependent resistivity study	107
4.3.7 UV visible spectroscopy analysis	108
4.3.8 Electronic structure	108
4.3.9 Role of Sr doped in BaCoO ₃	110
4.3.10 Mott–Schottky and flat-band potential	110
4.3.11 Linear Sweep Voltammetry (LSV) analysis	111
4.3.12 EIS (Electrochemical impedance spectroscopy) analysis	113
4.3.13 Cyclic voltammetry perform in different concentration electrolytes	113

4.3.14 Stability perform cyclic voltammetry analysis	114
4.3.15 Stability test by chronoamperometric experiment	115
4.4 Conclusion	116
References	117

$\begin{array}{ll} Chapter 5: & La_{0.5}K_{0.5}CoO_{3\cdot\delta} \ (0\leq x\leq 0.5) \ Perovskite: \ A \ Novel \ Bifunctional \ OER \\ catalyst and supercapacitive energy storage material \end{array}$

5.1 Introduction	123
5.2 Materials Synthesis and characterizations	124
5.2.1 Electrode fabrication	125
5.2.2 Electrochemical Studies	126
5.2.2.1 Electrocatalysts measurement	126
5.2.2.2 Supercapacitors measurement	127
5.3 Results and discussions	127
5.3.1 Crystallographic characterization	127
5.3.2 FTIR spectra analysis	128
5.3.3 UV-vis absorption spectrum and bandgap analysis	130
5.3.4 BET surface area and pore sizeanalysis	130
5.3.5 XPS analysis	131
5.3.6 SEM analysis	132
5.3.7 TEM analysis	133
5.3.7 TEM analysis.5.3.8 Strain-induced distortion of CoO5 octahedra.	133 134
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 	133 134 134
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap. 	 133 134 134 135
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap. 5.3.11 Mott–Schottky plot. 	 133 134 134 135 136
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap. 5.3.11 Mott–Schottky plot. 5.3.12 Linear Sweep Voltammetry (LSV) analysis. 	 133 134 134 135 136 137
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap. 5.3.11 Mott–Schottky plot. 5.3.12 Linear Sweep Voltammetry (LSV) analysis. 5.3.13 EIS (Electrochemical impedance spectroscopy) and Cdl value analysis 	 133 134 135 136 137 139
 5.3.7 TEM analysis. 5.3.8 Strain-induced distortion of CoO5 octahedra. 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap. 5.3.11 Mott–Schottky plot. 5.3.12 Linear Sweep Voltammetry (LSV) analysis. 5.3.13 EIS (Electrochemical impedance spectroscopy) and Cdl value analysis 5.3.14 Chronoamperometric stability test. 	 133 134 135 136 137 139 139
 5.3.7 TEM analysis	 133 134 134 135 136 137 139 139 .140
 5.3.7 TEM analysis 5.3.8 Strain-induced distortion of CoO5 octahedra 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap	 133 134 134 135 136 137 139 139 .140 140
 5.3.7 TEM analysis 5.3.8 Strain-induced distortion of CoO5 octahedra 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap 5.3.11 Mott–Schottky plot 5.3.12 Linear Sweep Voltammetry (LSV) analysis 5.3.13 EIS (Electrochemical impedance spectroscopy) and Cdl value analysis 5.3.14 Chronoamperometric stability test 5.4 Electrochemical Charge Storage Behaviour in neutral Na₂SO₄ electrolyte 5.4.1 Bifunctional OER catalyst and supercapacitive energy storage behavior 5.4.2 Cyclic voltammetry study in neutral Na₂SO₄ electrolyte 	 133 134 134 135 136 137 139 139 140 140 141
 5.3.7 TEM analysis 5.3.8 Strain-induced distortion of CoO5 octahedra 5.3.9 Double-exchange of Co³⁺-O²⁻ -Co⁴⁺ 5.3.10 Co (3d)/O (2p) orbital overlap	 133 134 134 135 136 137 139 139 140 140 141 143

	5.4.5	Charge	discharge	(plot	V	vs.	time)	analysis	in	Na ₂ SC	0 ₄ aqu	ieous
el	lectrol	yte	• • • • • • • • • • • • • • •		••••	••••	•••••		••••			145
	5.4.6	EIS analy	sis in Na ₂ S	O ₄ Aqu	eou	s elec	etrolyte.					146
	5.4.7	Full cell	(La _{0.5} K _{0.5}	CoO _{3-δ}	// A	C (A	ctivated	l carbon) e	electr	rochemi	cal Ar	nalysi
ir	n Na ₂ S	O ₄ aqueo	us electrolyt	e	••••							147
	5.4.8	Full cell	(La _{0.5} K _{0.5} C	οO _{3-δ} //	AC	(Act	ivated c	arbon) EI	S (El	ectroch	emical	l
]	Impedanc	e Spectrosco	opy) an	alys	sis in	Na ₂ SO	t aqueous e	electi	rolyte		148
	5.4.9	Full cell ((La _{0.5} K _{0.5} C	οO _{3-δ} //	AC	(Act	ivated c	arbon) of	speci	ific ener	rgy vs.	
		Specific	power in Na	$a_2 SO_4 a$	que	ous e	electroly	rte				149
	5.5 C	onclusion	IS		••••							150
	R	eferences										151

Chapter 6: $La_{1-x}K_xFeO_{3-\delta}$: An anion intercalative pseudo-capacitive electrode for supercapacitors application

6.1 Introduction	157
6.2 Materials Synthesis and characterizations	159
6.2.1 Electrochemical Studies	160
6.3 Results and Discussions	160
6.3.1 Crystallographic characterization	160
6.3.2 X-ray photoelectron spectroscopy (XPS) analysis	162
6.3.3 Brunauer-Emmett-Teller (BET) analysis	163
6.3.4 Scanning Electron Microscopy (SEM) with Analysis (EDX) and High-	
Resolution Transmission Electron Microscopes (HRTEM) analysis	164
6.3.5 Cyclic Voltammetry analysis	165
6.3.6 Determination of the Diffusion coefficient	167
6.3.7 Determination of b values and analysis	168
6.3.8 Dunn's plot analysis	170
6.3.9 Trassati's plot analysis	171
6.3.10 Chonoamperometry (charge-discharge)	172
6.3.11 Electrochemical impedance spectroscopy (EIS) analysis	173
6.3.12 Two electrodes full cell test of $La_{0.5}K_{0.5}FeO_{3\cdot\delta}//AC$ (CV, charge-discharge-di	rge,
and cyclic stability)	174

6.3.13 Electrochemical impedance spectroscopy of two electrodes

$(La_{0.5}K_{0.5}FeO_{3-\delta}//AC \text{ full cell})$	176
6.3.14 Study of specific energy vs. specific power of full cell	
$(La_{0.5}K_{0.5}FeO_{3-\delta}//AC \text{ full cell})$	177
6.4 Conclusions	178
References	179

Chapter 7: Anhydrous NiC₂O₄ Quantum dots: A superior pseudocapacitive electrode for large-scale energy storage applications in aqueous KOH and neutral Na₂SO₄ electrolyte

7.1 Introduction		
7.2 Material Synthesis and Characterizations		
7.2.1 Preparation of Electrode		
7.3 Results and Discussions		
7.3.1 Crystallographic characterization		
7.3.2 Thermo-gravimetric Analysis (TGA) and Differential thermal		
Analysis (DTA)	190	
7.3.3 Fourier transform infrared spectroscopy (FTIR) analysis	191	
7.3.4 Brunauer-Emmett-Teller (BET) surface area analysis		
7.3.5 Raman spectrum analysis		
7.3.6 UV visible spectroscopy analysis		
7.3.7 X-ray photoelectron spectroscopy (XPS) analysis		
7.3.8 High-resolution scanning electron microscopy (HRSEM) analysis		
7.3.9 High-resolution scanning electron microscopy (HRSEM) analysis	196	
7.3.10 Cyclic Voltammetry analysis		
7.3.11 Determination of Diffusion coefficient		
7.3.12 Determination of b values and analysis		
7.2.13 Dunn's plot analysis		
7.3.14 Trassati's plot analysis	203	
7.3.15 Chonoamperometry Charge -discharge analysis	204	
7.3.16 Electrochemical impedance spectroscopy (EIS) analysis		

7.3.17 Full cell cyclic voltammetry (CV) of Activated carbon // of NiC2O4.2H2OQDs and NiC2O4QDs in 2M KOH analysis207

7.3.18 Full cell charge-discharge of Activated carbon // NiC2O4.2H2O QDs
and NiC ₂ O ₄ QDs in 2M KOH analysis and stability of AC// NiC ₂ O ₄
QDs after 2500 cycles
7.3.19 Comparative Electrochemical impedance spectroscopy (EIS)
Analysis Activated carbon // of NiC ₂ O ₄ .2H ₂ O QDs and NiC ₂ O ₄ QDs
in 2M KOH analysis
7.3.20 NiC ₂ O ₄ QDs electrochemical analysis in 1M Na ₂ SO ₄ 210
7.3.21 Full cell AC// NiC2O4 QDs electrochemical analysis in 1M Na2SO4.211
7.3.22 Comparative Power Density vs. Energy Density of AC// NiC2O4QDs in
2M KOH and 1M Na ₂ SO ₄ 212
7.4 Conclusions
References 215
Chapter 8: Summary and Future scope
8.1 Summary 221
8.2 Future Scope

List of Figure

Figure No.	Figure description	Page
8	8	No.
Figure 1.1	Illustration of Global Warming	2
Figure 1.2	Causes of global warming and Climate change	2
Figure 1.3	Concept of energy security	4
Figure 1.4	a) Source of renewable energy b) Breakdown of renewables use in total final energy consumption terms	5
Figure 1.5	Different types of grid energy storage technologies for stationary applications	6
Figure 1.6	different types of energy storage technologies for stationary applications	7
Figure 1.7	 a) Schematic illustration of the first Li-ion battery (LiCoO₂/Li+-ion electrolyte/graphite) b) Gravimetric power and energy densities for different rechargeable batteries 	8
Figure 1.8	Suitability of energy storage technologies to different power and rate of discharge requirements	10
Figure 1.9	Schematic of the mechanism of vanadium redox flow battery	11
Figure 1.10	Schematic diagrams of Li-S cell with its charge/discharge operations	12
Figure 1.11	Schematic diagrams of Li-air battery	14
Figure 1.12	Theoretical energy density, specific energy, and nominal cell voltage of different types of metal-air batteries	15
Figure 1.13	Schematic diagrams of Metal-Air Batteries working principles for (a) non-aqueous electrolyte, and (b) aqueous electrolyte	16
Figure 1.14	Schematic diagrams of a) working principle of Zn–air battery and b) OER and ORR mechanism on air cathode	18
Figure 1.15	Schematic diagrams of Gibbs free energy of reactive species and intermediates (horizontal lines) of the oxygen evolution reaction (OER) versus the reaction coordinate. Blue lines and red lines indicate	20
	the energetics of a real (typical) catalyst and an ideal catalyst	

- Figure 1.16
 Schematic diagrams of Volcano plots of common metal
 21

 electrocatalysts
 21
- Figure 1.17 (a-b) Schematic diagrams of Volcano plots ORR and OER activity 22 respectively on various spinel's as a function of e_g occupancy of the active element at the octahedral site
- Figure 1.18 Electronic configurations (d orbital spitting bonding (t_{2g})) and 23 antibonding (e_g)) and relevant metal orbitals of first-row transition metals for a BO₅ configuration
- Figure 1.19 The relation between the OER catalytic activity, defined by the 23 overpotentials at 50 μ A cm-2 of OER current, and the occupancy of the e_g-symmetry electron of the transition metal (B in ABO₃)
- Figure 1.20 a) Potentials at 25 mA/ cm2 of the perovskite oxides have an M-shaped 24 relationship with the d electron number b) Role of eg electron on ORR activity of perovskite oxides, Potentials at 25 mA cm22 as a function of eg orbital in perovskite-based oxides
- Figure 1.21 Advantage of supercapacitors over battery
- Figure 1.22 Timeline of major developments in the field of pseudocapacitance 26

25

31

- Figure 1.23 a) Adsorption pseudocapacitance, b) redox pseudocapacitance, and c) intercalation pseudocapacitance. d) CV of a Pt. (110) surface in aqueous 0.1MHClO₄ solution at 50mV/s E) CV of a RuO₂.0.5H₂O electrode in 28 aqueous 0.5MH₂SO₄ solutionf) CV of T-Nb₂O₅ Nano crystalline film in a nonaqueous Li+ electrolyte cycled at 0.1 mV/s.
- Figure 1.24 Structural model of T-Nb₂O₅, highlighting densely packed 4h layers and loosely packed 4g layers and proposed low-hindrance Li⁺ diffusion paths 30 between bridging sites

Nyquist Plot for ionic solids

- Figure 1.25 shows O^{2-} intercalation in SrCoO_{3- δ}
- Figure 1.26 a) LSV collected at 5 mV s⁻¹ for NiO-NFBs, NiO-NPTs, and Ni foam electrodes, b) respective Tafel slopes c) CV of NiO nanoparticles ³³ film on nickel foams working electrode in 1M KOH d) Galvanostatic charge/discharge profiles for NiO nanoparticles film on nickel in the potential range of 0–0.5V

Figure 1.27	a) morphology MnO_2 b) LSV -curves MnO_2 -based samples on Ni foam c) CV curves at various scan rates (the inset is the CV curve at 5 mV s-1), d) galvanostatic charge-discharge curves at various current	34
	densities of MnO_2	
Figure 2.1	Schematic representation of the three types of synthesis routes	49
Figure 2.2	block diagram of the solid-state synthesis process	50
Figure 2.3	block diagram sol-gel auto combustion synthesis process	50
Figure 2.4	block diagram Co-precipitation synthesis process	52
Figure 2.5	Schematic diagram of the incident and diffracted X-rays from the	53
	crystal	
Figure 2.6	Rigaku, Miniflex II, Japan, IIT (BHU) Varanasi	54
Figure 2.7	Schematic diagram of the core component of SEM microscope	55
Figure 2.8	HR-SEM Instrument facility, ZEISS EVO 18 in CIFC IIT (BHU)	55
	Varanasi	
Figure 2.9	(a) Schematic diagram of core component of TEM microscope.	57
	Transmitted and diffracted electrons for (b) Bright field and (c) Dark	
	field imaging in TEM	
Figure 2.10	HRTEM Facilities with EDAX spectrometer, IIT (BHU) Varanasi	57
Figure 2.11	TGA measurement system CIFC, IIT (BHU) Varanasi	58
Figure 2.12	Brief mechanism of FTIR for detection	59
Figure 2.13	FTIR spectrometer CIFC, IIT (BHU) Varanasi	60
Figure 2.14	Schematic diagram of UV-Visible spectrometer	60
Figure 2.15	Schematic representation of the scattering process in Raman scattering	61
Figure 2.16	Schematic diagram of Raman spectrometer.	62
Figure 2.17	Schematic diagram XPS Basic Principle	63
Figure 2.18	XPS Spectrometer, CIFC. IIT(BHU) Varanasi	63
Figure 2.19	BET surface area measurement system, CIFC, IIT (BHU) Varanasi	65
Figure 2.20	Electrode picture for supercapacitors application	66
Figure 2.21	An electrochemical cell in a three-electrode system	67
Figure 2.22	Linear sweep voltammetry (LSV) polarization curve, voltage(V) vs.	68

current

Figure 2.23	Cyclic voltammetry (CV) polarization curve , voltage(V) vs. current	69
Figure 2.24	Power-law dependence of the peak current on sweep rate for	
	capacitive materials (b= 1.0) and typical battery-type materials (b =	70
	0.5).	
Figure 2.25	Charge-discharge (Chronopotentiometry) plot voltage vs. time	72
Figure 2.26	Electrochemical impedance spectroscopy (EIS) mechanism and cole-	74
	cole plot	
Figure 3.1	(a). X-ray diffraction patterns of $Ni_xCo_{1-x}O$ ($0 \le x \le 0.4$) denoted (b).	82
	Rietveld refinement of XRD pattern of Ni _{0.3} Co _{0.7} O	
Figure 3.2	(a) Scanning electron micrograph of $Ni_{0.3}Co_{0.7}O$. (b) Scanning	83
	electron micrograph (enlarged view) of $Ni_{0.3}Co_{0.7}O$ (c) EDX analysis	
	showing the stoichiometric distribution of Co, Ni, and O elements	
Figure 3.3	FTIR spectrum of Ni _{0.3} Co _{0.7} O	84
Figure 3.4	XPS of $Ni_{0.3}Co_{0.7}O$. (a) Full XPS survey of $Ni_{0.3}Co_{0.7}O$ (b) Core level	
	Ni2p spectrum (c) Co2p spectrum (d) O1s spectrum	85
Figure 3.5	(a) OER activity of $Co_{1-x}Ni_xO$ at 1 M KOH electrolyte. (b) ORR	
	activity of $_{Col-x}Ni_xO$ at 1 M KOH electrolyte. (c) OER and ORR	86
	performed of $Ni_{0.3}Co_{0.7}O$ with mechanism (d) EIS measurements of	
	Co _{1-x} Ni _x O at 1 M KOH electrolyte	
Figure 3.6	(a) OER activity of $Co_{0.7}Ni_{0.3}O$ from 1M to 6 M KOH electrolyte (b)	87
	EIS measurements of $Co_{1-x}Ni_xO$ at 1 M KOH electrolyte	
Figure 3.7	(a) OER activity of $Co_{1-x}Ni_xO$ at 5 M KOH electrolyte. (b) ORR	88
	activity of $Co_{1-x}Ni_xO$ at 5 M KOH electrolyte. (c) EIS measurements	
	of $Co_{1-x}Ni_xO$ at 5 M KOH electrolyte.	
Figure 3.8	(a) Tafel plot of $Co_{1-x}Ni_xO$ at 1 M KOH. (b) Tafel plot of $Co_{1-x}Ni_xO$ at	89
	5 M KOH	
Figure 3.9	Showing stability of OER activity of Ni _{0.3} Co _{0.7} O up to 200 cycles.	90
Figure 3.10	a) Volcano graph depicting correlation of eg electrons with	
	overpotential (at 10 mA/ cm2) and the Tafel slope at 1 M KOH	92
	electrolyte b) d orbital presentation andeg electron calculation	

- Figure 4.1 (a) powder xrd pattern of $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) (b) Rietveld 102 refinement XRD profile of $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ (c) Vesta image of $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ and (d) Represent of bond angle of Co-O-Co (between O-2p and Co-3d orbital
- Figure 4.2 N2 adsorption/desorption isotherms of $BaCoO_{3-\delta}$ and $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ 104
- Figure 4.3 (a) SEM image showing particle distribution (b) EDX elemental analysis 105
- Figure 4.4 TEM image along with HRTEM showing lattice fringes and high- 105 resolution FFT, inverse FFT with d spacing
- Figure 4.5 (a) Full survey spectra of $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ (b) core level of Ba (3d) and Co 106 (2p) spectrum (c) core level of Sr(3d) spectrum (d) core level of O(1s) spectrum.
- Figure 4.6 (a) The temperature dependence of electrical resistivity of the 2H-type 107 solid solution Ba_{1-x}Sr_xCoO_{3-δ} (0≤ x≤0.5) as a function of Sr content
 (b) plot of ln(R) against T-1/4 of the resistivity data
- Figure 4.7 UV-vis absorption spectrum of $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) powder 108 sample
- Figure 4.8 Scheme showing the presence of oxygen vacancies BO₅ octahedral 109 with high overlapping between O(2p) and Co(3d) band.
- Figure 4.9 Oxygen vacancies and pinning Fermi level at the top of the 110 $Co(3d)/O(2p) \pi^*$ band
- Figure 4.10 Scheme showing the presence of oxygen vacancies BO₅ octahedral 111 with high overlapping between O(2p) and Co(3d) band. (c) Oxygen vacancies and pinning Fermi level at the top of the Co(3d)/O(2p) π^* band
- Figure 4.11 (a) OER and ORR polarization profiles of $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ (b) OER 112 polarization profiles for the $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) samples obtained using a 3 mVs⁻¹ scan rate, (c) in ORR polarization profiles for the $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) samples obtained using a 3 mVs⁻¹ scan rate in O₂ saturated 0.1M KOH solution, (d) respective Tafel plots
- Figure 4.12 electrochemical impedance spectra for the $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) at 1.7V 113 vs RHE

OER polarization profiles for the $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ at 3 mVs⁻¹ scan rate in Figure 4.13 114 0.1, 1, 3, 5, and 6M KOH Figure 4.14 Cycles stability up to 500 cycles of Ba_{0.5}Sr_{0.5}CoO₃₋₆ electrode at 3 mVs-1 115 in 1M KOH Chronoamperometric responses of $Ba_{0.5}Sr_{0.5}CoO_{3-\delta}$ electrode at constant Figure 4.15 115 potentials at 1.7 V vs RHE at an initial current density of 10 mA/ cm2 Figure 5.1 (a) XRD pattern of La_{1-x}K_xCoO_{3- δ} ($0 \le x \le 0.5$)), (b) Rietveld refinement of 127 $La_{0.5}K_{0.5}CoO_{3-\delta}$, (c) vesta image of $La_{0.5}K_{0.5}CoO_{3-\delta}$ Figure 5.2 FTIR spectra of $La_{1-x}K_{x}CoO_{3-\delta}(x=0, 0.3, 0.5)$ 129 . (a) UV-vis absorption spectrum of $La_{1-x}K_xCoO_{3-\delta}$ (x=0, 0.3, 0.5) (b) 130 Figure 5.3 Optical bandgap of $La_{1-x}K_xCoO_{3-\delta}(x=0, 0.3, 0.5)$. Figure 5.4 N2 adsorption/desorption isotherms of $La_{1-x}K_xCoO_{3-\delta}$ (x=0, 0.3, 0.5) 131 Figure 5.5 XPS of $La_{0.5}K_{0.5}CoO_{3-\delta}$ of powder sample (a) full survey, (b) Fe(2p) core 132 level, (c) O(1s), (d) La (3d) and (e) K(2p) Figure 5.6 (a) SEM image showing particle distribution of $La_{0.5}K_{0.5}CoO_{3.\delta}$ (c) EDX 133 elemental analysis of La_{0.5}K_{0.5}CoO_{3-δ} Figure 5.7 (a) TEM image along with HRTEM showing lattice fringes and high-133 resolution FFT, inverse FFT with d spacing (012 planes) of LaCoO₃. (b) TEM image along with HRTEM showing lattice fringes and highresolution FFT, inverse FFT with d spacing (012 planes) of $La_{0.5}K_{0.5}CoO_{3-\delta}$ Scheme showing the presence of oxygen vacancies BO₅ octahedral Figure 5.8 134 Atomic orbital diagram of double-exchange Co³⁺ -O²⁺ -Co⁴⁺ Figure 5.9 135 interaction Figure 5.10 Oxygen Vacancies pinning Fermi level at the top of the Co(3d)/O(2p)136 π^* band Mott–Schottky plot of p-type (hole) semiconductor $La_{1-x}K_xCoO_{3-\delta}$ ($0 \le x$ Figure. 5.11 137 ≤ 0.5) and Flat band (Efb) potential Figure 5.12 (a) OER polarization profiles of BSCF, Ba_{0.5}Sr_{0.5}CoO_{3-δ}, and 138 $La_{0.7}K_{0.3}CoO_{3-\delta}$ in 1M KOH solution (b) OER polarization profiles for the La_{1-x}K_xCoO_{3- δ} ($0 \le x \le 0.5$) samples obtained using a 3 mVs-1 scan rate in 1M KOH solution (c) respective Tafel plots for La₁. $_{x}K_{x}CoO_{3-\delta}$ ($0 \le x \le 0.5$) sample (d) ORR polarization profiles for the $La_{1-x}K_{x}CoO_{3-\delta}$ ($0 \le x \le 0.5$) samples obtained using a 3 mVs-1 scan

rate in O2 saturated 1M KOH solution.

- Figure 5.13. (a) Electrochemical impedance (EIS) spectra for the the $La_{1-x}K_xCoO_{3-\delta}(0 \le x \le 0.5)$ at 1.7V vs RHE (b) measure Cdl values of La_{1-1} (139 $_xK_xCoO_{3-\delta}(x = 0.1, 0.3 \text{ and } 0.5)$
- Figure 5.14 Chronoamperometric responses of $La_{0.7}K_{0.3}CoO_{3-\delta}$ electrode at constant potentials at 1.7 V vs. RHE at an initial current density of 10 ¹⁴⁰ mA/ cm². (Insert stability retention by CV
- Figure 5.15 Cyclic voltammetry of $La_{0.7}K_{0.7}CoO_{3-\delta}$ material at scan rate 10 mV/s in 1M KOH electrolyte and at scan rate 10 mV/s in 0.5 M Na₂SO₄ electrolyte 141
- Figure 5.16(a) Comparative Cyclic voltammetry of $La_{1-x}K_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) material
at scan rate 10 mV/s in 0.5 M Na₂SO₄ electrolyte
(b-d) cyclic voltammetry 142
of $La_{1-x}K_xCoO_{3-\delta}$ (x =0, 0.3, 0.5) material in in 0.5 M Na₂SO₄ electrolyte
- Figure 5.17 Plot of linear relationship between log (peak current) and log (scan rate) at 143 two different scan rate regions of of $La_{1-x}K_xCoO_{3-\delta}(x = 0, 0.3, 0.5)$
- Figure 5.18 (a) Plot of power's law of charged state at a potential and discharged state at 144 a potential of $La_{1-x}K_xCoO_{3-\delta}(x=0, 0.3, 0.5)$ (b) Contribution of diffusive and capacitive at different scan rates contribution of of $La_{1-x}K_xCoO_{3-\delta}(x=0, 0.3, 0.5)$ at 2mV/s
- Figure 5.19 (a) Charge discharge (plot V vs. time) of $La_{1-x}K_xCoO_{3-\delta}$ ($0 \le x \le 0.5$) 145 electrode at 1A/g in 0.5 M Na₂SO₄ (b) charge discharge (plot potential (V) vs. time(t)) of $La_{0.5}K_{0.5}CoO_{3-\delta}$ electrode 0.5M Na₂SO₄ (c) capacitive retention and columbic efficacy with cycle ¬number
- Figure 5.20 Impedance spectroscopy (EIS) at 10mV applied voltage(V) from 1MHz to 146 0.01 Hz
- Figure 5.21 showing full cell (ASCs) performances of activated carbon vs. 147 $La_{0.5}K_{0.5}CoO_{3-\delta}$ electrode; (a) CV of individual electrodes at 10 mV/s respect to Hg/HgO electrode in 0.5 M Na₂SO₄, (b) CV at different scan rate of ASCs in 0.5 M Na₂SO₄ (c) charge-discharge in 0.5 M Na₂SO₄, (d) Capacitance retention and coulombic efficiency with 2500 cycle at 10 A/g constant current of the full cell
- Figure 5.22 showing EIS at 10 mV applied voltage, full cell (ASCs) performances of 149 activated carbon vs. $La_{0.5}K_{0.5}CoO_{3-\delta}$ electrode
- Figure 5.23showing Ragone plot full cell (ASCs) performances of activated carbon vs.150 $La_{0.5}K_{0.5}CoO_{3.\delta}$ electrode
- Figure 6. 1 (a) XRD pattern of $La_{1-x}K_xFeO_{3-\delta}$ (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5), (b) Rietveld 161

refinement of La.5K.5FeO_{3- δ}, (c) structure of La_{0.5}K_{0.5}FeO_{3- δ} and (d) Jahn–Teller distortion over Fe-O octahedra in orthorhombic La_{0.5}K_{0.5}FeO_{3- δ} structure.

- Figure 6. 2 XPS of $La_{0.5}K_{0.5}FeO_{3-\delta}$ of powder sample (a) full survey, (b) Fe(2p) core 163 level, (c) O(1s), (d) La (3d) and (e) K(2p)
- Figure 6.3 show N2 adsorption-desorption isotherms with the pore size distribution 164
- Figure 6. 4 (a) SEM image showing morphology characteristic of $La_{0.5}K_{0.5}FeO_{3-\delta}$ and particles distribution from SEM image, (b) HRTEM image comprising the 164 plane with distorted fringes (inset: FFT and inverse FFT of the selected region) of (002) plane and line profile of (002) plane the selected line in the inverse FFT image of the superstructural peak region.
- Figure 6.5. (a) Cyclic voltammetry of $La_{1-x}K_xFeO_{3-\delta}(x = 0, 0.4 \text{ and } 0.5)$ material at scan 166 rate 10 mV/s in 2M KOH electrolyte, (b-d) cyclic voltammetry of $La_{1-x}K_xFeO_{3-\delta}(x = 0.3, 0.4, 0.5)$ material in 2M KOH electrolyte
- Figure 6.6 Plot peak current density vs square root of scan rate of $La_{1-x}K_xFeO_{3-\delta}$ 167 (x = 0, 0.3, 0.5) sample
- Figure 6.7 (a-b) shows the linear relationship of log (υ) vs log (i), slope represents the b value according to the power-law (c) b value at the ¹⁶⁹ different potential of La_{0.5}K_{0.5}FeO_{3- δ} in charging and discharging process at a different potential, (d) plot of log(peak current) vs log(scan rate)
- Figure 6.8 (a-b) capacitive and diffusion control processes contribution can be distinguished by the $slope(k_1)$ and $intercept(k_2)$ (c) capacitive and ¹⁷¹ diffusion control process of $La_{0.5}K_{.5}FeO_{3-\delta}$ electrode at 10mV/s, (d) capacitive and diffusion control percentage with different scan rate at discharge peak potential (-0.96V)
- Figure 6.9 (a-b) corresponds to Trasatti plot at scan rate of 100mV/s to 1mV/s 172
- Figure 6.10 a) Charge–discharge plot (V vs. time) of the $La_{1-x}K_xFeO_{3-\delta}$ (x = 0, 0.3, 0.4, 0.5) electrode at 1 A/g; (b) charge–discharge plot (potential 173 (V) vs. time (t)) of the $La_{0.5}K_{0.5}FeO_{3-\delta}$ electrode; (c) capacitance performance of the $La_{0.5}K_{0.5}FeO_{3-\delta}$ 2 M KOH electrolyte at different constant currents; (d) capacitive retention and Coulombic efficiencywith cycle number
- Figure 6.11 Electrochemical impedance spectroscopy (EIS) at 10 mV applied 174

voltage from 1 MHz to 0.1 Hz.

- Figure 6.12 Full-cell (ASC) performances of activated carbon vs. the $La_{0.5}K_{0.5}FeO_{3-\delta}$ electrode. (a) CV of individual electrodes at 10 mV/s ¹⁷⁵ with respect to the Hg/HgO electrode; (b) CV at different scan rates of ASCs; (c) charge–discharge plot; (d) capacitance retention and Coulombic efficiency with 2000 cycles at 5 A/g constant currents of the full cell; and
- Figure 6.13 Electrochemical impedance spectroscopy (EIS) at 10 mV applied 176 voltage from 1 MHz to 0.1 Hz.
- Figure 6.14 Ragone plot of the ASCs ($La_{0.5}K_{0.5}FeO_{3-\delta}$ //AC) in full cell 177
- Figure 7.1 Schematic representation of synthesis process of $NiC_2O_4.2H_2O$ and 187 anhydrous NiC_2O_4 quantum dots (QDs
- Figure. 7.2. (a) xrd pattern of NiC₂O₄.2H₂O QDs (b) anhydrous NiC₂O₄ QDs 189
- Figure 7.3 TGA and DTA of bulk $NiC_2O_4.2H_2O$ and $NiC_2O_4.2H_2O$ QDs sample 190
- Figure 7.4 FT-IR spectrums of NiC₂O₄.2H₂O QDs and anhydrous NiC₂O₄ QDs 191 powder samples
- Figure 7.5 BET surface area measurements plot of $NiC_2O_4.2H_2O$ QDs and 192 NiC_2O_4 QDs
- Figure 7.6 Raman shift of $NiC_2O_4.2H_2O$ QDs and NiC_2O_4 QDs 193
- Figure 7.7 a) UV absorbance of bulk and NiC₂O₄ QDs sample (b) bandgap of 194 bulk and NiC₂O₄ QDs
- Figure 7.8 XPS plot of (a) full survey NiC_2O_4 QDs (b) Ni (2p) spectrum and (c) 195 Co 2p spectrum (d) O (1s) spectrum
- Figure 7.9 HRSEM image showing the morphology and particle size distribution of (a) NiC₂O₄.2H₂O QDs (b) anhydrous NiC₂O₄ QDs, (c) EDX of ¹⁹⁶ anhydrous NiC₂O₄ QDs (d-f) elemental distribution of Ni, C, O of NiC₂O₄ QD
- Figure. 7.10 HRTEM image at localized regions showing QDs of (a) NiC₂O₄.2H₂O
 QDs particle size with distribution (with FFT and inverse FFT) (b) ¹⁹⁷
 calculating d-spacing of (202) plane (c) NiC₂O₄.QDs particle size
 with distribution (with FFT and inverse FFT) and (d) d-spacing of (110) plane.
- Figure. 7.11 (a) Cyclic voltammetry of NiC₂O₄.2H₂O QDs (b) cyclic voltammetry 199

of anhydrous NiC_2O_4 QDs (c) comparative cyclic voltammetry of $NiC_2O_4.2H_2O$ QDs and $NiC_2O_4.2H_2O$ QDs at 10mV/s

- Figure 7.12 The plot of log(peak current vs. square root of scan rate of 200 NiC₂O₄.2H₂O QDs and NiC₂O₄ QDs
- Figure 7.13 b value of Plot of the linear relationship between log (peak current) 201 and log (scan rate) of NiC₂O₄.2H₂O QDs and NiC₂O₄ QDs
- Figure 7.14 (a Contribution of diffusive and capacitive at different scan rates 202 contribution of NiC₂O₄ QDs (b) Analysis of kinetic contribution at 10 mVs^{-1} of NiC₂O₄ QDs
- Figure 7. 15 (a-b)Corresponding to Trasatti's plot of NiC₂O₄ QDs 204
- Figure 7.16. (a) The comparative charge-discharge curve at 1A/g of NiC₂O₄ 2H₂O
 QDs and NiC₂O₄ QDs (b-c) charge-charge curve of NiC₂O₄ 2H₂O
 QDs and NiC₂O₄ QDsrespectively (d) capacitance performance of ²⁰⁵
 NiC₂O₄ QDs at different constant current rates (e) capacitance retention and coulombic efficiency of porous NiC₂O₄ QDs
- Figure 7.17 EIS plot of NiC₂O₄.2H₂O and porous NiC₂O₄ QDs at 10mV (AC) 206
- Figure. 7.18 plot for activated carbon and non-hydrate NiC₂O₄QDs cell in ASC Compare single electrode CV mode (a) of Activated Carbonvs.NiC₂O₄ 2H₂O QDs and NiC₂O₄ QDs at 10 mV/s, in 2M 208 KOH (b) compare Full cell CV both $NiC_2O_4.2H_2O$ QDs and NiC_2O_4 QDs at 10 mV/s scan rates in 2M KOH, (c-d) Full cell CV of NiC₂O₄,2H₂O and NiC₂O₄ QDs at different scan rate charge-discharge in 2M KOH respectively
- Figure. 7.19 (a) compare Full cell charge-discharge of both NiC₂O₄ 2H₂O QDs and NiC₂O₄ QDs at 1A/g in 2M KOH (b-c) Full cell charge-discharge of both NiC₂O₄.2H₂O QDs NiC₂O₄ QDs at a different constant current in ²⁰⁹ 2M respectively (d) Capacitance retention and coulombic efficiency of NiC₂O₄ QDs in 2M KOH
- Figure 7.20 shows a comparative EIS plot (Nyquist) of NiC₂O₄.2H₂O QDs and anhydrous NiC₂O₄ QDs in the frequency range (1MHz to 0.1Hz) at 10mV/s shows, that anhydrous NiC₂O₄ QDs has higher charge ²⁰⁹ transformation and higher diffusion behavior in the low-frequency region

- Figure 7.21 a) compare Full cell charge-discharge of both NiC₂O₄.2H₂O QDs and NiC₂O₄ QDs at 1A/g (b) compare Full cell charge-discharge of NiC₂O₄ QDs at different constant current (c) EIS both NiC₂O₄ 2H₂O ²¹¹ QDs and NiC₂O₄ QDs at 10 mV(AC)
- Figure. 7.22 (a) Full cell CV NiC₂O₄ QDs // Activated Carbon in 1M Na₂SO₄ (b)
 Full cell charge-discharge of NiC₂O₄ QDs in 1M Na₂SO₄ at different constant current (c) EIS both NiC₂O₄.2H₂O QDs and NiC₂O₄ QDs at ²¹²
 10 mV(AC) (d) Capacitance retention and coulombic efficiency of NiC₂O₄ QDs
- Figure 7.23 Ragone plot (Energy density vs. power density) of NiC₂O₄ QDs in 2M 213 KOH and 1M Na₂SO₄

List of tables

Table No.		Page No.
Table 1.1	Type of renewable energy source and application	5
Table 3.1	Structural Parameters of Ni _x Co _{1-x} O (0≤x≤0.4)	83
Table 3.2	Tafel slope and Overpotential values of $Ni_xCo_{1\text{-}x}O$ (0≤x≤0.4) at	90
	1M and 5M KOH	
Table 4.1:	lattice parameter of $Ba_{1-x}Sr_xCoO_{3-\delta}$ ($0 \le x \le 0.5$	103
Table 5.1	lattice parameter of $La_{1-x}K_xCoO_{3-\delta}(0 \le x \le 0.5)$	128
Table 6.1	Structural parameter of $La_{1-x}K_xFeO_3$ ($0 \le x \le 0.5$) obtained	162
	Rietveld refinement	
Table 6.2	Determination of diffusion coefficient	168