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PREFACE 

 

Energy storage is the biggest challenge the world is facing today in the 21
st
 century to 

utilize the full potential of renewable energy sources such as solar, wind, Tidal, etc. to 

overcome the ever-increasing burden on fossil fuels to fulfill our power demands and 

to decrease the toxic release and net carbon addition edition to the environment 

resulting global warming due to burning of fossil fuels. Electrochemical Energy 

storage devices are also important to overcome power and current fluctuations 

associated with renewable energy sources to be utilized as power supply units in 

electric grids. Thus major attention in the energy storage device section is to develop 

a gird scale bulk energy storage and delivery system with superior energy storage and 

power delivering capabilities. Therefore redox flow batteries, Metal-air batteries, and 

hybrid supercapacitors are technologically important and materials development to 

enhance their capabilities is the major area of focus in the energy materials section. 

 Bifunctional OER/ORR catalyst and pseudocapacitive electrode materials are 

important to developbulk grid-scale energy storage and power delivering 

energy storage systems. 

 Materials such as RuO2, MnO2, and NiOOH become very important because 

they show superior electrocatalytic OER/ORR properties in basic media (KOH 

electrolyte) and Faradic pseudocapacitive storage in neutral or low pH 

aqueous electrolyte (KOH, KCl, and Na2SO4 media). 

 Perovskite such as Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF), La0.8Sr0.2Co0.8Fe0.2O3-δ 

(LSCF), and LaNiO3±δ are also known to have superior and stable 

electrocatalytic OER/ORR activity in aqueous high pH KOH electrolyte and 

recently pseudocapacitiveanion charge-storage through oxygen intercalation 

was discovered in LaMnO3 perovskite electrodes. 

 Thus there is a need to develop strategic understanding and guidelines to 

develop superior materials that can be employed as an electrode in both (1) 

metal-air batteries (as OER/ORR electrocatalyst) and (2) hybrid 

supercapacitors (pseudocapacitive charge storage electrode).  

 Tuning redox properties with suitable crystal structure or lattice modification 

with novel doping or substitution strategies is important to achieve the 
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 Targeted electric and electronic properties in the material for the desired 

application. In this thesis, I attempted to map the electronic structure of the 

material with suitable doping of guest cations in the host lattice and draw a 

structure-property correlation in the materials to be applied for 

electrochemical energy storage application. 

I have shown that the rock-salt structure can act as a model host structure similar to 

perovskite where eg electrons can be varied to obtain superior electro-catalytic 

activity. Incorporation of Nickel into CoO lattices helps to stabilize the rock salt 

structure and tune the eg electrons to develop superior OER and ORR electrocatalysts. 

Ni0.3Co0.7O with 1.3 eg electrons showed superior electrocatalytic activity for oxygen 

evolution reaction. Further, along with eg electrons, I explored the role of Sr in Ba1-

xSrxCoO3-δperovskite toward higher electrocatalytic OER/ORR activities and showed 

that the incorporation of Sr ion in Ba1–xSrxCoO3–δ (0≤x≤0.5) perovskite lattice, 

facilitates the formation of ligand hole by decreasing the Fermi level position into the 

Co(3d)/O(2p)π* band. The decrease in the bandgap of the materials and superior 

electrical conductivity (p-type conduction) suggest a large number of oxygen 

vacancies or oxygen vacant BO5 octahedra formation that yields more active sites as 

this type of oxygen vacancy in perovskite lattice get more reaction surface or active 

sites because  (011) plane contains transition metal (Co) in Ba1–xSrxCoO3–δ  perovskite 

that forms Co3dz2 and OH−(2pz+1s) bond. 

Similar to multifunction RuO2 or MnO2type materials, I have shown that La1-

xKxCoO3-δ (0 ≤ x ≤ 0.5) shows a pH-dependent bifunctional electrocatalyst 

(OER/ORR) and electrochemical charge storage behavior in different electrolytes.30 

% K doped p-type La0.7 K0.3CoO3-show superior OER activity with an overpotential 

of 335 at 10mA/cm
2
 current rate in 1M KOH electrolyte.  Further, the double 

exchange mechanism enhances OER catalytic properties and additionally, improves 

charge storage kinetics and activities as electrode material La1-xKxCoO3- (0 ≤ x ≤ 0.5) 

for supercapacitors application. High Gravimetric capacitance of La0.5K0.5CoO3-δ 

electrode equivalent to 378 F/g, 282F/g, 221F/g, 163F/g, 74F/g was found at a 

constant current of 1A/g, 2A/g, 3A/g, 5A/g, and 10A/g respectively in neutral 0.5M 

Na2SO4 electrolyte with up to 94% capacitive retention and coulombic efficiency 

(97%). 

An anion intercalative pseudo-capacitive La1-xKxFeO3-δ electrode for supercapacitors 
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application was developed using induced inter-layer potential by altering La
3+

 and K
+
 

layer in La1-xKxFeO3-δ, Fe
4+/3+,

 and Fe
3+/2+

 redox energies can be tuned and made 

accessible to envisage higher capacity (662 F/g equivalents to 1.32 e
-
/OH

-
 diffusion) 

for La0.5K0.5FeO2.92 electrode. Higher b values (>0.8) obtained for diffusion-controlled 

reaction suggest a high faradaic pseudocapacitive contribution to the electrode. Up to 

88.6% capacitive retention and coulombic efficiency (95%) were obtained after 

continuous 5000 cycles of charge/discharge and Maximum specific power of ~3594 

W/kg was obtained when specific energy reached ~117 Wh/kg at 5A/g of current 

density for La0.5K0.5FeO3-δ electrode in two-electrode La0.5K0.5FeO3-δ//AC full cell. 

Further Nano-engineering was employed to develop a superior pseudocapacitive 

electrode based on Ni
2+/3+ 

redox couple in framework structure as Anhydrous NiC2O4 

Quantum dots that showed large-scale pseudocapacitive energy storage in aqueous 

KOH and neutral Na2SO4 electrolyte. Predominant diffusion control over surface 

control mechanism seems to operate behind high charge storage as intercalative 

(Inner) and surface (outer) charges stored by porous anhydrous NiC2O4 QDs were 

close to high at 38% and 62% respectively. Anhydrous NiC2O4 QDs //AC full cell 

resulted in 293Wh/kg of maximum specific energy with specific power equivalent to 

772W/kg in the voltage window of 1.6V in 2M KOH electrolyte. 

Therefore in this thesis, I conclude the role of redox and tuning of redox energy with 

suitable cation doping in host perovskite lattice be employed as an efficient tool to 

alter its electrical and electronic properties so that the materials can show pH-

dependent electrocatalytic (OER/ORR) properties and pseudocapacitive energy 

storage capabilities. The correlation of lattice structure and electronic state of active 

transition metal cation in the host lattice is established to develop novel OER/ORR 

catalyst and pseudocapacitive energy storage materials. This tuning of redox energies 

coupled with structure alteration can open the gate to explore novel new alternative 

materials for desired electrochemical energy storage applications 

 

 


