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 Table 4.1. The refined unit cell parameters and the positions of most 
intense diffraction peak (2θM) for the NaxK1-xNbO3 (x = 0.2, 0.5 and 0.8) 
samples. 
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monoclinic phases in NaxK1-xNbO3 (x = 0.2, 0.5, 0.8) samples, sintered at 
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Geometrical parameters of solid state synthesized NaxK1-xNbO3 (x = 0.2, 
0.5, 0.8) samples, sintered at 1010, 1075 and 1120 °C, respectively. 
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