Title				Page No.		
TITLE	OF THES	SIS		i		
CERTI	CERTIFICATE					
DECLA	RATION	BY THE C	ANDIDATE & CERTIFICATE BY THE			
SUPER	VISOR			iii		
COPYR	RIGHT TR	ANSFER (CERTIFICATE	iv		
Dedica	tion			v		
Acknow	wledgem	ent		vi-viii		
Conter	nts			ix-xvi		
List of	Figures			xvii-xxii		
List of Schemes						
List of		xxiv				
List of Symbols/Abbreviations				xxv-xxvi		
Drofog	2			xxvii-		
FIEldu	e			xxx		
Chapt	er 1: Gei	neral intro	oduction	1-30		
1.1	Noble	metal nar	noparticles: An introductory discussion	2		
I	1.1.1	Synthesi	s approach of noble metal nanoparticles	3		
		1.1.1.1.	Silver nanoparticles	3		
		1.1.1.2	Palladium nanoparticles	4		
		1.1.1.3	Gold nanoparticles	5		
	117	Properti	es and applications of noble metal	7		
	1.1.4	nanopar	ticles			
		1.1.2.1	Properties of silver nanoparticles	7		

	A.	Optical properties	7
	B.	Toxic properties	8
	С	Electrical properties	9
1.1.2.2	App	lication of silver nanoparticles	10
	А.	Catalytic application	10
	B.	Sensing application	11
	C.	Photovoltaic applications	11
1.1.2.3	Prop	perties of palladium nanoparticles	12
	А	Electronic properties	12
	В	Catalytic properties	12
1.1.2.4	App	lications of palladium nanoparticles	13
	A.	Homogenous and heterogenous catalyst	13
	B.	Polymer membrane components	14
	C.	Sensors based on nanomaterials	14
	D.	SERS-active substrates	15
	E.	Nanosensitizers for fluorophore	15
1.1.2.5	Prop	perties of gold nanoparticles	16
	А.	Fluorescence quenching	16
	B.	Redox activity	16
	C.	Surface plasmon resonance (SPR)	17
1.1.2.6	App	lications of gold nanoparticles	17
	А.	Heavy metal ions detection	17
	B.	Colorimetric Sensing	18
	C.	Sensing based on fluorescence	18
	D.	Detection of small organic molecules	19

		1	r –				
			E.	Hydrogenation reaction	19		
			F.	Therapeutics	19		
			G.	Detection of Anions	20		
1.2	Synthe noble	esis and metal nar	appl 10pai	ication of multimetallic analogues of rticles	20		
	1.2.1	Bimetall	ic nar	noparticles	21		
	1.2.2	Trimeta	llic na	inoparticles	22		
1.3	Challe nanop	nges in th articles a	ne syr Ind th	nthesis and application of noble metal neir multimetallic analogues	23		
1.4	Origin	Origin of the present research programme					
1.5	Object	Objective of the present research investigation					
1.6	1.6 Work plan of the thesis						
Chapter 2: Trialkoxysilane-functionalized synthesis of noble metal monometallic, bimetallic, and trimetallic nanoparticles mediated non-enzymatic sensing of glucose by resonance Rayleigh scattering					31-52		
2.1	Introd	uction			31		
2.2	Experi	imental s	ectio	n	33		
	2.2.1	Material	s and	reagent	33		
	2.2.2	Microwave-assisted synthesis of trialkoxysilane2.2functionalized noble metal nanoparticles and their multimetallic analogues:			33		
		2.2.2.1	Mic med nan	rowave-assisted 3-APTMS and 3-GPTMS liated controlled synthesis of gold oparticles	33		

			Microwave-assisted 3-APTMS and 3-GPTMS	24
		2.2.2.2	mediated synthesis of silver nanoparticles	54
			Microwave-assisted 3-APTMS and	
		2.2.2.3	formaldehyde mediated controlled synthesis	34
			of palladium nanoparticles	
			Microwave-assisted 3-APTMS and 3-GPTMS	
		2.2.2.4	mediated controlled synthesis of Au-Ag	34
			bimetallic nanoparticles	
			Microwave-assisted 3-APTMS, 3-GPTMS, and	
		2.2.2.5	formaldehyde mediated controlled synthesis	35
			of Ag -Pd bimetallic nanoparticle	
			Microwave-assisted 3-APTMS, 3-GPTMS, and	
		2.2.2.6	formaldehyde mediated controlled synthesis	35
			of Au-Ag-Pd trimetallic nanoparticles	
			Microwave-assisted 3-APTMS, 3-GPTMS, and	
		2.2.2.7	formaldehyde mediated controlled synthesis	36
			of Au-Pd bimetallic nanoparticle	
	2.2.3	Instrum	entation	36
2.	3 Result	s and disc	cussion	36
		Function	al trialkoxysilane mediated synthesis of	
	2.3.1	AuNPs, A	AgNPs, and PdNPs and their multimetallic	36
		analogue	es	
		Synchro	nous fluorescence spectroscopy of functional	
	2 2 2	trialkoxy	vsilane -functionalized noble metal	45
	2. 3.2.	nanopar	ticles and multimetallic nanoparticles for non-	43
		enzymat	ic sensing of glucose	
		2 2 2 1	Non-enzymatic sensing of glucose by AuNPs	46
		2. J.2.1	in the presence and absence of nafion	τU

				Non-enzymatic sensing of glucose by using	
			2.3.2.2	Au-Pd bimetallic nanoparticles with different	47
				metal ratio in the presence of nafion	
				Non-enzymatic sensing of glucose by using Ag	40
			2.3.2.3	and Pd monometallic nanoparticles	49
				Non-enzymatic sensing of glucose by using	
			2.3.2.4	Ag-Pd, Au-Ag bimetallic and Au-Ag-Pd	51
				trimetallic nanoparticles	
2	2.4	Conclu	sions		52
Cha	apte	r 3:			53-73
Fu	nctio	onal tr	ialkoxysi	lane mediated controlled synthesis of	
flu	ores	cent g	old nan	oparticles and fluoremetric sensing of	
doj	pam	ine			
3	3.1	Introduction			
3	3.2	Experi	xperimental section		
		2.2.1	Material	s and reagent	55
		3.2.2	3-APTM	S and 3-GPTMS-mediated synthesis of Au-NPs	56
		3. 2.3	Quantun	n yield determination	56
		3. 2. 4	Sensing	of DA using AuNPs	57
		3.2.5	Detectio	n of DA in biological fluid	58
		3.2. 6.	Instrum	entation	58
3	3.3	Result	s and dise	cussion	58
			Microwa	ve assisted 3-APTMS and 3-GPTMS mediated	
		3.3.1	controlle	ed synthesis of fluorescent	58
			gold nan	oparticle	
		3.3.2	Characte	erization of synthesized fluorescent AuNPs	60

	3.3.3	Optical characteristics of the fluorescent AuNPs	63		
	3.3.4	DA sensing	66		
	3.3.5.	Real sample analysis	68		
	3.3.6	Selectivity and interference studies	68		
	3.3.7	Fluorescence Quenching mechanism	69		
	3.3.8	Fluorescence Life time decay analysis	71		
3.4	Conclu	isions	72		
Tria supp deco	lkoxysil ported p omposit	ane-functionalized synthesis of mesoporous balladium-nickel nanocatalyst for selective hydrazine ion and sensing	74-90		
4.1.	Introd	Introduction			
4.2	Experi	imental section	76		
	4.2.1	Materials and reagents	76		
	4.2.2	Instrumentation	77		
	4.2.3	Synthesis of AuNPs-1	77		
	4.2.4	Synthesis of AuNPs-2	78		
	4.2.5	Functional trialkoxysilane mediated synthetic incorporation of palladium nanoparticles within mesoporous silica and mesoporous silica nanoparticles	78		
	4.2.6	Synthesis of Pd-Ni NPs-1 and Pd-Ni NPs-2 bimetallic nanoparticle inserted MSNPs	79		

	4.2.7.	4.2.7. Hydrous hydrazine decomposition				
4.3.	Result	s and discussion	79			
	4.3.1	4.3.1 Microwave-assisted 3-APTMS and 3-GPTMS mediated controlled synthesis of gold nanoparticles				
	4.3.2 Synchronous fluorescence spectroscopy of Functional hydrous hydrazine sensing					
	4.3.3	Synthesis and characterization of Pd-Ni bimetallic nanocrystallite inserted mesoporous silica nanoparticles	84			
	4.3.4	Decomposition of hydrous hydrazine	88			
4.4.	Conclu	isions	90			
Synthe						
nanopa efficier degrad	etic in articles it and c lation	within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic and anionic dyes				
nanopa efficier degrad	etic in articles it and c ation Introdu	ncorporation of palladium-nickel bimetallic within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic and anionic dyes	91			
nanopa efficier degrad 5.1 5.2	etic ii articles at and c ation Introdu Experi	Accorporation of palladium-nickel bimetallic within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic and anionic dyes action	91 96			
nanopa efficier degrad 5.1 5.2	etic in articles at and c ation Introdu Experi 5.2.1	Accorporation of palladium-nickel bimetallic within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic and anionic dyes action mental Section Materials and reagent	91 96 96			
nanopa efficier degrad 5.1 5.2	articles articles at and c ation Introdu Experi 5.2.1 5.2.2	icorporation of palladium-nickel bimetallic within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic anionic dyes inction mental Section mental section mental section silica silica <t< td=""><td>91 96 96 96</td></t<>	91 96 96 96			
nanopa efficier degrad 5.1 5.2	etic ii articles at and c ation Introdu 5.2.1 5.2.2 5.2.3	icorporation of palladium-nickel bimetallic within mesoporous silica/silica nanoparticles as heaper catalyst for both cationic and anionic dyes inction	91 96 96 96 96			

		5.2.5	Measure	ment of cationic and anionic dyes Degradation	97
			5251	Pd-Ni inserted MSNPs mediated degradation	97
			5.2.5.1	of Congo red	<i>J1</i>
			5252	Pd-Ni inserted MSNPs mediated degradation	
			5.2.5.2.	of Rhodamine (Rh B)	97
	5.3	Result	s and disc	cussion	98
		5 3 1 Synthesia		s and characterization of Pd-Ni bimetallic	98
		5.5.1	nanocrys	stallite inserted MSNPs/MSPs	20
		5.3.2	Catalytic	degradation of both cationic and anionic dyes	103
		533	Mechani	sm of nanocatalyst supported mesoporous silica	109
		5.5.5	mediated	d dye degradation	107
		534	Degrade	d end product analysized by high resolution	111
		0.011	mass spe	ectroscopy of both cationic and anionic dyes	
		5.3.5	Catalyst	recyclability	115
		536	Catalytic	degradation of a real sample collected from the	115
		0.010	textile in	dustry	110
		5.3.7	Degrada	tion Congo red based effluent	116
		5.3.8	Degrada	tion Rh B based effluent	117
	6.4	Conclu	sion		117
Summary					119-122
Future Recommendations				123-124	
R	References				
L	List of Publications				175-176

List of Figures

Figure No.	Title	Page No.
Figure 2.1.	UV–Vis spectra of the nanoparticles (a)gold nanoparticles (b) silver nanoparticles (c) palladium nanoparticles (d) bimetallic (Au–Ag) nanoparticles (e) trimetallic (Au–Ag–Pd) nanoparticles.	37
Figure 2.2	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of gold nanoparticles.	38
Figure 2.3	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of silver nanoparticles.	38
Figure 2.4	(a) & (b) TEM images (c) SAED pattern of palladium nanoparticles.	39
Figure 2. 5	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of Au-Ag bimetallic nanoparticles.	41
Figure 2.6	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of Ag-Pd bimetallic nanoparticles.	42
Figure 2.7	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of Au-Pd bimetallic nanoparticles	42
Figure 2.8	(a) & (b) TEM images (c) SAED pattern and (d) particle size distribution graph of Au-Ag-Pd trimetallic nanoparticles.	43
Figure 2.9	XRD profile of XRD profile of (a) PdNPs, (b) AgNPs, (c) AuNPs	44
Figure 2.10	XRD profile of (a) trimetallic (Au-Ag-Pd) NPs, (b) bimetallic (Au-Ag) NPs, (c) bimetallic (Au-Pd) NPs, and (d) bimetallic (Ag-Pd) NPs.	45

Figure 2.11	(a) Synchronous fluorescence spectra at delta $\Delta\lambda=0$ nm, the spectra were recordedat various concentrations of glucose. (b) Synchronous fluorescence intensity of AuNPs in the presence of glucose and ascorbic acid. (c) Synchronous fluorescence spectra at delta $\Delta\lambda=0$ nm, the spectra were recorded at different concentrations of glucose withn nafion. (d) Synchronous fluorescence intensity of AuNPs with nafion in the presence of	47
	glucose andascorbic acid.	
Figure 2.12	Synchronous fluorescence spectra at delta $\Delta\lambda$ =0 nm; the spectra were recorded at various concentrations of glucose. (a) Synchronous fluorescence intensity of bimetallic (AuPd) NPs with an Au:Pd ratio of 20:80. (b) Synchronous fluorescence intensity of bimetallic (Au-Pd) NPs with an Au:Pd ratio of 80:20. (c) Synchronous fluorescence intensity of bimetallic (Au-Pd) NPs with an of ratio Au:Pd 80:20 with nafion. (d) Synchronous fluorescence intensity of bimetallic (Au-Pd) NPs with an Au:Pd ratio of 80:20 with nafion in the presence of glucose and ascorbic acid.	48
Figure 2.13	Linear plot (a) Concentration of glucose versus synchronous fluorescence spectroscopy (SFS) intensity in the presence of AuNPs with nafion. (b) The concentration of glucose versus SFS intensity in the presence of bimetallic Au-Pd nanoparticles with an Au:Pd ratio of 80:20 with Nafion.	49
Figure 2.14	Synchronous fluorescence spectra at delta $\Delta \lambda = 0$ nm, recorded at various concentrations of glucose. (a) AgNPs (b) Synchronous fluorescence intensity of AgNPs in the presence of glucose and	50

	ascorbic acid. (c) PdNPs, (d) Synchronous fluorescence intensity	
	of PdNPs in the presence of glucose and ascorbic acid.	
Figure 2.15	Synchronous fluorescence spectra at $\Delta \lambda = 0$ nm recorded at various concentration of glucose: (a) bimetallic (Ag-Pd) NPs, (b) bimetallic (Ag-Au) NPs, and (c) trimetallic (Au-AgPd) NPs.	51
Figure 3.1	(a) TEM image with the inset showing the fringes of the fluorescent AuNPs (b)particle size distribution histograms were obtained from the TEM image. (c) SAED pattern and (d) EDAX analysis of the fluorescent AuNPs.	60
Figure 3.2	(a) Full scan XPS spectrum (b) Au 4f spectra (c) C1s spectra (d) N1s spectra (e) O1s spectra (f) Si2p spectra of the fluorescent AuNPs.	61
Figure 3.3	(a) XRD pattern (b) zeta potential of the fluorescent AuNPs.	63
Figure 3.4	(a) UV-visible absorption spectrum (black line) and fluorescence emission spectrum (blue line). (b) Fluorescence emission spectra showing the different excitation wavelength (290- 420nm). (c) Image of CIE coordinates showing the blue color of fluorescent AuNPs. (d) Fluorescence emission intensity at various pH ranging from 1 to 11.	64
Figure 3.6	(a) Fluorescence emission intensity decreases with increasing DA concentration from0 to 96 μ M. (b) The linear calibration graph for the concentration ranges from 0 to 96 μ M with inset showing the concentration range from 0 to 0.6 μ M.	67

Figure 3.7 Figure 3.8	 (a) Shows the selectivity of various metal ions and other compounds. (b) interference study of various metal ions and biomolecules in the presence and presence of DA. Time resolved fluorescence decay of fluorescent AuNPs in the absence and presence of DA. 	69 71
Figure 4.1	TEM images and SAED patterns of AuNPs-1(a, b) and AuNPs-2 (d, e), respectively. The particle size distribution for AuNPs-1 and AuNPs-2 are shown in Figure 4.1c and Figure 4.1f, respectively.	81
Figure 4.2	(a) and (b) show the UV-VIS spectra of AuNPs-1 and AuNPs-2, respectively.	81
Figure 4.3	Synchronous fluorescence spectra at delta $\delta\lambda$ =0recorded in the absence and the presence of different concentrations of hydrous hydrazine with AuNPs-1 (a) and AuNPs-2(c). Synchronous fluorescence spectrum intensity versus hydrous hydrazine concentration for AuNPs-1 (b) and AuNPs-2 (d) respectively.	83
Figure 4.4	TEM images and SAED pattern of Pd-Ni inserted mesoporous silica nanoparticles made at Pd:Ni ratios of 1:1 (a, b and c), for Pd-Ni metal ratio of 1:5 (d, e and f) respectively.	86
Figure 4.5	(a) and (e) show the EDX results of bimetallic Pd-Ni inserted MSNPs at a 1:1 and a1:5 Pd-Ni metal ratio. (b-d) and (f-h) show the elemental mapping of Pd-Ni at a 1:1 and 1:5 metal ratio, respectively.	87
Figure 4.6	(a)Synchronous fluorescence spectra at delta $\Delta\lambda$ = 0 nm recorded before (ii) and after (iii) hydrous hydrazine decomposition; (i)	88

	shows the control. (b) N2 adsorption-desorption isotherms of	
	Pd-Ni metal ratio 1:1 inserted mesoporous silica nanoparticles.	
Figure 5.1.	TEM images of synthetically inserted noble metal nanoparticles within mesoporous silica nanoparticles: (a) Gold nanoparticles, (b) Au-Ag bimetallic nanoparticles, and (c) (Au-Ag-Pd) trimetallic nanoparticles.	100
Figure 5.2	The plot of absorbance versus wavelength for the reduction of methylene blue in the presence of NaBH4 and gold inserted MSNPs.	101
Figure 5.3	The plot of absorbance versus wavelength for the reduction of methylene blue in the presence of NaBH4 and Au-Ag bimetallic inserted MSNPs.	102
Figure 5.4	The plot of absorbance versus wavelength for the reduction of methylene blue in the presence of NaBH4 and (Au-Ag-Pd) trimetallic inserted MSNPs.	103
Figure 5.5	 Fig. 5.5. UV-vis absorption spectra of (a) PdNPs (b) Pd-Ni NPs-1 (c) Pd-Ni NPs-2inserted mesoporous silica particle (MSPs) of diameter 50 μm mediated degradation of 15 ppm Rh B. 	104
Figure 5.6	Fig. 5.6. UV-vis absorption spectra of (a), PdNPs (b), Pd-Ni NPs-1 (c)Pd-Ni NPs-2 inserted mesoporous silica particle (MSPs) of diameter 50µm mediated degradation of 55 ppm Congo red.	105
Figure 5.7	Fig. 5.7. Plot between the ln(C0/Ct) Vs time curve and linear fitting for (a) Rh B and (b) Congo red show for PdNPs, Pd-Ni NPs-1, and Pd-Ni NPs-2 inserted mesoporous particles supported nanocatalysts.	105

Figure 5.8	Fig. 5.8. UV-vis absorption spectra of Pd-Ni NPs-1 inserted mesoporous silica nanoparticles (MSNPs) diameter 200 nm mediated degradation of (a) Rh B and (b) Congo red. Plot between the ln(C0/Ct) Vs time curve and linear fitting for (c) Rh-B and (d) Congo red, show for Pd-Ni NPs-1, inserted mesoporous silica nanoparticles (MSNPs) diameter 200 nm supported nanocatalysts.	106
Figure 5.9	Fig. 5.9. (a) N2 adsorption-desorption isotherms of PdNPs (i) and Pd-Ni NPs-1 (ii) inserted mesoporous silica particle; (b) Pore volume distribution curve of PdNPs and Pd-Ni NPs-1 inserted mesoporous silica particle.	109
Figure 5.11	HR-MS spectrum of Congo red(a) before and (b) after degradation.	112
Figure 5.12	Fig. 5.12. HR-MS spectrum of Rh B (a) before and (b) after degradation.	113
Figure 5.13	Fig. 5.13. (a), (b) shows the UV-Vis absorption spectra of the real textile sample in the absenceand the presence of Pd-Ni NPs-1 inserted MSPs, for Congo red and for Rh B. The samples were collected from the washout of stencil used in fabric printing using dye embedded with binderand thinner.	116

Scheme No.	Title	Page No.
Scheme 3.1	The schematic illustration of fluorescence emission intensity quenching of fluorescent AuNPs with DA and as well as the diagram depicts the reaction mechanism of DA to DQ via electron transfer from DA to fluorescent AuNPs and the donation of those electrons to DQ, which results in fluorescence quenching.	70
Scheme 5.1	Mechanism of Rh B degradation	114
Scheme 5.2	Mechanism of CR degradation	114

List of Table

Table No.	Title	Page No.
Table 3.1	Fluorescence quantum yield determination of functional trialkoxysilane mediated synthesized fluorescent AuNPs with reference to quinine Sulphate at excitation wavelength 360 nm from the equation (1).	57
Table 3.2	Comparison performance of various reported methods for DA detection.	67
Table 3.3	Detection of DA in spiked CSF.	68
Table 4.1	Show the data on specific surface area, pore volume and average pore diameter of Pd-Ni inserted mesoporous support.	88
Table 5.1	Summary of the apparent rate constants for the reduction of CR and Rh B in the presence of nanocatalyst inserted mesoporous silica and mesoporous silica nanoparticles.	107
Table 5.2	Pore parameter of nanocatalyst inserted mesoporous silica of size $50\mu m$.	109