
Chapter 4

Leveraging Contextual

Information for Sequential

Labeling

4.1 Introduction

A ‘word’ in a sentence carries linguistic information such as lexical categories (noun, verb,

etc.), and grammatical features such as gender, number, person, etc. The fine-grained

POS categories provide a linguistic clue (syntactic information) to decide the appropriate

role of a word within a sentence or phrase. Apart from that, semantic information is also

encoded within a word or sentence. POS categories can be used to disambiguate the mul-

tiple answers provided by a morphological analyzer. The morphological analyzer captures

semantic information in conventional machine translation systems. Machine translation

system translates every word from a source language to a target language. Yin et al. [261]

observed that the Proper Noun POS category words had not been translated correctly

in European languages. They tried to overcome this problem by jointly modeling neural

machine translation and POS tagging using Multi-Task learning. A piece of syntactic

information obtained from the POS data leads to better encoding of a source-sentence

structure during the generation from the machine translation system [173].
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Earlier work on POS tagger for canonical Hindi text achieved considerable results of about

97.10% on Universal Dependency dataset [189], which belongs to a single domain. The per-

formance reduces radically after deploying this existing trained model to different domain-

specific data or out-of-domain data. Domain-specific data such as Tourism and Disease

has its own distributions and has a minimal amount of annotated dataset, considered as

low resources, which also causes an Out-of-vocabulary (OOV) words issue.

OOV is a major problem in low resources text processing, faced while training a model

on one domain of a language and trying it to another domain of the same language. This

problem can be partly countered by incorporating character level information into the

model.

4.2 Contributions of Chapter

The present chapter addresses the question of how to leverage the attention mechanism

along with the handcrafted features to improve the performance of sequence labeling for

low resource languages. Here, we explore integrating attention mechanisms into the deep

learning model for low resource languages. For this, we train a monotonic chunk-wise

attention-based deep learning model to leverage the surface-level relationships among sen-

tence’s tokens, enhancing the performance of sequence labeling tasks in domain adapta-

tion settings. Later on, this model was refined through contrastive learning and results

were obtained for single and multi-source domain adaptation. Compared to single-source

adaptation, significant improvements have been observed after using multi-source domain

adaptation. Since it is multi-source domain adaptation experiments based on the deep

learning model, the effect of layer’s freezing was observed. The multi-source domain adap-

tation provides competitive results over the baselines. However, some datasets, such as the

Universal Dependency treebank, have morphological features that can also help to capture

longer surface-level relationships hence those features (some common features have been

used that are easily available in the different language UD data that are Tense, Case,

Gender, Number, Person and Lemma) are ensembled into the model. We ensemble the
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features into the different layers because the model follows layered architecture, where the

disambiguator layer provides the highest scores in terms of accuracy and F1-score.

4.3 Methodology

I have designed a novel deep learning based architecture, named as Monotonic Chunk-wise

attention with CNN-GRU-Softmax (MCCGS). To design the MCCGS model architecture,

Ma and Hovy [140] architecture has been followed, in which a character and word informa-

tion has fused into the deep learning-based model before the core component of the model,

LSTM or GRU. This model has been extended by the attention mechanism in the proposed

deep learning architecture. Recently, attention mechanisms have been gaining success in

speech, image and textual processing. For the textual processing in the neural machine

translation system, the attention precisely aligns the source and target words in the pair.

This alignment considers the contextual information of input with their non-continuous

relationships and assigns weights to themselves for the next word. Here, we leveraged

the attention’s advantage, i.e., contextual information and non-continuous relationship, in

an antagonistic measure for POS tagging. Input encoder, contextual encoder, and dis-

ambiguator are the essential core components of the proposed MCCGS architecture, as

illustrated in Figure 4.1.

4.3.1 Input Encoder

Let D = {
(
xj , yj

)
|1 ≤ j ≤ N} is a labeled sentence. Here, D is a single training sentence

which belongs to the training data X ∈ {D1, D2, . . . , Dm}. The xj denotes the word and

yj denotes the corresponding POS label of sentence D. The POS label yj belongs to the

q labels, which are represented as yj ∈ {y1, y2, . . . , yq}.

In this component, MCCGS takes the given input sentence D to obtain the vector repre-

sentation of each word xj in terms of learnable word level embedding and character level

embedding. The learnable word embedding captures syntax and semantic information of
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Figure 4.1: Overview of the MCCGS architecture with its components

the word which is enhanced through the morphological information from character level

embedding.

The learnable word embedding has been obtained from the one-hot vector representation

at the size of a unique word vocabulary. All the sentences in X should have length N . If

the length of D is bigger than N , the antecedent word will be removed and padding will

be applied if the attribute is smaller than N .

This representation and random vector Wx of embedding size, which is trainable, exhibits

latent vectors. Such exhibited latent vectors for all words x1:N in a sentence D, attained

after passing to a fully connected layer with deactivated bias have been considered word

embedding v1:N .
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v1:N = Wx.x
1:N (4.1)

For instance, the sentence (Figure 4.4) “Tribal communities said they are seeking new

financing” considered as input is a sequence of words. Each unique word represents a

number in word encoding, and the number becomes a randomly generated real-valued

vector. These randomly generated vectors update themselves over the model learning.

For obtaining the character level word embedding, let a word xj have C characters, where

C = {c1, c2, . . . , ci|1 ≤ i ≤ k}. The character lookup dictionary maps character identity

with its one-hot vector representation. For each character, ci in xj is denoted by a one-hot

vector representation, which has an equal size of k, using the padding operation. The

padding operation appends the special symbol < pad > at the end of the word that

padding has applied on the same level at the sentence. If the length of xj is greater than

k, initial characters ci:k have been considered. Now convolution, the first operation of

CNN, has been applied with filter F . Let z be the number of filters used with f kernel

sizes. The filters move over the region of xj and generate a set of features C, referred to

as feature maps which are {r1, r2, . . . , rl} ∈ C. The l is calculated on the basis of kernel

size and word length, l = k − f + 1.

ri = ϕ(F.ci:i+k−1 + bc) (4.2)

Here, F, bc and ϕ are filters, bias and non-linear functions, respectively. A piece of relevant

information from all features has leveraged maximum pooling, another building block of

a CNN.

Cmax = max{r1, r2, . . . , rl} (4.3)

C = {Cmax1 , Cmax2 . . . , Cmaxz} (4.4)
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Figure 4.2: Character level CNN model architecture to generate word vector

The generated univariant vectors from all features have been concatenated, C and have

passed to three stacked fully connected layers. The resultant vector, pj from the penulti-

mate layer has character level information for the word.

pj = ϕ(WC .C + bC) (4.5)

The WC and bC are learning parameters and ϕ is a ReLU non-linear function. This

character-level word vector generation process has been illustrated in Figure 4.2. Here,

‘thing’ is considered as an input word. A padding operation (< pad >) has been performed,

as the length of the input word is smaller than the desired. All the unique characters of

a language dataset were mapped with their index positions. These indexes are character

identities that are further used in character lookup dictionary to emit a one-hot vector

on which CNN operations have been performed and generate character level embeddings.

For example, convolution operation generates multiple n-grams, such as thi, hin, ing, ngs,

gs< pad > based on the filter size (say 3) that is used in feature maps. Over these

generated filters, the pooling operation extracts relevant information passed through the

fully connected layer to generate a final vector. This process is iterated over each word

which generates p1:N .
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The word-level embeddings v1:N and character-level embeddings p1:N have been concate-

nated component-wise to generate the word vector representations w1:N . This generated

word vector representation leverages morphological, syntactic and semantic information

at the word and sentence level.

w1:N = [p1:N ; v1:N ] (4.6)

4.3.2 Contextual Encoder

The Context Encoder works in two steps to generate its output. The first step assumes

an identical magnitude of words of a sentence to capture sequential information by GRU,

a variant of RNN. It allows holding information of a longer timestamp. Although natural

language sentences are longer and have dependencies among words, Bi-GRU has been

considered.

The Bi-GRU takes the word vector and produces a hidden vector for each direction. The

hidden vector hi−1 with the word vector wi decides which information will be forwarded

for processing of the succeeding timestamp with a degree of relevance. In each of the times-

tamps, the forward and backward process generates hidden states, i.e.,
−→
h 1:N and

←−
h 1:N .

Forwards
−→
h 1:N and backwards

←−
h 1:N hidden vectors have been concatenated according to

component-wise, that generates a new hidden vector h1:N as resultant.

−→
h 1:N =

−−−→
GRU(w1, w2, . . . , wN ) (4.7)

←−
h 1:N =

←−−−
GRU(w1, w2, . . . , wN ) (4.8)

h1:N = [
−→
h 1:N ;

←−
h 1:N ] (4.9)
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The second step of the contextual encoder is an attention mechanism. Attention mech-

anism, which was first introduced for text-based applications [14], focuses on the given

input’s cogent part to yield a better decision. Numerous tasks based on deep learning,

such as image recognition [271], machine translation [271, 242, 63, 14, 103, 39] and text

classification [229, 234], have significantly improved their performance after the atten-

tion mechanism is deployed. The monotonic chunk-wise attention mechanism explicitly

leverages the flexible alignment between input and output, where output is labeled corre-

sponding to the task. The attention is computed over the chunked input sequences.

Let sj−1 is disambiguator hidden state at j − 1, and h1:N = {h1, h2, . . . , hN} is input

hidden vectors. The energy eji calculated as follows:

ej,i = MonotonicEnergy(sj−1, hi) (4.10)

Where,

MonotonicEnergy(sj−1, hi) = g · v
T

||v||
tanh(Wss

j−1 +Whh
i + b) + r (4.11)

Ws, Wh, r, b, v and g are trainable parameters. The energy scalers for timestamp tj of

the output are obtained from i = tj−1, tj−1+1, tj−1+2, . . . , N . It is passed to the logistic

sigmoid function to produce the selection probabilities pj,i.

pj,i = σ(ej,i + ξ), ξ ∼ N(0, 1) (4.12)

Here, logistic sigmoid with the unit-variance Gaussian noise ξ, constraints selection prob-

abilities pj,i to binary values. The context cj is generated by the hidden states hi, which

are selected on the pj,i. The fixed window length w for hidden states is referred to as a

chunk here. Chunk energy is calculated in the same way as monotonic energy but skipping

the length normalization of v, g and r. The soft attention over preceding w on hidden

states and tj have been applied for cj .
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v = tj − w + 1 (4.13)

uj,k = ChunkEnergy(sj−1, hk); k ∈ {v, v + 1, v + 2, . . . , tj} (4.14)

cj =

tj∑
k=v

Softmax(uj,k) · hk (4.15)

4.3.3 Disambiguator

Most of the earlier work on sequence labeling depends on long short-term memory and

conditional random fields to disambiguate the structured inferences [169]. The hidden state

of each timestamp with the associated generated context vector is used to disambiguate

the label dependencies using the bi-directional GRU.

−→
h j =

−−−→
GRU(sj−1, cj) (4.16)

←−
h j =

←−−−
GRU(sj−1, cj) (4.17)

hj = [
−→
h j ;
←−
h j ] (4.18)

The hj is passed to a multi-layer neural network before the softmax layer. This penultimate

layer predicts the label sequence after scaling and normalizing the output of a multi-layer

neural network.

oj = hj .Wh + bh (4.19)

P (ŷi|x; θ) = exp(oj)∑l
i=1 exp(o

j)
(4.20)

Here, Wh and bh are the learning parameters. The training objective is to minimize the

cross-entropy loss (J) along with the l2 normalization.
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Jθ = −
1

m

m∑
d=1

q∑
l=1

yl log(ŷl) + (1− yl) log(1− ŷl) +
λ

2
||θ||2 (4.21)

For each sentence d, the model predicts q POS labels in a real-valued vector which is

converted into a one-hot vector used to calculate the average difference with the valid POS

labels. It is accommodated by cross-entropy since the probability of each label depends

on the probability of another label.

4.4 Inclusion of Morphological Features

Deep learning models automatically generate their features according to the given training

data and do not depend on handcrafted features as traditional statistical models do. Out

of handcrafted features, symbolic features are very common such as lexicon features and

affixes, etc. Recent studies have empirically proved that the use of these handcrafted

external features improves the model performance [187, 188, 214, 91]. Plank and Klerke

[188] have shown the improvement for POS tagging by incorporating the lexicon features

at input encoder in cross-lingual settings. However, the deep learning model supports

layered architecture, and each layer captures its features. Hence, we have incorporated

morphological features at all three components, i.e., at Input Encoder, Contextual Encoder

and Disambiguator of the proposed MCCGS model.

Let the F feature set be available with the training data, which includes f1, f2, f3, . . . , fk

morphological features. Each feature in a feature set is represented by a vector (
−→
fi ) to

concatenate with each other.

F =
−→
f1 ⊕

−→
f2 ⊕

−→
f3 ⊕ . . .

−→
fk (4.22)

The inclusion of morphological features into the MCCGS model is described in the fol-

lowing way. Here, we have described only changes by which MCCGS model architecture

extends after performing the feature inclusion since the remaining components of the MC-

CGS model are the same.
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1. The inclusion of this feature set at input encoder of the MCCGS model is expressed

by:

w1:N = [p1:N ; v1:N ]⊕F1:N (4.23)

Here, w1:N is the resultant word vector which is substituted in the eq. 4.6 of the

MCCGS model.

2. While integrating this morphological feature set at the contextual encoder, the final

output representation through Bi-GRU (mentioned in eq. 4.9) is changed with the

new representation by:

h1:N = [
−→
h 1:N ;

←−
h 1:N ]⊕F1:N (4.24)

3. While including the morphological features at the disambiguator component, the

input for the multi-layer neural network has changed. The new input for this layer

(eq. 4.18) is represented by:

hj = [
−→
h j ;
←−
h j ]⊕F j (4.25)

Here, the feature set of jth word, F j is concatenated with the final hidden represen-

tation of the Bi-GRU of the disambiguator layer.

Figure 4.3 depicts the model architecture encompassing the inclusion of morphological fea-

tures into the Input-Encoder, Contextual Encoder, and Disambiguator components. The

inclusion of morphological features is mutually exclusive; therefore, inclusion is performed

at a single component. The schema is an extension of Figure 4.1 concerns a feature set

F that consists of the feature vector
−→
f1 ,
−→
f2 ,
−→
f3 . . .

−→
fk . The feature vectors are concate-

nated before integrating into each of the components. The output of each concatenator,

pink, yellow, and blue, represents Input-Encoder, Contextual Encoder, and Disambiguator

components, respectively.
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Figure 4.3: MCCGS model architecture with symbolic feature inclusion

4.5 Contrastive Training Component

One of the earlier attempts of using contrastive training in NLP applications (text clas-

sification) is reported by Miyato et al. [162]. They encoded perturbation into the word

embedding to generate a contrastive example. More robustness in the classifier was ob-

tained after adding perturbations (η) to the input examples, which are closer to actual

examples. These perturbed examples have the same label as the actual example to which

they are close. However, it may be misclassified by the current classifier, which increases

the loss, so the current model loss is modified by:

η = argmax
η′ :∥η′∥2≤δ

L(θ̂;S + η
′
, Y ) (4.26)
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Here, the normalized perturbation δ allows to construct the contrastive example for each

training step:

Sadv = S + η (4.27)

The new loss function (L̃) of the contrastive part is based on the classifier having a mixture

of actual examples L(θ;S, Y ) and perturbed examples’ loss L(θ;Sadv, Y ), where individual

loss is controlled by the weighting factor γ with 0.5.

L̃ = γL(θ;S, Y ) + (1− γ)L(θ;Sadv, Y ) (4.28)

The pseudo-code of the CMCCGS learning is described in Algorithm 4.1.

Algorithm 4.1 Contrastive Monotonic Chunk-wise attention with CNN-GRU-Softmax
(CMCCGS) for POS tagging

Require: N : number of training examples, i.e., sentences
Require: w: chunk size
Require: ϵ: emission score
1: while s = 1,2,. . . ,N do
2: Obtain word vectors xi:n by Eq. (4.1)
3: for i = 1 to n do
4: Obtain character level word vector vi by Eq. (4.5)
5: end for
6: Obtain word embedding by concatenation according to Eq. (4.6)
7: Obtain hidden states h1:m on word embedding by Eq. (4.9)
8: for i = 1 to n do
9: for j = 1 to n do

10: Calculate chunk energy uj,i with w and ϵ by Eq. (4.14)
11: end for
12: Obtain contextual attention vector cj by Eq. (4.15)
13: Calculate the hidden vector and probability score to each label by Eq. (4.18)

and Eq. (4.20)
14: end for
15: Generate contrastive examples by Eq. (4.27)
16: Calculate loss and label predictions according to Eq. (4.28)
17: i← i+ 1
18: end while
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4.6 Experiment-I: Feature Integration in MCCGS

With conventional machine learning techniques for POS tagging, there was a heavy reliance

on feature engineering such as prefixes, suffixes, contextual words, and language-specific

features, i.e., capitalization and creating several handcrafted features. For example, Con-

ditional Random Fields (CRF) and Maximum Entropy (ME) work on symbolic features

that include lexicon, affixes and other morphological information to improve POS tagging

performance. The availability of lexicons and basic morphological information is inge-

nious, while dependency information is unfortunately rarely available due to the profound

linguistic knowledge required for annotation. If available, these features are directly in-

corporated into the machine learning algorithms. However, deep learning includes these

features as dense representations in the model. Dense feature representation is an adequate

representation that learns itself from the provided value of the feature.

Figure 4.4: Impact of morphological features and longer contextual dependencies

Even integrating these dense features in deep learning models cannot effectively address

the long-range non-continuous relation dependencies. The non-continuous dependency

defined by word depends on its semantic information and depends upon the information of

its contextual neighbor; hence, it plays a significant role in POS tagging. This phenomenon

has been explained in Figure 4.4, where the word “communities” is dependent upon the

word “it”, as a result it is tagged with the “NNP” (singular proper noun). If the non-

continuous dependency is ignored here, the tag could be “NNPS” (plural proper noun)

due to suffix information of ‘-s’ or ‘-es’. Similarly, the morphological information provides
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clues about the category of a word viz. the word “communities” consists of the “Nom”

(nominative) case and person information “Person” as 3rd. This information is usually

exhibited for the noun categories.

Previously proposed approaches are based on either attention-based contextual informa-

tion [131, 220, 166] or handcrafted features (existing linguistic knowledge) [187, 188, 34]

for non-continuous relation modeling but have not been brought together as needed, which

improves the POS tagging performance. Apart from this, there is a less systematic study

on feature inclusion regarding at which layer such integration improves the performance

of POS tagging, as deep learning follows a layered approach.

Liu et al. [134] used all characters of sentences along with word boundaries for generating

word embedding through Bi-LSTM, which was further employed with highway network

and Bi-LSTM in a parallel fashion to decode label dependencies by CRF. Zhang et al.

[267] proposed a multi-channel model based on the Bi-LSTM for obtaining the word and

label dependencies and their interaction simultaneously by using the label of the previous

word as a context for the current word in the softmax decoder.

The majority of earlier proposed work on neural POS tagging assumed that handcrafted

features were antiquated for deep learning-based models and uniquely depended on an end

to end training. However, Faruqui et al. [75] in their earlier work combine semantic sym-

bolic features with word embedding. Similarly, Sagot and Alonso [208] use morphological

lexicons as additional input, collected from Apertium and Alexina lexicons (language-

specific) as n-hot features in the Plank et al. [189] model, which uses Bi-LSTM for input

encoder and CRF for label decoder.

The impact on the deep learning model by using handcrafted features provides a signifi-

cant gain in performance. Recently, the research communities have been trying to make a

robust model by improving self feature learning through the attention mechanism on the

assumption of learning of the contextual features for POS tagging. The attention mech-

anism helps to capture the non-continuous relationship among the words of a sentence.

Mundotiya et al. [166] have proposed self-attention and monotonic chunk-wise attention-

based model and experimented on the Hindi dataset to handle non-continuous relationships
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within a sentence and a separate window by using a respective attention mechanism. Sim-

ilarly, Wei et al. [247] proposed a new model based on the attention mechanism. Here,

standard additive self-attention and a position-aware self-attention mechanism have been

exploited to implicitly encode positional information at discrete and variable-length of an

input sequence, respectively, to provide complementary context information based on Bi-

LSTM as global sequence encoder. Shao et al. [220] used self-attention at the word and

sentence level to obtain the contextual information on the same global sequence encoder,

which was further used for disambiguating the labels of words by the semi-CRF approach.

There is a less systematic study on improving the performance of POS tagging by hand-

crafted feature inclusion in deep learning-based models. At what level is the feature

integration in those models should be incorporated, as it follows a layered approach is

a question in itself. So in this experiment, morphological features are incorporated in a

novel neural architecture, Monotonic Chunk-wise attention with CNN-GRU-SOFTMAX

(MCCGS) (described in the model section 4.3). Later on, a dense representation of the

handcrafted features (morphological features) is included rotation-wise in all three com-

ponents of the MCCGS model (described in the extended model section 4.4), which is

empirically evaluated further.

4.6.1 Dataset Description

The proposed model architecture is validated on an annotated dataset of 21 languages

that are available in Universal Dependency (UD) Treebank1 (version 2.7). The pre-defined

splitting of the datasets in the training and development is adopted to train and test our

model. The statistics of the training and development datasets are mentioned in Table 5.1.

In this experiment, a sentence with its universal part of speech (UPOS) tags and additional

features are considered. These additional features are the Tense, Case, Gender, Number,

Person and Lemma obtained from the treebank. These additional features are considered

as input to make an accurate prediction.

1https://universaldependencies.org/
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Table 4.1: The languages with their statistics, obtained from the UD treebank. Some
languages have more than one treebank; hence the related treebank information is men-

tioned after - in the language name.

Language Training Size Development Size

Hungarian (hu) 910 441
Greek (el) 1662 403
Swedish-LinES (sv) 3176 1032
Danish (da) 4383 564
Hebrew (he) 5421 484
Croatian (hr) 6914 960
Bulgarian (bg) 8907 1115
Portuguese-GSD (pt) 9664 1210
Dutch-Alpino (nl) 12264 718
English-EWT (en) 12543 2002
Italian-IDST (it) 13121 564
Hindi-HDTB (hi) 13304 1659
German-GSD (de) 13814 799
Spanish-GSD (es) 14187 1400
French-GSD (fr) 14449 1476
Finnish-FTB (fi) 14981 1875
Norwegian-Bokmal (no) 15696 2409
Polish-PDB (pl) 17722 2215
Romanian-Nonstandard (ro) 24122 1052
Persian-PerDT (fa) 26196 1456
Czech-PDT (cs) 68495 9270

4.6.2 Experimental Settings

The proposed model architecture has three core components which are Input Encoder,

Contextual Encoder and Disambiguator. The Input Encoder holds a token vector with

word and character-level information in a latent vector of 100 and 16 dimensions, respec-

tively. The word latent vector is randomly initialized through uniform distribution of

[−0.05, 0.05] [115], whereas the character level vector is initialized as a one-hot vector of

dimension 30. The CNN has been applied with two convolution layers of size 64, 124 and

a fixed window size of 3 as the kernel, followed by maximum pooling. The number of units

in the multilayer feed-forward layer is equal to the size of the convolution layer, which is

applied over the one-hot vector to obtain the token vector at character-level [211]. The Bi-

GRU has 128 hidden vectors that capture contextual sentence information. The monotonic

chunk-wise attention carries dependencies among the adjacent words by the chunk size of
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10 and emission probability of 0.6. The label side dependencies are captured by Bi-GRU

with 128 hidden units in the disambiguator component. We have used an advanced version

of the gradient descent learning algorithm with backpropagation through time (BPTT) to

optimize the weight for training the model. The goal of BPTT is to update the weights

of a neural network to minimize the error compared to some expected output. It is a

supervised learning algorithm that allows the network to be corrected concerning already

given labels. The Adam optimizer (advanced version of the gradient descent) has been

employed to train the model with a 0.01 initial learning rate and 0.007 decay rate. Here,

update in learning rate is defined with ηt = η0
1+ρt

, where t is referred to the number of

completed epochs, η0 and ρ are the initial learning rate and decay rate, respectively. The

batch size and epochs are fixed during the training, i.e., 32 and 40, respectively. The early

stoppage [32] with the patience value of 3 is applied to the validation performance to avoid

model overfitting. As an additional regularizer, dropout with a value of 0.5 probability,

has also been used.

4.6.3 Results and Analysis

To compare the performance of our proposed model, Accuracy, Precision, Recall, F1-score

and Matthews correlation coefficient (MCC) metrics have been used.

Table 4.2 presents tagging accuracy for the 21 individual languages on the development

data after applying the MCCGS model. In this table, columns represent Precision, Re-

call, F1, MCC and Accuracy of each of the corresponding 21 languages. To compare

the reported results with state-of-the-art techniques such as, without additional features

incorporation, Position-aware Self Attention (PSA) mechanism [247] and with incorporat-

ing additional features, Type constraints [235], Retrofitting [75] and Distant Supervision

from Disparate Sources [187]. Inclusion of the lexical information by exploiting Type

Constraints (TCw) and Retrofitting (Retro) off-the-shelf embeddings is evaluated in the

neural tagging literature. Distant Supervision from Disparate Sources (DsDs) [187] is the

alternative way of using lexical information. The replication of feature inclusion results

is presented in the three columns towards the right side of Table 4.2. For comparison,

the tagging accuracy values from Plank and Klerke [188] have been reused. However, the
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Table 4.2: Obtained results using the MCCGS model

Lang Precision Recall F1 MCC Acc TCw Retro DsDs PSA

hu 83.8 79.59 80.02 75.97 79.59 77.5 75.5 76.2 86.20
nl 93.68 91.44 91.64 91.95 91.44 89.2 86.6 89.6 91.85
pt 91.35 89.95 90.20 89.53 89.95 92.2 88.6 93.1 91.97
es 90.73 89.66 88.99 89.02 89.66 88.9 88.9 91.7 64.58
hi 94.61 94.57 94.47 94.11 94.57 63.9 63.0 66.2 94.85
it 88.57 89.44 88.73 88.26 89.44 91.8 90.0 93.7 88.88
da 91.00 90.55 90.38 90.08 90.55 89.3 88.2 90.1 89.08
fi 93.89 93.13 93.14 92.86 93.13 81.4 79.2 83.1 92.43
el 86.68 87.00 85.77 85.47 87.00 86.1 79.3 79.2 89.55
bg 89.20 90.04 88.93 89.42 90.04 89.9 87.1 91.0 92.46
cs 97.23 95.53 95.75 95.84 95.53 87.5 84.9 87.4 95.14
he 85.12 82.53 82.75 84.67 82.53 75.9 71.7 76.8 88.74
no 96.12 95.55 95.40 93.88 95.55 91.1 88.8 91.4 94.66
fa 95.53 94.90 95.11 94.88 94.90 43.8 44.1 43.6 95.87
sv 92.53 92.22 92.06 92.24 92.22 89.2 87.0 89.8 93.09
en 94.58 94.74 94.36 88.51 94.74 87.6 82.5 87.3 94.02
ro 88.74 86.07 85.47 85.71 86.07 84.2 80.2 86.0 88.02
hr 91.33 89.89 89.60 88.98 89.89 85.2 83.0 85.9 90.50
fr 93.75 93.20 92.52 92.61 93.20 90.0 89.9 91.3 89.39
de 88.41 87.20 86.97 85.43 87.20 87.1 84.7 87.5 90.20
pl 93.87 92.77 92.01 92.29 92.77 84.9 83.9 85.4 92.35

PSA results have been obtained from the entire model training from scratch. In 7 out of

21 languages, the MCCGS model performs better. MCCGS model is better performing

model than the retrofitting model in all 21 languages. It also gives better accuracy than

the TCw except for two languages (Portuguese and Italian). DsDs shows better accuracy

than all three models (MCCGS, TCw, and Retro) for five languages, Portuguese, Spanish,

Italian, Bulgarian and German, which is surprising. On the other hand, the PSA model

reports the highest accuracy on twelve languages.

4.6.3.1 Feature inclusion

UD treebank has richness in the lexical and grammatical features of the words since it

provides the facility to add language-specific features. Here, we have used those prevalent

features which are available in the experimental dataset for all languages, such as Gender,

Number, Person, Case, Lemma and Tense. All those features have been concatenated
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before inclusion at the different components of the MCCGS model. The remaining training

settings are the same, i.e., as mentioned in the parameter settings for the MCCGS model.

The reported results in Table 4.3 show that feature inclusion at disambiguator (MCCGS-

D) improves the accuracy compared to the rest of the MCCGS for most of the languages.

English is the only language that decreases the model performance by 1% after utilizing

such features. Thus, Czech is the only language on which feature inclusion at contextual

encoder (MCCGS-CE) improves the accuracy by 0.59%. Feature inclusion at input encoder

(MCCGS-IE) improves the accuracy of Dutch, Portuguese, Spanish, Danish, French and

German languages by 1.87%, 4.64%, 1.78%, 0.92%, 1.52% and 3.14%, respectively. There

are four languages (Spanish, Italian, Bulgarian and German) on which the DsDs model

performs better compared to the MCCGS model, as interpreted by Table 4.2. However,

MCCGS-IE further improves accuracy for Bulgarian and German languages mentioned in

Table 4.3.

The proposed model, MCCGS and its variants have been compared with the TCw, Retro,

DsDs and PSA model to show the significance of the results by single factor ANalysis

Of VAriance (ANOVA) test. The MCCGS, MCCGS-IE, MCCGS-CE and MCCGS-D

have obtained the p-values, 0.003, 0.001, 0.002 and 0.000, respectively. These p-values

are comparatively lower than the significance value (0.05), which shows stronger evidence

against the earlier hypothesis made by state-of-the-art models. This conclusion supports

our obtained results, mentioned in Table 4.2 and Table 4.3.

The mean accuracy of the model compared to their variants and some earlier state-of-

the-art models show that MCCGS-D provides the highest score, 92.3%. The proposed

MCCGS model provides a mean accuracy of 90.4%, further improved by feature inclusion.

The state-of-the-art models provide 83.6%, 81.3%, 84.1% and 90.18% mean accuracy by

TCw, Retro, DsDs and PSA, respectively. The comparison of the mean accuracy among

those models is mentioned in Figure 4.5.
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Figure 4.5: Comparison of mean accuracy scores

Table 4.4: Effect of the chunk size on the model performance in terms of mean accuracy

Chunk Size 1 2 3 4 5 6 7 8 9 10

MCCGS 86.13 86.78 87.51 88.24 88.67 89.12 89.94 90.00 90.19 90.40
MCCGS-IE 86.94 87.83 88.67 89.15 89.85 89.65 89.98 90.51 91.39 91.40
MCCGS-CE 85.03 86.14 87.09 88.40 88.93 89.95 89.47 90.40 90.61 90.90
MCCGS-D 87.67 87.45 88.10 88.95 89.31 90.14 90.87 91.32 91.98 92.30

4.6.3.2 Effect of chunk size

One of the hyper-parameters of the MCCGS model has a chunk size w, mainly used to

capture the word information from adjacent words. It allows managing non-continuous

relations among the words of a selected chunk. For this claim, we have performed extensive

experiments with different chunk sizes for each model. Table 4.4 shows the acquired mean

accuracy results of the MCCGS with its variants, MCCGS-IE, MCCGS-CE, MCCGS-D,

as the chunk size of 1 to 10. It is empirical proof that chunk size increases will increase

the mean accuracy for all the models. This incremental rate has fallen after the window

size of 9 due to obtaining consistent accuracy.
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4.6.3.3 Experiments on Indo-Aryan languages

To show the effectiveness of our proposed model for low resource languages, the languages

which belong to Indo-Aryan languages in the UD treebank has been exploited for the

experiments. In this, Marathi (mr) (UFAL treebank), Tamil (ta) (TTB treebank), Telugu

(te) (MTG treebank) and Sanskrit (sa) (Vedic treebank) languages with their splits, i.e.

373, 400, 1051, and 2524 sentences of respective languages for the training set and 46, 80,

131 and 1473 sentences of respective languages for the development set have evaluated.

Similarly, another treebank based on Paninian Grammar Framework, Hindi-Urdu multi-

representational treebank2 (HUTB), has been evaluated. From this treebank, the Hindi

and Urdu model trained on 16997, 5648 sentences and tested on 1910, 635 sentences,

respectively [24, 23]. The Hindi treebank dataset belongs to the News and Articles domain.

The MCCGS-D model performs better compared to the rest of the model for all these Indo-

Aryan languages, as shown in Table 4.5. However, significant improvements in accuracy

have been shown for the Marathi and Tamil languages which are 8.55 and 7.7 for the

respective languages, even with minimal training data. This significant improvement also

exists for the Precision, Recall, F1 and MCC scores as well. For the Sanskrit language,

this improvement is minimal, 1.49 compared to Marathi, Tamil and Telugu. Similarly, the

MCCGS-CE model performs adequately on Urdu language of the HUTB dataset compared

to other models. Since Hindi from the HUTB dataset has a sufficient number of annotated

sentences, the MCCGS model performs better.

4.6.3.4 Analysis

Here we present an analysis of the proposed MCCGS and its variations to understand the

influence of feature inclusion better. For this realization, a sample text is taken from the

development set of English-EWT treebank for simulating performance, as mentioned in

Figure 4.6. Expressing past information of the sentence, the reinstating conjunction ‘when’

is used to connect two clauses. The subordinate clause ‘came’ indicates the features as

tense being past, mood indefinite, and sentence type is finite. The same features signify

2http://ltrc.iiit.ac.in/hutb release/
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Table 4.5: Obtained scores on the Indo-Aryan languages of UD treebank and HUTB
dataset

UD treebank (Lang) HUTB (Lang)

Models mr ta te sa hi ur

Precision

MCCGS 80.20 78.56 91.60 96.64 95.68 86.93
MCCGS-IE 88.16 79.73 94.68 97.91 94.10 84.74
MCCGS-CE 81.44 79.62 94.12 97.03 94.85 87.49
MCCGS-D 93.33 87.25 96.02 97.29 94.45 86.95

Recall

MCCGS 85.03 79.80 93.29 95.79 95.60 87.06
MCCGS-IE 89.09 82.17 95.20 96.23 94.78 85.38
MCCGS-CE 85.22 80.15 94.20 95.46 94.59 87.62
MCCGS-D 93.58 87.50 96.69 97.28 94.52 87.48

F1

MCCGS 82.37 77.79 92.38 95.66 95.60 87.06
MCCGS-IE 87.33 80.18 94.67 96.56 94.78 85.38
MCCGS-CE 81.50 78.70 93.42 95.54 94.59 87.62
MCCGS-D 93.09 86.90 96.25 97.27 94.52 87.48

MCC

MCCGS 77.32 76.46 76.58 92.83 94.16 86.67
MCCGS-IE 73.71 82.02 90.73 94.68 94.23 86.90
MCCGS-CE 82.34 74.42 92.07 95.75 94.10 88.63
MCCGS-D 92.99 87.04 96.23 96.73 93.93 86.13

Accuracy

MCCGS 85.03 79.80 93.29 95.79 95.64 86.81
MCCGS-IE 89.09 79.73 95.20 96.23 94.41 84.24
MCCGS-CE 85.22 80.15 94.20 95.46 94.57 87.47
MCCGS-D 93.58 87.50 96.69 97.28 94.25 86.76

the matrix clause ‘arrested’. Even though these two are different clauses connected by the

conjunction, the model can realize long-distance relations.

According to Greenberg’s language universal [85], a noun (NN) is always followed by an

adjective (JJ). According to this hypothesis, the training data followed a combination

of noun phrases (JJ+NN). As a result, the model predicts JJ+NN in most of the cases

instead of JJ+JJ. Figure 4.6 example also shows the same combination, which led to

the wrong prediction from the proposed models. It is the same with the verb phrase as

well. Verb phrase contains RB+VBN while nouns are directly preceded by the verb in

this scenario from the proposed model. The impact of additional features can be seen

in the model prediction. The MCCGS model predicts wrong output for adjacent words.

For example, ‘briefly arrested’ should be an adverb (RB) and verb (VDB), but the model

predicts adjectives (JJ) and noun (NN), respectively. After using the features during the
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model training, we found that the number of errors has drastically improved. Here, the

‘arrested’ is getting tense information (Tense=Past) from the ‘came’ and it carries forward

in the other morphologically similar words. Due to this, the MCCGS-IE, MCCGS-CE

and MCCGS-D predict RB+NN, VBD+VBD and RB+VBD, respectively, for the ‘briefly

arrested’. The feature inclusion near the label prediction provides an accurate result for

capturing longer dependencies among words.

Figure 4.6: Example of models prediction to POS tagging

4.7 Experiment-II: Contrastive MCCGS

The majority of standard annotated data for POS tagging belongs to specific domains

such as News, being trained on a specific domain, the trained model tested on other

domains like Health, Social media, Literature, and Forum understandably gives a worse

performance [57]. One major reason is that the source and target vocabularies are different

and thus, some target words may never have appeared during the training phase. For

instance, in the Hindi treebank dataset34, disease-specific terminology such as disease

names, symptom identifiers and treatments are frequent in the Health domain but are

rare in the News, Tourism and other domains. In order to generalize models to other

domains, an optimal adaptation method is required that can transfer gained knowledge

from the high resource domain to the low resource domain as much as possible.

In deep learning, the data is the only source of model training so that the expressivity of

the language used depends solely on the domain of the data as far as the modeling process

is concerned. That an equivalent performance will be obtained on other domains is not

3http://ltrc.iiit.ac.in/hutb release/
4https://ltrc.iiit.ac.in/showfile.php?filename=downloads/kolhi/
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guaranteed due to the distinction between the distributions of domain-specific informa-

tion [27] for different domains. While training the model, the model learns both general

and domain-specific features [57]. These general or primitive features can be transferred to

the target domain for either extracted features (through Transfer Learning) or initializa-

tion (through Fine-tuning). Fine-tuning is very effective as they use the available features

from the pre-trained model through neurons [263] and allow their use for other domains

to address problems like data scarcity.

When a learned model is employed from a source training data to a different but related

target test data, it is pretended that both data accompany an equivalent distribution.

When the distribution of both data is distinct, the deep learning model will not generalize

well on the target domain. The model learning with the existence of an inequivalent distri-

bution of data is known as Domain Adaptation. Domain adaptation can be accomplished

with fine-tuning. The difference of inequivalent distribution is minimized by contrastive

learning. Contrastive learning is a self-supervised learning method that learns embedding

space by contrasting semantically.

Globerson and Roweis [82] performed adversarial training with missing features where they

assumed that missing features are distributed randomly in test data. Søgaard [231] tar-

geted the most predictive features of the model by antagonistic adversaries. This method

eliminated the essential features and did a frequent update of rare features (less confident).

Guo et al. [90] trained the model by meta-learning in which a single source domain was

treated as the meta-target and the remaining as the meta-source. The losses of these

meta-learning expertise were minimized based on joint losses. This source and target do-

main encoding was aligned by adversarial training, where the target domain was treated

as unlabelled. There is minimal work reported for POS tagging using adversarial training

while used in various other applications associated with domain adaptation [243, 68, 249].

By using the contextual information based on the attention mechanism and contrastive

learning to overcome the impact of out-of-vocabulary words while testing the model, MC-

CGS for low resource language, we add the online noise generated samples into training

data and train the model with contrastive learning, which is called contrastive MCCGS

(described in section 4.5). In this experiment, data-based supervised domain adaptation
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Figure 4.7: Domain adaptation

has been followed, where small amounts of annotated datasets that belong to different

domains have been used to perform single and multi-source domain adaptation (described

in section 4.7.1).

4.7.1 Domain Adaptation

Domain adaptation approaches follow the data or model-oriented techniques with unsuper-

vised, semi-supervised and supervised settings for diverse applications of NLP, including

POS tagging. Here, we have exploited the fine-tuning approach for performing domain

adaptation, where the learned features from the source domain are transferred at the time

of the target domain learning. This feature transfer procedure closely follows the Meftah

and Semmar [150] settings. In this procedure, the entire model has been trained on the

source domain for POS tagging and learns the optimal learned parameters.

Each domain dataset has different labels, so the training parameters of the proposed

model have been interpreted as label-aware parameters (ϕc) and data-aware parameters

(θf ), which attain classification and feature extraction, respectively. Feature extractor pa-

rameters are considered transferable due to their generality, which considers MOCHA and

both Bi-GRU layers. Linear and Softmax layers are considered classification parameters

that are task specific. Based on the training parameters, the model has split into two

parts: Feature Extractor and Classifier, as shown in the domain adaptation settings in

Figure 4.7.
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Algorithm 4.2 Domain adaptation for POS tagging

Require: Target domain data, θsf : Learnt parameters (source domain) from Algo-
rithm 4.1 for Feature Extractor

1: ϕtc ← Randomly initialized parameters (target domain) for Classifier
2: while available target domain data do
3: θtf ← θsf
4: for each domain data do
5: θs′f ← Train Algorithm 4.1 with θtf and ϕtc

6: end for
7: θsf ← θs′f
8: end while

The learnt parameters of Feature Extractor, θsf from source domain are used as parameter

initialization to Feature Extractor of the target domain, θtf during domain adaptation.

The remaining parameters of Classifier, ϕtc, is randomly initialized. After initialization

(θsf → θtf and Random → ϕtc), the model starts learning from previously learned fea-

tures of the source domain, named as single source domain adaptation, which is shown

in Figure 4.7. During the training of domain adaptation, the Classifier parameters have

trained on the target domain dataset from scratch. The same procedure follows with

multi-source settings, where the Feature Extractor parameters have been transferred from

first source to second source (θsf → θs′f ) and second source to target source (θs′f → θtf ).

The pseudo-code of the domain adaptation is described in Algorithm 4.2.

4.7.2 Dataset Description

For most languages, annotation data is not available due to low resource constraints.

Moreover, the availability of a domain-specific annotated dataset in these languages is

rare. Here, Hindi Treebank (HT) [23], Penn-TreeBank (PTB) [146] of Wall street journal

(WSJ), ARK [177] and the recent TweeBank [136] dataset have been exploited. The HT

dataset includes Article, Conversation, Disease and Tourism domain with 32, 32, 39 and

46 POS tags. The PTB, ARK and TweeBank include Newswire and Tweet domains with

45, 26 and 18 POS tags. The comparative statistics of training and testing for each dataset

with each domain are depicted in Table 4.6.



Chapter 4. Leveraging Contextual Information for Sequential Labeling 103

Table 4.6: Dataset statistics for each domain

Dataset Domain Training Data Testing Data Total

HT Article 15088 1910 16998
HT Tourism 2400 622 3022
HT Conversation 1700 496 2196
HT Disease 900 594 1494

PTB Newswire 55000 12499 67499
TweeBank Tweet 2800 750 3550
ARK Tweet 1700 675 2375

4.7.3 Experimental Settings

Initially, the state-of-the-art (SOTA) models and CMCCGS model have been evaluated

on each domain of the datasets. The maximum length of words and sentences has been

fixed for training the model, which is 22 and 52, respectively. However, gradient calculation

avoided the padded sentences and words, which in turn prevents overfitting. The character

vector size 32 is obtained after applying two filters, 64 and 124, each with the size of 3,

with a dropout of 30%. The model is trained with the word vector and GRU units of 100

and 128, respectively. The chunk size is 10. As the annotation corpus is tiny, the model

tends to overfit quickly. Hence, dropout and early stoppage have been applied with the

value of 50% and 5 as patience, respectively. The model has been trained using Adam

optimizer with an initial learning rate of 0.008, which further decays over each epoch by

0.005 for Disease and Tourism. It is tuned to 0.01 as the learning rate and 0.007 as the

decay rate for Article, Conversation, PTB, ARK and TweeBank. The SOTA models have

trained with their default settings.

4.7.4 Results and Analysis

The standard evaluation metrics such as Precision (Pre), Recall (Re), F1-score (F1) and

Accuracy (Acc) have been considered to evaluate the proposed model. Table 4.7 and

Table 4.8 shows the results obtained from different domains of HT dataset and the PTB,
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Figure 4.8: Accuracy comparison of SOTA and CMCCGS models

ARK and TweeBank dataset, respectively. These results are compared with state-of-the-

art models, which are neural network-based sentence-level log-likelihood (NN-SLL) [46]

and Bi-directional LSTM-CNNs-CRF (BLSTM-CNN-CRF) [140].

As the size of the Article domain data is large, the CMCCGS model (96.63%) provided

a comparable accuracy score to state-of-the-art models, which are 94.11% and 96.64%.

The highest score is 91.24% and 94.34% obtained for Disease and Conversation using the

CMCCGS model, respectively since the size of the dataset of these domains is minimal. In

contrast to the NN-SLL model, the CMCCGS model has reported a lower score, 93.76%,

for the Tourism domain. It can be seen that the CMCCGS approach performed better

in the Conversation domain. The difference between state-of-the-art (SOTA) models and

CMCCGS for the Article domain is very slight, but a significant improvement has been

observed for the rest of the domains, as shown in Table 4.7. On the other hand, Table 4.8

showed that PTB and ARK obtained the highest accuracy scores, which are 97.51% and

93.55% through the CMCCGS model, while the BLSTM-CNN-CRF yields 93.05% for

TweeBank. It can be clearly interpreted through Figure 4.8. Contrastive training surpasses

the performance of current top-performing models [140, 189] for POS tagging in different

domains [89, 260]. Hence, the performance is gained on the small size domains after

applying the contrastive and adversarial based models.
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Table 4.7: Results obtained on each domain of HT dataset

Domain Model Pre Re F1 Acc

Article
NN-SLL [46] 93.93 94.11 93.89 94.11
BLSTM-CNN-CRF [140] 96.57 96.65 96.57 96.64
CMCCGS 96.09 96.62 96.35 96.63

Tourism
NN-SLL [46] 95.13 95.03 94.93 95.03
BLSTM-CNN-CRF [140] 93.42 93.37 93.09 93.37
CMCCGS 93.76 93.51 93.69 93.76

Conversation
NN-SLL [46] 87.87 90.37 88.84 90.37
BLSTM-CNN-CRF [140] 91.59 91.65 91.43 91.64
CMCCGS 94.03 94.35 94.01 94.34

Disease
NN-SLL [46] 91.14 91.24 90.86 91.24
BLSTM-CNN-CRF [140] 90.74 90.76 90.34 90.89
CMCCGS 91.91 91.25 91.30 91.24

Table 4.8: Results obtained on PTB, TweeBank and ARK datasets

Data Model Pre Re F1 Acc

PTB
NN-SLL [46] 96.55 96.58 96.53 96.58
BLSTM-CNN-CRF [140] 97.38 97.36 97.37 97.36
CMCCGS 97.42 97.51 97.41 97.51

TweeBank
NN-SLL [46] 93.34 92.87 92.92 92.87
BLSTM-CNN-CRF [140] 93.70 93.70 93.05 93.05
CMCCGS 93.30 92.30 92.18 92.30

ARK
NN-SLL [46] 93.96 92.67 92.38 92.67
BLSTM-CNN-CRF [140] 93.48 93.32 93.28 93.32
CMCCGS 94.32 93.55 93.69 93.55

4.7.4.1 Single-source domain adaptation

It can be understood from Table 4.7 and Table 4.8 that CMCCGS provides robust per-

formance on the minimal datasets. Therefore, the same (hyper-)parameter settings have

been employed to perform domain adaptation. The source domain always has larger train-

ing data than the target domain. For example, Disease as the target domain considered

for Article, Tourism and Conversation domain, Conversation as target domain considered

for Article and Tourism, and Tourism as target domain considered for Article domain of

HT dataset. The PTB is considered the source domain for ARK and TweeBank. The

TweeBank has smaller training data compared to PTB. Thus it is also the target domain

for PTB.
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The domain adaptation results have been compared with the SOTA model, Hierarchical

Bidirectional LSTM-CRF (HBLSTMC)5 [147]. After domain adaptation, the maximum

score has been obtained for Conversation (93.40%) and Tourism (96.76%) by CMCCGS

and Disease (95.88%) by HBLSTMC. Similarly, Table 4.10 showed that CMCCGS works

adequately for ARK while HBLSTMC model for TweeBank.

The significance of training data to our proposed supervised domain adaptation, CMC-

CGS model, is observed on the HT dataset in Table 4.9. The Conversation and Disease

domain attained the highest score when Article is considered as the source domain. The

comparison of Table 4.7 with Table 4.9 gives the significance of domain adaptation where

the effect on the performance of Tourism, Conversation and Disease are +3.00%, −0.94%

and +2.98%, respectively. On the other hand, the performance has increased by +2.93%

for TweeBank and +1.15% for ARK, as can be seen when comparing Table 4.8 with

Table 4.10.

Table 4.9: Domain adaptation on the HT dataset

Source Target Model Pre Re F1 Acc

Article Conversation
HBLSTMC [147] 90.66 92.35 91.16 92.35
CMCCGS 92.79 93.41 92.73 93.40

Tourism Conversation
HBLSTMC [147] 92.51 92.92 92.39 92.92
CMCCGS 91.79 92.76 91.77 92.75

Article Disease
HBLSTMC [147] 90.97 91.86 90.50 91.86
CMCCGS 93.90 94.22 93.87 94.22

Tourism Disease
HBLSTMC [147] 95.75 95.88 95.75 95.88
CMCCGS 92.41 92.56 92.28 92.55

Conversation Disease
HBLSTMC [147] 94.91 94.53 94.52 94.53
CMCCGS 91.87 91.82 91.60 91.82

Article Tourism
HBLSTMC [147] 95.16 95.74 95.26 95.74
CMCCGS 96.64 96.76 96.62 96.76

Table 4.10: Domain adaptation on ARK and TweeBank datasets

Source Target Model Pre Re F1 Acc

PTB ARK
HBLSTMC [147] 95.00 94.36 94.67 94.36
CMCCGS 94.57 94.70 94.54 94.70

PTB TweeBank
HBLSTMC [147] 96.22 96.23 96.15 96.23
CMCCGS 95.11 95.23 95.03 95.23

5This abbreviation is used to compare our results
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4.7.4.2 Multi-source domain adaptation

The deep learning model requires abundant data to provide promising results. The target

domain has minimal data in our experiments. To address this, we have used the data from

different domains to perform domain adaptation. The Disease domain has limited data

compared to the others in the HT dataset and it is considered the target domain and the

remaining domains as the source domains for performing multi-source domain adaptation.

Similarly, the Tweet domain from ARK is considered the target domain and the Newswire

domain from PTB and Tweet domain from TweeBank are considered source domains.

Based on the annotation statistics, these datasets can be divided into three categories,

namely High (Article, PTB), Moderate (Tourism, Conversation and TweeBank) and Low

(Disease and ARK) resources. According to these categories, the following two settings

are used:

1. Model training initialized with High category (Article and PTB) and then the learned

features were transferred to the Moderate category (Tourism or Conversation and

TweeBank), which further applied domain adaptation to the target domain.

2. Model training initialized with High category (Article) and then the learned features

were transferred to the Moderate category (Tourism). These learned parameters

were then transferred to another Moderate category (Conversation) to apply domain

adaptation on the target domain.

These two experiments obtained the best results on the Disease and ARK by using Article

with Tourism and PTB with TweeBank as source settings, compared to the others, as

shown in Table 4.11.

4.7.4.3 Effect of layers freezing in domain adaptation

The proposed model, CMCCGS, has multiple core layers, i.e., Bi-GRU, MOCHA, and

Softmax, which are responsible for capturing different input information. Hence, while

performing domain adaptation via the data-based Transfer learning approach, gradual
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Table 4.11: Results of Multi-source domain adaptation by CMCCGS model

Source (High+Moderate) Target Pre Re F1 Acc

Article+Conversation Disease 92.34 92.82 92.29 92.81
Article+Tourism Disease 95.21 95.39 95.11 95.38
Tourism+Conversation Disease 93.35 93.58 93.30 93.58
Article+Tourism+Conversation Disease 93.39 93.01 93.19 93.01

PTB+TweeBank ARK 94.29 94.98 94.63 94.98

layers have been fixed to show the model performance. The model layers have been divided

into two sub-parts: Layers between the input layer to MOCHA layer, which includes the

first Bi-GRU layer, referred to as part(i), and Layers after the MOCHA layer to the

inference layer, i.e., the second Bi-GRU, the Dense, and the Softmax layer, referred as

part(ii).

The effect on evaluation matrices of both sub-parts being frozen to each domain is shown

in Table 4.12. The part(i) layer freezing of domain adaptation for Tourism from Article, for

Conversation from Tourism, for ARK from PTB and TweeBank (multi-source) achieved

better accuracy than part(ii) layer freezing. The part(ii) layer freezing benefited for Disease

from multi-source domain adaptation (Article and Tourism) and TweeBank from PTB.

However, the freezing scores of both sub-parts do not yield better results than the full

model training while performing domain adaptation, as shown in Figure 4.9.

The training of the two sub-parts being frozen shows up as the differences in the metrics

scores for each domain on each kind of domain adaptation as follows:

1. The differences for the Disease domain lie in the ranges of −0.37 to 1.85, −0.23 to

1.74, −0.20 to 1.77 and −0.23 to 1.74 for precision, recall, F1-score and accuracy,

respectively.

2. The differences for the Conversation domain are in the ranges of −1.52 to 0.04, −0.71

to 0.02, −1.18 to 0.14 and −0.71 to 0.01 for the respective metrics.

3. Similarly, the Tourism domain has single domain adaptation experiments; hence it

yields a difference of +0.64 for precision and +0.12 for all the remaining metrics.



Chapter 4. Leveraging Contextual Information for Sequential Labeling 109

Table 4.12: Results of the domain adaptation based on freezing layers’ by CMCCGS
model

Source Target Freeze Pre Re F1 Acc

Article Disease part(i) 92.54 92.96 92.76 92.96
Article Disease part(ii) 92.42 92.71 92.24 92.71
Article Tourism part(i) 96.40 96.30 96.09 96.30
Article Tourism part(ii) 95.76 96.18 95.97 96.18
Article Conversation part(i) 90.26 92.15 90.69 92.14
Article Conversation part(ii) 91.78 92.25 91.87 92.24
Tourism Conversation part(i) 91.66 92.87 91.96 92.86
Tourism Conversation part(ii) 91.62 92.85 91.82 92.85
Tourism Disease part(i) 94.38 94.51 94.21 94.50
Tourism Disease part(ii) 93.48 93.65 93.44 93.64
Conversation Disease part(i) 89.64 89.45 89.44 89.45
Conversation Disease part(ii) 89.18 88.92 88.81 88.92
Article+Tourism Disease part(i) 94.43 94.74 94.45 94.73
Article+Tourism Disease part(ii) 94.80 94.97 94.66 94.96
Article+Conversation Disease part(i) 91.45 92.07 91.50 92.07
Article+Conversation Disease part(ii) 91.09 91.49 91.04 91.48
Tourism+Conversation Disease part(i) 92.82 93.07 92.77 93.07
Tourism+Conversation Disease part(ii) 90.97 91.33 91.00 91.33
Article+Tourism+Conversation Disease part(i) 94.46 94.68 94.36 94.67
Article+Tourism+Conversation Disease part(ii) 94.52 94.74 94.42 94.74

PTB ARK part(i) 94.65 94.50 94.34 94.50
PTB ARK part(ii) 92.37 93.01 92.39 93.01
PTB TweeBank part(i) 92.82 92.17 92.07 92.17
PTB TweeBank part(ii) 93.98 93.48 93.37 93.48
PTB+TweeBank ARK part(i) 94.54 94.51 94.32 94.51
PTB+TweeBank ARK part(ii) 93.30 93.59 93.14 93.59

Where negative digits indicate, part(ii) freezing yields a better result than part(i) freezing

and vice-versa for positive digits.

4.8 Summary

This chapter demonstrates the effect of contextual information on POS tagging for low

resource languages. The attention mechanism – monotonic chunk wise attention – lever-

ages contextual information. That contextual information along with handcrafted feature

integration improves the results compared to the existing baselines on UD treebanks and

HUTB datasets. The integration of those features at which layer will provide the best
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Figure 4.9: Accuracy comparison of the CMCCGS model with (part(i) and part(ii))
and without (none) freezing layers’

results is also discussed. It demonstrates that handcrafted features are still useful along

with deep learning models for low resource settings. Apart from these, this contextual

information with the contrastive learning for domain adaptation aids in improving POS

tagging performance. The performed experiments on HT, PTB, WSJ and ARK show

that multi-source domain adaptation provides better results compared to single source

domain adaptation to target low resource languages, even if source languages could be a

combination of low and high resource settings.


