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Preface

Since the popular spread of the Internet, natural language content in the form of sugges-

tions, opinions, news, and tweets, apart from formal documents, has proliferated at an

increasing rate. This has helped in the development of natural language processing (NLP)

tools for diverse languages in a variety of domains. Language analysis and understanding

is an application of NLP, where machines interpret linguistic information and many other

facets of language as humans do. Text classification, syntactic, semantic analysis and en-

tity recognition or linking are examples of problems where errorless decisions are predicted

based on language understanding.

Sequence labeling plays a vital role in solving numerous NLP applications such as Machine

Translation and Information Extraction etc. In sequence labeling, a category or label is

assigned to each member of an instance, where instance denotes a sequence, for example,

part of speech (POS) tagging, chunking and named entity recognition (NER). POS tagging

assigns a sequence of grammatical categories to the given sentence and Chunking groups

them into ‘chunks’ or what can be called minimal phrases. NER is another sequence la-

beling problem, which marks proper nouns and other named entities such as Location,

Person, Organization, Disease etc. Existing studies have shown that convolutional neural

network, recurrent neural network and its variants and conditional random field are the

key components for deep learning models. They, along with pre-trained embedding, pro-

vide good results for these sequence labeling problems. However, these solutions do not

generalize for low resource languages, which are characterized by very little benchmark-

ing seed amount of (un)-annotated data. Transfer learning and multilingual learning do,

however, enable gains in performance. Improving the performance of sequence labeling

models using existing knowledge is one of the prominent research areas in NLP for low

resource languages. This thesis focuses on four aspects of this: proposing deep learning ar-

chitectures, integrating handcrafted features, performing transfer learning, and providing

baseline systems using benchmark seed datasets for some low resource languages.
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Bhojpuri, Maithili and Magahi are low resource languages and widely spoken in central

north-eastern India, belonging to the Indo-Aryan language family. Creating an annotated

corpus for POS tagging and chunking and then building an initial automatic tool for

these languages is the first attempt towards the development of language technology tools

for these languages. The annotated corpus used to develop POS taggers and chunkers,

based on various traditional machine learning algorithms (trigrams ‘n’ tags, conditional

random fields (CRF), maximum entropy Markov model and structured support vector

machine) and more recent state-of-the-art deep learning model which comprise long short-

term memory (LSTM), convolution neural network (CNN) and CRF, named as LSTM-

CNN-CRF model, has been used.

A robust deep learning model has been proposed that leverages character level informa-

tion to deal with out-of-vocabulary and an attention mechanism to capture the inter-

dependence of input words known as Self-Attention-based Hierarchical Bi-LSTM CRF

(SAHBiLC) model. Model transfer is one of the ways of transfer learning by which the

learned knowledge (parameters of deep learning model) can transfer from one model to

another model; hence initially, the model has been trained on Hindi and then transferred

to Bhojpuri, Maithili and Magahi: this setting being referred to as the fine-tuned version

of SAHBiLC model, named as Fine-SAHBiLC. SAHBiLC and Fine-SAHBiLC outperform

previous results for Bhojpuri and Maithili, Magahi, respectively, for both tasks. This

shows that finetuning is effective for such languages which have complex morphology and

lesser training data.

Despite the success of the proposed model, we compare the results of CRF and LSTM-

CNN-CRF for the NER datasets of these languages since the number of named entities are

relatively few in the data, that is, the datasets of these languages are highly imbalanced.

Here, the deep learning baseline provides a better result for Magahi only due to fewer

intermediate entities (tags). We observe that the obtained results are consistent with the

number of named entities in the datasets rather than with the total size of the dataset in

the number of tokens.

Traditional machine learning algorithms require feature engineering. Linguistic informa-

tion such as affixes, lemma, adjacent words is commonly used for these sequence labeling

problems. Recent deep learning models combine the forward and backward word informa-

tion captured by the recurrent neural network or its variants for POS tagging. However, it

assumes an identical magnitude of words of a sentence to capture sequential information.

The information of contextual words to the current word plays a vital role in capturing the



non-continuous relationship. Based on the same assumption, we have proposed a Mono-

tonic chunk-wise attention model with CNN-GRU-Softmax (MCCGS), a deep learning

model that captures this essential information. This architecture consists of Input En-

coder (IE), which encodes word and character-level information, Contextual Encoder (CE),

which assigns weightage to adjacent word and Disambiguator (D), which resolves intra-

label dependencies as core components. Later on, this proposed model gets integrated with

morphological information as an external feature. Tense, Case, Gender, Number, Person

and Lemma considered external features integrated into the core components of MCCGS

architecture as MCCGS-IE, MCCGS-CE and MCCGS-D. The MCCGS architecture and

its variants are validated on datasets for 21 languages from the universal dependency (UD)

treebank. Compared to the state-of-the-art position-aware self-attention-based model, the

MCCGS model has improved by 0.29% in mean accuracy. The MCCGS model improved

further by 2.98% due to unification of features at the Disambiguator component (MCCGS-

D).

If we assume that the distribution of source and target data for a language is inequivalent,

then modeling over these settings is widely known as domain adaptation. The contrastive

training minimizes the difference of inequivalent distribution. Contrastive training has

been tried as a robust approach that captures the essential features during model training,

and based on this, contrastive-MCCGS model architecture has been proposed for POS

tagging. It learns optimal features in a low resource regime.

We experimented on the datasets of four domains, Article, Conversation, Disease and

Tourism, of the Hindi treebank, Tweet domain from TweeBank, Newswire domain from

Penn TreeBank (PTB) and Tweet domain from ARK and compared it with several state-

of-the-art models. The CMCCGS model has been further extended to domain adaptation

by using single and multi-source domain adaptation to allow fine-tuning. Compared to

single-source adaptation, significant improvements have been observed after using multi-

source domain adaptation. Since it is multi-source domain adaptation, for experiments

based on the deep learning models, the effect of layer freezing was observed. Multi-source

domain adaptation provides competitive results over the baselines. Very low resource

domains such as Tourism, Disease and tweet domain of TweeBank and ARK have shown

improvement in accuracy by Article, Article and Tourism (multi-source), PTB, and PTB

and TweeBank (multi-source) as source domain, respectively. However, the Conversation

domain has a negative impact on domain adaptation.

Devising deep learning networks that perform well on low resource languages is challenging



since very little labelled data or human annotated data is available for these languages.

One of the possible solutions to overcome this challenge is to use multilingual training with

accurate parameter transfer. We present a multilingual meta learning based algorithm to

learn representations for POS tagging of low resource languages. Meta learning algorithms

learn a model from the distribution of tasks that can only adapt to a previously unseen

task with a few examples. Two meta-learning algorithms, model agnostic meta learning

(MAML) and Reptile, are used to train the model. We conduct extensive experiments

on POS tagging using nine languages from two different scripts, out of which the model

is trained on eight languages via meta learning and fine-tuned on an unseen low resource

language. Data for all nine languages is obtained from the Universal Dependencies Tree-

bank. Empirical results have shown that a model trained via multilingual meta learning

can learn cross-lingual features, cross-script features and task-specific features that can

easily be transferred into previously unseen low resource languages. Our Approach gains

significant improvement over a robust baseline on a low resource language. An experiment

for few shot POS tagging verifies the learned representations.
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