
Chapter 6

The propagation of shock wave in

planar and non-planar polytropic

reacting gas with dust particles ∗

“Without mathematics, there’s nothing you can do.

Everything around you is mathematics.

Everything around you is numbers.”

– Shakuntala Devi.

∗“The contents of this chapter have been submitted in Zeitschrift für Angewandte Math-
ematik und Mechanik (ZAMM) (Wiley), 2022.”
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6.1 Introduction

In the nonlinear system, the wave is considered to be moving surface along which

the flow variables and their derivatives occupy certain kind of discontinuity that

are carried along by the surface. The occurrence of these type of discontinuities

represented by mathematical system of quasilinear PDEs are natural phenomenon

in several physical situations like collision of galaxies, space science, supernova ex-

plosion, space re-entry vehicles, photo ionized and other astrophysical situations.

The study of shock waves are of great importance from the point of view of both

fundamental research and practical applications. Since, the shock waves arise due

to the deposition of large amount of energy in very small region over short intervals

as in case of spark discharges in air, explosions. The shock waves in fluids received

considerable attention because they are a particular class of discontinuous wave pro-

cesses, which are studied by some analytical and numerical methods. The process

of shock formation and decay in the characteristic plane is one of the most critical

aspects of non-linear wave theory in gasdynamics. The problem of the study of flow

patterns of nonlinear waves in different material mediums has gained significant at-

tention over a recent couple of decades due to their advantage in numerous fields

such as space science, nuclear science, and engineering sciences. The shock waves are

discontinuities that occur in the derivative of the solution along the characteristics

however, the solution itself remains continuous. The study of shock wave in two

phase flow have also significant role due to its applications to coal mines blast, vol-

canic and cosmic explosions, underground, metalized propellant, nozzle flow, lunar

ash flow, supersonic flight in polluted air and many engineering science problems

(See [2], [113], [114],[115],[116],[117],[118]). Furthermore, in several astrophysical

events, the mixture of gases play a decisive role. This mixture consists of an ideal

gas containing dust particles, so called dusty gas. In dusty gas, the volume of the



Chapter 6. The propagation of shock wave in ...... 109

small dust particles does not occupy more than five percent of the mixture’s total

volume. Many researchers worked in gas dynamics, where they examined the parti-

cle’s effect on the propagating waves in various medium of flow. Miura [2, 116] have

examined the wave propagation and its behaviour through dusty gas layer. Also, he

described the condition for the separation of pure gas from a mixture of gas with

dust particles. Higashino [115] have investigated the problem of blast waves in a

dusty medium and discussed that as to how the decay of blast waves is affected in

dusty gas. In recent, Pai [3], Steiner and Hirschler [118], Vishwakarma and Nath

[127], Chadha et al. [128], Nath [129], Chaturvedi et al. [112, 130] and Srivastava

et al. [131] have studied the solution of the shock wave propagation in dusty gas by

several approaches. Mehla et al. [132] have further discussed the wave propagation

in relaxing gases with solid particles. The dusty gas flow has drawn the focus of the

many authors due to its advantages in industrial and environmental fields. Several

researchers have generalized the theory of nonlinear waves in various material media,

such as ideal gas dynamics, magnetogasdynamics, and established the conditions for

shock formation and its distortion in the medium. Ram [133], Shankar [134], Keller

[135] and Chaturvedi et al. [136] studied the several effects of the propagation of

shock wave and obtained the conditions for examining the evolutionary behaviour

of the acceleration wave.

The study of the mixture of two species of gases has a large number of diverse phe-

nomenon due to which, many authors has inspired to investigate the theoretical and

numerical problems of the formulation of an adequate mathematical model. Teng et

al. [137] proposed the first rational model of mixture of unburnt and burnt gases for

the Riemann problem and later on, Torrisi [138, 139], Goppi et al. [140], Barenblatt

et al. [141], Harle et al. [142], Logan and Bdzil [143], Godlewski [18] have studied

the theoretical and numerical problem related to the propagation of nonlinear waves

in reacting gases. Since past two decades, the problem related to the propagation
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of shock waves and its interaction in reacting gases has received attention of many

researchers like Lung et al. [144], Medvedev [145], Singh et al. [146, 147], Shah and

Singh [148].

In the present chapter, we have studied the system of quasilinear PDEs describing

the unsteady planar and non-planar flow of inviscid polytropic reacting gas with

dust particles. The governing equations consist of two species (the burnt gas and

the unburnt gas) in which the burnt gas has mass fraction z and unburnt gas has

mass fraction (1 − z). Both gases are ideal gases. Also, we consider that the dust

particles presented in reacting gas are solid, uniform in size and occupy less that 5

percent of total volume. In this study, we investigate the evolutionary process of

shock wave and derive the amplitude of the shock wave propagating along charac-

teristic. Further, the effect of reacting gas parameter and the dust particles on the

evolution of shock wave in planar, cylindrically symmetric and spherically symmet-

ric flows is shown.

The complete structure of this chapter is summarized into some sections: in the sec-

ond section, we derive the governing equation for reacting polytropic gas flow with

dust particles and determine the characteristic curves that represent the propagation

of the waves. In the next section, we introduce characteristic variables and change

the fundamental equations in terms of these new variables. In the fourth section,

we derive a differential equation and its solution that investigates the process of

shock formation. The behaviour of the solution obtained in the fourth section is

discussed in the fifth section. Also, the fifth section refers to the interpretation of

various parameter effects on the shock formation process and its deformation. The

last section contains the conclusions of this study.
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6.2 Governing equations and its characteristics

In this study, the system of governing equations describing the planar, cylindrically

symmetric and spherically symmetric flows of polytropic reacting gas with dust

particles is considered with the following assumptions: The fluid consists a single

irreversible exothermic reaction between two species of ideal gas, the burnt gas and

the unburnt gas, with constant specific heat. The dust particles present in the

reacting gas are solid, spherical and uniform in size. These small solid dust particles

do not occupy more than 5 percent of the volume. Also, the mass transfer between

two phases, the effect of boundary layer on duct walls and heat transfer are ignored

in this study. The EoS for such system of equations can be written in the form

[18, 148]

e = e(ρ, p, z), (6.1)

where e, ρ, p and z are internal energy, density, pressure and the mass fraction of

burnt gas. So that (1− z) is mass fraction of unburnt gas. The internal energy for

both gases (burnt and unburnt gases) are defined as

e = zeb(ρ, p, z) + (1− z)eu(ρ, p, z), (6.2)

where eb(ρ, p, z) = (1−V )p
ρ(Γ−1)

+Qb and eu(ρ, p, z) = (1−V )p
ρ(Γ−1)

+Qu, here Qb and Qu are the

energies of formation of burnt and unburnt gases, respectively. The parameter Γ is

called Grüneisen coefficient, defined by

Γ =
γ(1 + λβ)

(1 + λβγ)
, λ =

kp
(1− kp)
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where γ = cp/cv, β = csp/cp and kp = msp/mg, called the mass fraction of the

solid particles, where msp is the mass of the solid particles and and mg denotes the

total mass of the mixture. The parameter csp is the specific heat of dust particles,

cp represents the specific heat of the gas at constant pressure and cv is the specific

heat of the gas at constant volume, . Here, the parameters Z and kp are related by

Z = θρ, θ = kp/ρsp, where ρsp is the specific density of the dust particles.

The governing equations describing the one-dimensional unsteady polytropic react-

ing gas with dust particles for planar (m = 0), cylindrically symmetric (m = 1) and

spherically symmetric (m = 2) flows may be written as [148]

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
+
mρu

x
= 0,

ρ

(
∂u

∂t
+ u

∂u

∂x

)
+
∂p

∂x
= 0,

∂p

∂t
+ u

∂p

∂x
− ρC2

(
∂u

∂x
+
mu

x

)
=

(Γ− 1)ρ

(1− θρ)
(Qu −Qb) r(ρ, p, z),

∂z

∂t
+ u

∂z

∂x
= r(ρ, p, z),

(6.3)

where ρ denotes the density, p is the pressure, t is the time and u represents the

velocity in x−direction. C is the speed of sound in reacting gas with dust particles

defined as

C2 =
Γp

(1− Z)ρ
, (6.4)

where Z = Vsp/Vg denotes the volume fraction of the dust particles. The volume of

the dust particles is denoted by Vsp and Vg denotes the entire volume of the mixture.

When θ = 0, then Γ becomes γ, C2 = γp
ρ

i.e. the flow becomes ideal reacting gas

flow.
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Equation (6.3) can be written in the matrix form as

Ut + AUx +B = 0, (6.5)

here U , B and A are the column vectors of order 4 × 1 and matrix of order 4 × 4,

respectively, given below

U =



ρ

u

p

z


, B =



mρu
x

0

mρC2u
x
− (Γ−1)(Qu−Qb)ρr

(1−Z)

−r


, and A =



u ρ 0 0

0 u 1/ρ 0

0 ρC2 u 0

0 0 0 u


,(6.6)

where U(x, t) is a continuous function which satisfy equation (6.3) everywhere in the

characteristic plane except at the characteristic curve S(t). But its first derivatives

Ut and Ux may suffer finite jump across the characteristic curve S(t). This type of

discontinuity is called weak discontinuity. Now, along the characteristic curve S(t),

we have (see [133, 149])

∂

∂t
[U ] = [Ut] +

dS(t)

dt
[Ux], (6.7)

where
∂

∂t
denotes the time-partial derivative across the characteristic curve.

Since U is a continuous function, therefore [U ] = 0 and [B] = 0. Taking jump in

(6.3) and using equation (6.7) with the conditions [U ] = 0 and [B] = 0, we obtain

(
A− dS

dt
I

)
[Ux] = 0, (6.8)

where I denotes the identity matrix of order 4 × 4. The Eq. (6.8) shows that if

there occur finite discontinuities of acceleration along the characteristic curve S(t),
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the characteristic speed of propagation
dS

dt
is an eigenvalue of A. It follows immedi-

ately that there are four families of characteristic curves corresponding to the system

(6.5), two of which are given by

dx

dt
= u± C, (6.9)

where the characteristic curve u+C represents the wave propagation in the positive

x-direction, and u−C represents the wave propagation in negative x-direction. The

other two of the characteristic curves

dx

dt
= u, (6.10)

represent the particle path.

6.3 Shock waves in characteristic plane

We define two characteristic variables ζ and ψ, where ζ is the particle tag and ψ is

the wave tag such that ζ is constant along the particle path
dx

dt
= u, and the wave

tag ψ is constant along the characteristic
dx

dt
= u+C. Therefore, if the characteristic

wavefront moves through a particle at time t∗, then the particle tag ζ can be marked

as ζ = t∗, and if the piston generates outgoing wave at time t
′
, then we can label

the wave tag ψ as ψ = t
′
.

Hence, corresponding to each pair (ψ, ζ), we can find a pair (x, t) such that x =

x(ψ, ζ), t = t(ψ, ζ). Now, the characteristic variables ψ and ζ satisfy the following

conditions

xψ = utψ, xζ = (u+ C)tζ . (6.11)
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Under the above transformation (6.11), Ut and Ux transformed into the following

form

Ut =
Uζxψ − Uψxζ

J
, Ux =

Uψtζ − Uζtψ
J

, (6.12)

where J =
∂(x, t)

∂(ψ, ζ)
= −Ctψtζ , is the Jacobian of transformation.

By using equation (6.12), system (6.3) can be written as

Cρψtζ − ρ
(
uψtζ − uζtψ −

muCtψtζ
x

)
= 0, (6.13)

Cρuψtζ − pψtζ + pζtψ = 0, (6.14)

Cpψtζ − ρC2

(
uψtζ − uζtψ −

muCtψtζ
x

)
= −(Γ− 1)ρ

(1− θρ)
(Qu −Qb) r(ρ, p, z)Ctψtζ ,

(6.15)

zψ = −tψr(ρ, p, z). (6.16)

Using eqs. (6.14− 6.16) in (6.13), we obtain

pζ + ρCuζ +
mρC2utζ

x
= −(Γ− 1)ρ

(1− θρ)
(Qu −Qb) r(ρ, p, z)tζ . (6.17)

The sub-scripts ψ and ζ represents the partial derivative with respect to ψ and ζ,

respectively.

The interface conditions at the wave front at ψ = 0 are

[p] = 0, [ρ] = 0, [u] = 0, [z] = 0, t = ζ. (6.18)

Since the gas flow ahead of the wavefront is uniform and at rest, we observe that
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(6.18) demands that

ρζ = 0, pζ = 0, uζ = 0, zζ = 0 and tζ = 1 at ψ = 0. (6.19)

On insertion of (6.18) and (6.19) in (6.16), (6.14) and (6.11), and evaluating at

ψ = 0, yields

ρψ =

(
ρ0

C0

)
uψ, (6.20)

pψ = ρ0C0uψ, (6.21)

xψ = 0, xζ = C0. (6.22)

Here the flow variables evaluated at the front of the shock are signified by the

subscript ‘0’. Using (6.19) in (6.12), we get

[
∂u

∂x

]
= Y = − uψ

C0tψ
, at ψ = 0, (6.23)

where Y denotes the amplitude of the shock wave at ψ = 0.

6.4 Amplitude of the disturbance

In this section, the basic equations are transformed from physical plane to character-

istic plane. The transformation of variables from (x, t) to (ζ, ψ) has been defined by

Eq. (6.11) and Eq. (6.12), and then a transport equation governing the evolution of

the amplitude of the disturbance has been obtained and given by Eq. (6.26). When

a small perturbation is given to the disturbance at rest, a wave starts moving along

the characteristics across which the flow variables velocity, density and pressure are

uniform, but their derivatives suffer finite jump discontinuities. These discontinuities

are called acceleration wave. Now, we shall derive the transport equation governing
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the evolution of weak discontinuities which move along the initial wavefront. We

determine the relations for the dependence of uψ and tψ on time, and with the help

of these relations, we find the solution to the problem. By taking derivative of equa-

tion (6.11) and (6.17) with respect to ψ and combining with ζ derivative of (6.21) ,

at ψ = 0, we get

tψζ
tψ

=
Γ + 1

2(1 + Z0)
Y, (6.24)

uψζ
tψ

=

(
Γ− 1

2(1− Z0)2C0

(Qu −Qb)

(
1− Γ

2
r0 + (rρ0 + C2

0rp0)ρ0(1− Z0)

)
+
mC2

0

2ζ

)
Y,

(6.25)

where Z0 = θρ0.

On taking derivative of equation (6.23) with respect to ζ and using equations (6.24)

and (6.25), we get

dY

dζ
+

(
Γ− 1

2(1− Z0)2C2
0

(Qu −Qb)

(
1− Γ

2
r0 + (rρ0 + C2

0rp0)ρ0(1− Z0)

)
+
mC0

2ζ

)
Y

+

(
Γ + 1

2(1 + Z0)

)
Y 2 = 0,

(6.26)

at ψ = 0.

Now, we introduce some non-dimensional quantities given as

η =
Y

Y ∗
, α =

ζ − ζ∗

2ζ∗
and δ = Y ∗ζ∗, (6.27)

where δ, η and α are the initial disturbance, wave amplitude and time respectively.

The superscript ‘*’has been used to indicate the value of the parameters at t = t∗.

In view of (6.27), equation (6.26) can be reduced in the following dimensionless form

dη

dα
+

(
Θ

(1− Z0)
+

m

2α + 1

)
η +

δ(Γ + 1)

(1− Z0)
η2 = 0, at ψ = 0. (6.28)
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where Θ = (Γ−1)(Qu−Qb)ρ0

C2
0

(
(1−Γ)r0

(1−Z0)ρ0
+ (rρ0 + C2

0rp0)
)
ζ∗.

Equation (6.28) is a Bernoulli type differential equation with η as a dependent

variable and α is an independent variable. The solution of (6.28) is given as

η =

{
(2α + 1)

m
2 e

(
Θ

(1−Z0)

)
α

(
1 +

(
(Γ + 1)δ

(1− Z0)
I(α)

))}−1

, (6.29)

where I(α) =
∫ α

0
−e

(
Θ

(1−Z0)

)
s

(2s+1)
m
2

ds.

From equations (6.23) and (6.29), it is clear that, for the shock formation we must

have tψ = 0, i.e.

1 +

(
(Γ + 1)δ

(1− Z0)
I(α)

)
= 0. (6.30)

Equation (6.30) indicates that the compressive waves (δ < 0) terminate in to the

shock wave.

6.5 Results and discussion

Now, we investigate the behavior of the solution obtained in the previous section

for both planar (m = 0) and cylindrically symmetric (m = 1) case and discuss the

possibilities of formation and distortion of the shock. Consider the following cases

to analyze the evolution of shock waves under the effect of various parameters.

Case I. Planar flow (m = 0):

By substituting m = 0 in (6.29), we get

η =

{
e

(
Θ

(1−Z0)

)
α

+
δ(Γ + 1)

Θ

(
e

(
Θ

(1−Z0)

)
α − 1

)}−1

. (6.31)
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Figure 6.1: Variation in compressive wave for planar case with Z0 = 0.001, γ =
1.4, δ = −0.1, β = 0.5 and kp = 0.2..

Figure 6.2: Variation in compressive wave in reacting and non-reacting gas for
planar case with Z0 = 0.001, γ = 1.4, δ = −0.1, β = 0.5.
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Figure 6.3: Variation in expansive wave for planar case with Z0 = 0.001, γ =
1.4, δ = 0.1, β = 0.5 and kp = 0.2...

Figure 6.4: Variation in expansive wave in reacting and non-reacting gas for
planar case with Z0 = 0.001, γ = 1.4, δ = 0.1, β = 0.5.
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Using equation (6.27), yields

Y =
Y ∗

e

(
Θ

(1−Z0)

)
α

+ δ(Γ+1)
Θ

(
e

(
Θ

(1−Z0)

)
α − 1

) . (6.32)

From equation (6.32), it can be seen that the amplitude of nonlinear waves (known

as expansive wave for (δ > 0)) decays and eventually vanishes. Also, the curves

representing (6.32) shows that the decay time for the expansive waves is increased

due to an added effect of mass fraction of the dust particles presented in reacting gas.

Here, δ > 0 represents the expansive waves and δ < 0 represents the compressive

waves.

The curves presented in Figure 6.1 shows the growth process for δ < 0 in planar

ideal reacting gas flow with dust particles. It is also obtained that the steepening

of the propagating waves for δ < 0 is slowed down in the presence of reacting gas

parameter and an increase in the value of reacting gas parameter causes to delay in

shock formation, where Θ = 0 corresponds to the non- reacting gas. Also, Figure 6.2

depicts that if we increase the value of mass fraction kp, then it causes to slow down

the growth of propagating waves for δ < 0 in both medium planar ideal reacting gas

and planar ideal non-reacting gas. In Figure 6.2, the behaviour of solution curves is

presented for reacting gas and non-reacting gas for planar case with different values

of kp. Thus, the growth rate of a compressive wave in a dusty gas is lower than that

of a dust-free gas (kp = 0). Similarly, the variation in propagating waves for δ > 0

in planar flow of reacting and non-reacting gases with dust particles is shown by

Figure 6.3 and Figure 6.4. From Figure 6.3, it is clear that an increase in the value

of reacting gas parameter Θ causes to increase the decay rate of expansive wave in

the presence of dust particles. Also, it is observed that the decay rate of expansive

wave is very slow in reacting gas as compared to non-reacting gas which is shown in
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Figure 6.4.

Case II. Cylindrically symmetric flow (m = 1):

For cylindrically symmetric flow, the solution of (6.28) is given as

Y =
Y ∗√

(2α + 1)e

(
Θ

(1−Z0)

)
α
(

1 +
(

(Γ+1)δ
(1−Z0)

I(α)
)) , (6.33)

where I(α) =
∫ α

0
−e

(
Θ

(1−Z0)

)
s

√
(2α+1)

ds.

In cylindrically symmetric flow case, it is obtained that the propagating wave for

δ < 0 and δ > 0 have similar phenomenon to the planar case in reacting gas flow with

dust particles which can be seen by the solution curves depicted in Figs. 6.5, 6.6.

The effect of reacting gas parameter in dusty and dust free gases on the compressive

wave and expansive wave is shown in Figure 6.5 and Figure 6.6, respectively. It is

obtained that the presence of dust particles in reacting gas causes to delay the shock

formation for cylindrically symmetric flow (see Figure 6.5). Also, the presence of

Figure 6.5: Variation in compressive wave in reacting gas for cylindrically sym-
metric case with with Z0 = 0.001, γ = 1.4, δ = −1, β = 0.5.
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Figure 6.6: Variation in expansive wave in reacting gas for cylindrically sym-
metric case with Z0 = 0.001, γ = 1.4, δ = 0.1, β = 0.5.

the dust particles in reacting gas accelerates the decay rate of expansive wave for

cylindrically symmetric flow (see Figure 6.6). We observed that the reacting gas

parameter Θ together with the mass fraction kp enhances the flattening of expansive

waves and reduces the time for shock formation in reacting gas flow.

Case III. Spherically symmetric flow (m = 2):

For spherically symmetric flow, the solution of (6.28) is given as

Y =
Y ∗

(2α + 1)e

(
Θ

(1−Z0)

)
α
(

1 +
(

(Γ+1)δ
(1−Z0)

I(α)
)) , (6.34)

where I(α) =
∫ α

0
−e

(
Θ

(1−Z0)

)
s

(2α+1)
ds.
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Figure 6.7: Variation in compressive wave in reacting gas for spherically sym-
metric case with Z0 = 0.001, γ = 1.4, δ = −1, β = 0.5.

Figure 6.8: Variation in expansive wave in reacting gas for spherically symmetric
case with Z0 = 0.001, γ = 1.4, δ = 0.1, β = 0.5.

It is also obtained that the propagating wave for δ < 0 and δ > 0 in spherically
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symmetric flow case have similar phenomenon to the planar and cylindrically sym-

metric flow case in reacting gas flow with dust particles which can be seen by the

solution curves presented by Figure 6.7 and Figure 6.8.

Figure 6.9: Compressive wave in reacting gas with dust particles with kp =
0.2, γ = 1.4, δ = −1, β = 0.5 and Θ = 0.2.

A comparative analysis for expansive and compressive waves in planar, cylindrically

symmetric and spherically symmetric flows of dusty reacting gas is shown by Fig-

ure 6.9 and Figure 6.10, respectively. Figure 6.9 shows that the compressive waves

grow later in the case of spherically symmetric flow as compared to the planar and

cylindrically symmetric flows. Also, we observe that in the case of spherically sym-

metric flow, the shock formation is delayed in comparison to the case of planar and

cylindrically symmetric flows, i.e. the compressive waves terminate into the shock

wave earlier in case of planar flow as compared to the cylindrically and spherically

symmetric flows of reacting gas with dust particles (see Figure 6.9). From Figure

6.10, it is clear that the expansive waves decay earlier in the case of non-planar flow



Chapter 6. The propagation of shock wave in ...... 126

(cylindrically and spherically symmetric flows) as compared to the planar flow in

reacting gas with dust particles.

Figure 6.10: Expansive wave in reacting gas with dust particles with kp =
0.2, γ = 1.4, δ = 0.5, β = 0.5 and Θ = 0.2.

6.6 Conclusions

In this study, we investigated the evolutionary process of the wave propagating in

one-dimensional inviscid polytropic reacting gas with small solid dust particles for

planar, cylindrically symmetric and spherically symmetric cases, and obtained the

condition of shock formation. We found that the compressive disturbances terminate

into the shock. It is also analyzed that how the shock formation process is influenced

by the presence of dust particles in reacting gas. The influence of reacting gas on the

evolution of the shock wave is also discussed. Throughout this study, we observed

that the steepening of compressive wave and decay rate of expansive wave decreases

in reacting gas with dust particles as compared to ideal gas with dust particles.
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For more clarification of the effect of reacting gas on flow pattern and distortion of

waves for planar and non-planar cases, a comparative study has been presented. It

is observed that in planar flow, the expansive waves decay later as compared to the

non-planar cases (cylindrically symmetric case and spherically symmetric case). It

is obtained that the compressive waves end up with the shock earlier in planar flow

as compared to the non-planar cases (cylindrically symmetric case and spherically

symmetric case). The entire study concluded that the decay rate of expansive waves

decreases in reacting gas, and growth rate of compressive wave also decreases, i.e.

the time for the shock formation increases. The results obtained in this work is in

agreement with a recent work reported in Ref [130].

***********


