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5.1 Introduction

The governing equations describing a planar isentropic dusty gas flow can be written

as [94] 
%t + v%x + %vx = 0,

% (vt + vvx) + Px = 0,

(5.1)

where %, P and v are the density, pressure and the velocity along the x-axis, re-

spectively. x and t are the single spatial co-ordinate and time, respectively. The

pressure P can be defined for ideal gas as P (%) = k%γ, where k is positive constant

and γ is specific heat ratio satisfying 1 ≤ γ ≤ 3. The present chapter concerns with

the dusty gas flow which is the mixture of ideal gas and small solid dust particles.

The EoS for the dusty gas flow is defined by

P (%) = ε

(
%

(1− Z)

)Γ

, (5.2)

where ε > 0 is a constant and the parameters Z and Γ are called the volume fraction

of the solid particles and the Grüneisen coefficient, defined as (See [112] )

Γ =
γ(1 + λβ)

(1 + λβγ)
,

where Z = Vsp/Vg, β = csp/cp, λ = kp/(1 − kp) and γ = cp/cv. Here, kp = msp/mg

is the mass fraction of dust particles, where msp and mg are the mass of the dust

particles and total mass of the mixture respectively. The parameters Vsp, Vg, csp,

cp and cv are known as the volumetric extension of the solid particles, total volume

of the mixture, the specific heat of solid particles, the specific heat of the gas at

constant pressure and at constant volume, respectively. The mass fraction kp and

volume fraction Z are related by Z = θ%, θ = kp/%sp, where %sp is the specific density
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of the dust particles. The dusty gas is a mixture of an ideal gas and small solid

dust particles. In this composition the volume of the solid particle do not occupy

more than five percent of the total volume of the mixture. The study of non-linear

waves in dusty gas flow have significant role due to its applications to coal mines

blast, volcanic and cosmic explosions, underground, metalized propellant, nozzle

flow, lunar ash flow, supersonic flight in polluted air and many engineering science

Problems (See [2], [113], [114], [115], [116], [117], [118]). Also, in many astrophysical

phenomena, the composition of dust particles and gases play crucial role.

The system (5.1) with (5.2) can be written in the conservative form as


%t + (%v)x = 0,

(%v)t +

(
%v2 + ε

(
%

(1−θ%)

)Γ
)
x

= 0,

(5.3)

For zero-pressure dusty gas flow, the system (5.3) can be written as when ε→ 0


%t + (%v)x = 0,

(%v)t + (%v2)x = 0,

(5.4)

which is called the transport equation or pressureless Euler system. The author in

[119] and [120] have used it to modal the motion of free particles which stick under

collision. In [121], the author used the system (5.4) for the formation of large scale

structures in the universe.

In the present study, we investigate the concentration and cavitation phenomenon in

the solution of Riemann Problem by employing two-parameter flux approximation
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in the system (5.3) motivated by [34, 41], written as


%t + (%v − 2α1v)x = 0,

(%v)t +

(
%v2 − α1v

2 + εα2

(
%

(1−θ%)

)Γ
)
x

= 0,

(5.5)

where % ≥ 2α1, α1, α2 > 0.

Physically, the perturbation technique is utilized to lead some dynamical process of

fluids, therefore it is worthwhile to study the problem by flux approximation which

plays a crucial role in computational and theoretical problem from its application

point of view. Here, we employ a approximation in the flux which contain the

pressure perturbation portion. We solve the Riemann Problem of the system (5.5)

with the following initial data,

(%, v)(x, 0) =


(%−, v−), x < 0,

(%+, v+), x > 0,

(5.6)

where v± and %± are constants.

The motivation of this study is to analyze the phenomena of the concentration

and cavitation in the solution to the Riemann Problem for the isentropic dusty gas

flow by introducing two parameter flux approximation in the governing equations

due to its wide applications in the area of aerodynamics, cosmology, astrophysics

and engineering. Many researchers and scientists from several areas of science and

engineering are working currently on the Riemann Problem for homogeneous and

non-homogeneous models. From last two decades, study of the solution of the Rie-

mann Problem for the homogeneous and non-homogeneous hyperbolic systems cre-

ated great interest among the researchers. Recently, [89, 94, 102, 122, 123] have

investigated the Riemann solutions for the homogeneous and non-homogeneous gas-

dynamic models. Also, [56] have studied the two dimensional Riemann Problem for
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the homogeneous Chaplygin gas model. In recent years, many authors like as [93],

[124] and [125] have studied the Riemann solution for the dusty gasdynamics.

Nowadays, we know that when v− < v+, the Riemann solution of (5.1) and (5.2)

consists two contact discontinuities and a vacuum state between them and when

v− > v+, only a δ- shock wave connecting the left state (%−, v−) and the right state

(%+, v+) directly. Thus, it is of great interest to discuss the formation of δ- shock

wave and vacuum state in the solutions to the Riemann Problem (5.1) and (5.2) by

taking the parameters tending to zero. Now, we recall some main results in detail

about the δ- shock wave in the theory of hyperbolic conservation laws. [34] investi-

gated initially the formation of δ- shock and vacuum state for the Riemann solutions

to the isentropic and non-isentropic pressureless Euler system by using the vanish-

ing pressure approach, respectively. Initially, [126] have considered the formation of

delta shock wave and vacuum state by using the two parameter flux approximation

by the vanishing pressure and magnetic field. [52] have studied the limiting solution

of the Riemann Problem for multidimensional zero pressure gasdynamic equation

by employing vanishing viscosity approach. In addition, [47], [45] and [42] have in-

vestigated the formation of δ- shock and vacuum state for the Riemann solutions

for the Aw–Rascle model, modified Chaplygin gas model and relativistic fluid by

using the vanishing pressure approach, respectively. Also, the authors [46], [37] and

[40] have discussed the concentration phenomenon in the vanishing pressure limit of

the Riemann solution for the modified Chaplygin gas and extended Chaplygin gas

models, respectively. Recently, the concentration and cavitation phenomenon in the

solutions of the Riemann Problem have investigated by many authors like [41], [39],

[38]. But the concentration and cavitation in the solution to the Riemann Problem

for the isentropic dusty gas flow by introducing two parameter flux approximation

technique is not studied by any researcher till now.
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The complete structure of this chapter is summarized into sections as: In section

(5.2), the delta shock and vacuum states for the transport equations are derived.

The R-H relations are obtained for the delta shock and studied the exact location,

strength and propagation speed of delta shock wave. In section (5.4), we structure

the Riemann solution for the approximated system. Section contains the detailed

study of the concentration phenomenon in the solution of approximated system un-

der the flux approximation. Further, in section (5.5), we discuss the the phenomenon

of cavitation in the solution of approximated system under the flux approximation.

Ultimately, section (5.6) contains conclusions of this study.

5.2 Delta - shocks and vacuum states for the sys-

tem (5.4)

The matrix form of the transport equation can be written as

Ut +M(U)Ux = 0, (5.7)

where U =

%
v

 ,M =

v %

0 v

.

The characteristic roots of the matrix M(U) are λ1 = λ2 = v and correspond-

ing right eigenvectors are R1,2 =

(
1 0

)T
which satisfy ∇λi = 0, i = 1, 2, where

∇ = (∂%, ∂v) . Therefore the characteristic fields for both characteristic roots are

linearly degenerate. Hence the elementary waves associated with the characteristic

fields are nothing but contact discontinuities.

The solutions of the Riemann Problem (5.4) with (5.6) can be described as: If v− <

v+, then there is no characteristic passing through the region {(x, t) : v−t < x < v+t},
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Figure 5.1: Structure of the Riemann solution for v− < v+.

Figure 5.2: Characteristic analysis of delta shock.

so the vacuum appears in this region. The solution of Riemann Problem (5.4) with

(5.6) can be written as (See Figure 5.1)

(%, v) (x, t) =


(%−, v−), −∞ < x < v−t,

vacuum, v−t < x < v+t,

(%+, v+), v+t < x <∞.

(5.8)

If v− > v+, then the solution contains a delta shock (weighted δ measure) supported

on a line due to overlap of characteristics in domain {(x, t) : v+t < x < v−t}. The
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characteristic analysis of the delta shock is shown by Figure 5.2. To define the

measure solution, we provide the following definition.

Definition 5.1. Let Γ = {(x, t)|x = x(t), t ≥ 0} is a smooth curve, then the two-

dimensional weighted δ-measure function f(t)δΓ supported on Γ is defined as

〈f(t)δΓ, φ(x(t), t)〉 =

∫ ∞
0

f(t)φ(x(t), t)dt,

where φ(x(t), t) ∈ C∞0 (R×R+).

From above definition, we can obtain a family of δ-measure solutions ( delta shock

solution) with the parameter σ in the case v− > v+ as

%(x, t) = %0(x, t) + f(t)δΓ, v(x, t) = v0(x, t), (5.9)

where %0(x, t) = %− + [%]χ(x− σt), v0(x, t) = v− + [v]χ(x− σt), f(t) = (σ[%]−[%v])
1+σ2 t,

and Γ = {(σt, t) : t > 0} , in which [%] = %+−%− is jump in % across the discontinuity

curve and χ(x) is characteristic function defined by χ(x) = 0 when x < 0 and

χ(x) = 1 when x > 0.

Then the pair (%, v) constructed above is called delta shock solution, it satisfies the

following conditions 
〈%, φt〉+ 〈%v, φx〉 = 0,

〈%v, φt〉+ 〈%v2, φx〉 = 0,

(5.10)

for every test function φ(x, t) ∈ C∞0 (R×R+), where

〈%, φ〉 =

∫
R+

∫
∞
%0φdxdt+ 〈f(t)δΓ, φ〉,

〈%v, φ〉 =

∫
R+

∫
∞

(%0v0)φdxdt+ 〈σf(t)δΓ, φ〉.
(5.11)
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Also, the delta shock solution satisfies the following Rankine-Hugoniot jump condi-

tions 

dx(t)
dt

= σ = vδ,

df(t)
dt

= σ[%]− [%v],

d(f(t)vδ)
dt

= σ[%v]− [%v2] ,

(5.12)

and must satisfy the delta entropy condition to ensure the uniqueness of the delta

shock solution λ(%+, v+) < σ < λ(%−, v−), i.e.

v+ < σ < v−. (5.13)

On solving (5.9) with initial data f(0) = 0, x(0) = 0, we obtain the following results

σ =

√
%+v+ +

√
%−v−√

%+ +
√
%−

, x(t) = σt, f(t) = (v− − v+)
√
%+%−t. (5.14)

Therefore, the delta shock wave solution for the transport equations with (5.4) and

(5.6) is obtained by (5.9) with (5.12) and (5.14).

5.3 Solution of Riemann Problem (5.5) and (5.6)

The system (5.5) can be written in conservation form as

Ut + F(U)x = 0,

where

U =

%
v

 , F(U) =

 v %− 2α1

εα2Γ
(

%
1−θ%

)Γ−2

v

 .



Chapter 5. Concentration and Cavitation in the Riemann Solution...... 90

The eigenvalues µ1 and µ2 are given as follows

µ1 = v −

√
εα2Γ%Γ−2

(1− θ%)Γ+1
(%− 2α1), µ2 = v +

√
εα2Γ%Γ−2

(1− θ%)Γ+1
(%− 2α1), (5.15)

and the associated right eigenvectors and left eigenvectors are

R1 =

(
1 −

√
εα2Γ%Γ−2

(1−θ%)Γ+1(%−2α1)

)Tr

, R2 =

(
1
√

εα2Γ%Γ−2

(1−θ%)Γ+1(%−2α1)

)Tr

, (5.16)

L1 =

(
1
2

1
2

√
(1−θ%)Γ+1(%−2α1)

εα2Γ%Γ−2

)
, L2 =

(
−1

2
1
2

√
(1−θ%)Γ+1(%−2α1)

εα2Γ%Γ−2

)
, (5.17)

Since, ∇µi.Ri 6= 0, i = 1,2, where ∇ = (∂%, ∂v) . This implies that the characteristic

fields corresponding to eigenvalues µ1 and µ2 are genuinely nonlinear and, therefore

the associated elementary waves are shock wave and rarefaction waves.

5.3.1 Smooth solution

For the self-similar solution of the system (5), we substitute (%, v)(x, t) = (%, v)(ξ),

where ξ = x
t

in (5.5) and (5.6), we obtain the following boundary value Problem


−ξ%ξ + (%v − 2α1v)ξ = 0,

−ξ (%v)ξ +

(
%v2 − α1v

2 + εα2

(
%

(1−θ%)

)Γ
)
ξ

= 0,
(5.18)

and (%, v)(±∞) = (%±, v±).

For any smooth solution, the system (5.18) can be written in the following form

 −ξ + v %− 2α1

ξv + v2 + εα2Γ
(

%
1−θ%

)Γ−2

−ξ%+ 2v(%− α1)


d%
dv

 = 0. (5.19)
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The system (5.19) provides either a constant state solution

(%, v)(ξ) = constant, (5.20)

or, 1-rarefaction wave solution, denoted by R1 defined as

R1(%−, v−) :



dx
dt

= ξ = µ1 = v −
√

εα2Γ%Γ−2

(1−θ%)Γ+1 (%− 2α1),

v = v− −
∫ %
%−

√
εα2ΓzΓ−2

(1−θz)Γ+1(z−2α1)
dz,

% < %−,

(5.21)

or, 2-rarefaction wave solution, denoted by R2, defined as

R2(%−, v−) :



dx
dt

= ξ = µ2 = v +
√

εα2Γ%Γ−2

(1−θ%)Γ+1 (%− 2α1),

v = v− +
∫ %
%−

√
εα2ΓzΓ−2

(1−θz)Γ+1(z−2α1)
dz,

% > %−.

(5.22)

For 1-rarefaction wave, we differentiate v with respect to % in second equality of

(5.21), it gives that

dv

d%
= −

√
εα2Γ%Γ−2

(1− θ%)Γ+1(%− 2α1)
< 0,

and for 2-rarefaction wave, we differentiate v with respect to % in second equality of

(5.22), yields

dv

d%
=

√
εα2Γ%Γ−2

(1− θ%)Γ+1(%− 2α1)
> 0.

Taking the limit %→ 2α1, in the second equality of (5.21) we have

lim
%→2α1

v = v− +

∫ %−

2α1

√
εα2ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
dz. (5.23)
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Since

lim
z→2α1

(
(z − 2α1)

√
εα2ΓzΓ−2

(1− θz)Γ+1(z − 2α1)

)
=

√
εα2Γ(2α1)Γ−2

(1− 2θα1)Γ+1
.

This implies that the integral
∫ %−

2α1

√
εα2ΓzΓ−2

(1−θz)Γ+1(z−2α1)
dz is convergent by Cauchy cri-

terion.

Thus from (5.23), we find that 1-rarefaction wave curve intersects the line % = 2α1

at the point
(

2α1, v− +
∫ %−

2α1

√
εα2ΓzΓ−2

(1−θz)Γ+1(z−2α1)
dz
)
.

Checking the limit %→ +∞ in (5.22), yields

lim
%→−∞

v = v− +

∫ ∞
%−

√
εα2ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
dz.

Since √
εα2ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
>

√
εα2ΓzΓ−2

z
,

we have

∫ +∞

%−

√
εα2ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
dz >

∫ +∞

%−

(√
εα2ΓzΓ−2

z

)
dz.

Thus, we conclude that lim
%→+∞

v = +∞.

5.3.2 Bounded discontinuous solution

Now our attention is to discuss the bounded discontinuous solution which is called

shock wave solution satisfying the R-H conditions and entropy condition. The R-H

conditions for the shock wave at ξ = σα1α2 are derived as


−σα1α2 [%] + [%v − 2α1v] = 0,

−σα1α2 [%v] +

[
%v2 − α1v

2 + εα2

(
%

(1−θ%)

)Γ
]

= 0,

(5.24)
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where [%] = %+ − %− denotes jump in % across the shock.

On eliminating σα1α2 from (5.24), we obtain

[%v][%v − 2α1v] = [%]

[
%v2 − α1v

2 + εα2

(
%

(1− θ%)

)Γ
]
.

Simplifying above relation, we have

(%+%−−α1(%+ +%−))(v−−v+)2 = εα2(%+−%−)

((
%+

(1− θ%+)

)Γ

−
(

%−
(1− θ%−)

)Γ
)
.

Since (%+%− − α1(%+ + %−)) > 0, which implies that

(v− − v+) = ±

√√√√√εα2(%+ − %−)

((
%+

(1−θ%+)

)Γ

−
(

%−
(1−θ%−)

)Γ
)

(%+%− − α1(%+ + %−))
. (5.25)

The Lax entropy inequalities imply that 1-shock wave satisfies the following relation

µ1(%+, v+) < σα1α2 < µ2(%+, v+), µ1(%−, v−) > σα1α2 , (5.26)

and 2-shock wave satisfies

µ1(%−, v−) < σα1α2 < µ2(%−, v−), µ2(%+, v+) < σα1α2 . (5.27)

From (26), we have

µ1(%+, v+) < σα1α2 < µ1(%−, v−),

−

√
εα2Γ%Γ−2

+ (%+ − 2α1)

(1− θ%−)Γ+1

1

(%− − 2α1)
<

v+ − v−
(%+ − %−)

< −

√
εα2Γ%Γ−2

− (%− − 2α1)

(1− θ%−)Γ+1

1

(%+ − 2α1)
.

(5.28)



Chapter 5. Concentration and Cavitation in the Riemann Solution...... 94

Similarly, for 2-shock wave, we have

√
εα2Γ%Γ−2

+ (%+ − 2α1)

(1− θ%−)Γ+1

1

(%− − 2α1)
<

v+ − v−
(%+ − %−)

<

√
εα2Γ%Γ−2

− (%− − 2α1)

(1− θ%−)Γ+1

1

(%+ − 2α1)
.

(5.29)

From (28) and (29), we conclude that %− < %+, v+ < v−, and %− > %+, v+ < v−,

respectively.

For a given left state (%−, v−), the shock curves in the phase plane, which are the

sets of states that can be connected on the right by 1-shock or a 2-shock are defined

as,

1-shock wave curve denoted by S1(%−, v−) is defined as

S1(%−, v−) =


v = v− −

√
εα2(%−%−)

(
( %

(1−θ%))
Γ
−
(

%−
(1−θ%−)

)Γ
)

(%%−−α1(%+%−))
,

% > %−,

(5.30)

and 2-shock wave curve, denoted by S2(%−, v−), is defined as

S2(%−, v−) =


v = v− −

√
εα2(%−%−)

(
( %

(1−θ%))
Γ
−
(

%−
(1−θ%−)

)Γ
)

(%%−−α1(%+%−))
,

% < %−.

(5.31)

In addition, on differentiating v with respect to % in (5.30) and (5.31), we obtain that

v% < 0 and v% > 0, respectively, which implies that the shock curves are monotone.

When %→ 1/θ in (5.30) we have v → −∞ and when %→ 2α1 in (5.31), we get

v → v− −

√√√√ εα2

−α1

((
2α1

(1− 2θα1)

)Γ

−
(

%−
(1− θ%−)

)Γ
)
,
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Figure 5.3: The (%, v) phase plane for the model (1).

this implies that 2-shock wave curve intersects the line % = 2α1 at the point

2α1, v− −

√√√√ εα2

−α1

((
2α1

(1− 2θα1)

)Γ

−
(

%−
(1− θ%−)

)Γ
) .

From above analysis, we notice that for a given left state (%−, v−), the set of states

that can be connected on the right by a rarefaction wave or a shock wave in the

phase plane consists of 1-rarefaction wave curve R1(%−, v−), 2-rarefaction wave curve

R2(%−, v−), 1-shock wave curve S1(%−, v−) and 2-shock wave curve S2(%−, v−). These

elementary curves divide phase plane into four regions asR1R2(%−, v−), R2S1(%−, v−),

S1S2(%−, v−) and S2R1(%−, v−) which is shown in Figure 5.3.
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5.4 Concentration in Riemann solution to (5.5)

and (5.6) under flux approximation

In this section, we study the phenomenon of concentration in the Riemann solution

of (5.5) and (5.6) for isentropic dusty gas flow, when (%+, v+) ∈ S1S2(%−, v−) with

v− > v+.

5.4.1 Limiting behavior of the solution of Riemann Problem

as α1, α2 tends to 0

For any α1, α2 > 0, we suppose (%α1α2
∗ , vα1α2

∗ ) be the intermediate state in the sense

that (%−, v−) and (%α1α2
∗ , vα1α2

∗ ) are connected by 1-shock curve S1(%−, v−) with speed

σα1α2
1 , and the states (%α1α2

∗ , vα1α2
∗ ) and (%+, v+) are connected by 2-shock curve

S2(%−, v−) with speed σα1α2
2 . They have relations


vα1α2
∗ = v− −

√
εα2(%

α1α2
∗ −%−)

((
%
α1α2∗

(1−θ%α1α2∗ )

)Γ

−
(

%−
(1−θ%−)

)Γ
)

(%
α1α2
∗ %−−α1(%

α1α2
∗ +%−))

,

%α1α2
∗ > %−,

(5.32)

on S1 and


vα1α2
∗ = v+ −

√
εα2(%+−%

α1α2
∗ )

((
%+

(1−θ%+)

)Γ
−
(

%
α1α2∗

(1−θ%α1α2∗ )

)Γ
)

(%+%
α1α2
∗ −α1(%++%

α1α2
∗ ))

,

%α1α2
∗ > %+,

(5.33)

on S2. Then, we propose some Lemmas to analyze the limit solution of the Riemann

Problem (5.5) and (5.6) as α1, α2 → 0.

Lemma 5.2. lim
α1,α2→0

%α1α2
∗ = +∞.
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Proof: If lim
α1,α2→0

%α1α2
∗ = M, where M ∈ (max(%−, %+),+∞), then from (5.32) and

(5.33), we have (see [45])

v+ − v− = −


√√√√√εα2(%α1α2

∗ − %−)

((
%
α1α2
∗

(1−θ%α1α2
∗ )

)Γ

−
(

%−
(1−θ%−)

)Γ
)

(%α1α2
∗ %− − α1(%α1α2

∗ + %−))



+


√√√√√εα2(%+ − %α1α2

∗ )

((
%+

(1−θ%+)

)Γ

−
(

%
α1α2
∗

(1−θ%α1α2
∗ )

)Γ
)

(%+%
α1α2
∗ − α1(%+ + %α1α2

∗ ))

 .

Letting α1, α2 → 0 in above expression, we get v+ − v− = 0, i.e. v+ = v−, which is

contradiction of our supposition v+ < v−. Therefore, Lemma 5.2 is true.

Lemma 5.3. lim
α1,α2→0

εα2

(
%
α1α2
∗

(1−θ%α1α2
∗ )(1−θ%−)

)Γ

= %−%+

(
v−−v+√
%−+

√
%+

)2

.

Lemma 5.4. Set σ =
v−
√
%−+v+

√
%+√

%−+
√
%+

. Then

lim
α1,α2→0

vα1α2
∗ = lim

α1,α2→0
σα1α2

1 = lim
α1,α2→0

σα1α2
2 = σ.

Proof: Taking the limit as α1, α2 → 0 in (5.33) and noticing Lemma 5.3, we have

lim
α1,α2→0

vα1α2
∗ = v− − lim

α1,α2→0

1
√
%−

√
εα2

(
%α1α2
∗

(1− θ%α1α2
∗ )(1− θ%−)

)Γ

= σ.

From R-H jump relations (5.24), we have

σα1α2
1 = vα1α2

∗ +
(%− − 2α1)(vα1α2

∗ − v−)

%α1α2
∗ − %−

,

σα1α2
2 = vα1α2

∗ +
(%+ − 2α1)(v+ − vα1α2

∗ )

%+ − %α1α2
∗

.
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Taking the limit as α1, α2 → 0, we have

lim
α1,α2→0

σα1α2
1 = lim

α1,α2→0
σα1α2

2 = lim
α1,α2→0

vα1α2
∗ = σ.

From Lemma 5.4, it is noticeable that when α1, α2 tend to 0, the speed of 1-shock

S1 and 2-shock S2 and intermediate velocity coincide at σ, which determine the δ-

shock speed for the transport equations, and the intermediate density %α1α2
∗ becomes

singular.

From Lemma 5.2 and Lemma 5.4, we have the following result.

Lemma 5.5.

lim
α1,α2→0

∫ σ
α1α2
2

σ
α1α2
1

%α1α2
∗ dη = σ[%]− [%v],

and

lim
α1,α2→0

∫ σ
α1α2
2

σ
α1α2
1

%α1α2
∗ vα1α2

∗ dη = σ[%v]− [%v2].

5.4.2 Delta - shock wave

We now show the following theorem characterizing the limit as α1, α2 → 0 in the

case v+ < v− and (%+, v+) ∈ S1S2(%−, v−).

Theorem 5.6. Let v+ < v− and (%+, v+) ∈ S1S2(%−, v−) and let (%α1α2 , vα1α2) is a

two shocks solution of Riemann Problem (5.5) and (5.6). Then, when α1α2 → 0,

%α1α2 and %α1α2vα1α2 converge in the sense of distribution and limit functions of %α1α2

and %α1α2vα1α2 are the sum of step functions and a δ-measure with weights

(σ[%]− [%v])t√
1 + σ2

,
(σ[%v]− [%v2])t√

1 + σ2
,

respectively, which forms a δ- shock wave solution of transport equations (5.4) with

(5.6).
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Proof: Take ζ = x
t
. Then, for each fixed α1, α2 > 0, the solution of Riemann

Problem can be written as

(%α1α2 , vα1α2) =


(%−, v−), ζ < σα1α2

1 ,

(%α1α2
∗ , vα1α2

∗ ), σα1α2
1 < ζ < σα1α2

2 ,

(%+, v+), ζ > σα1α2
2 ,

(5.34)

which satisfies the following weak formulation

−
∫ ∞
−∞

((vα1α2 − ζ)%α1α2 − 2α1v
α1α2)φ

′
dζ −

∫ ∞
−∞

%α1α2φdζ = 0, (5.35)

∫ ∞
−∞

(
(%α1α2 − α1)(vα1α2)2 − %α1α2vα1α2ζ + ε

(
%α1α2

1− θ%α1α2

)Γ
)
φ
′
dζ

−
∫ ∞
−∞

%α1α2vα1α2φdζ = 0,

(5.36)

for any test function φ ∈ C∞0 (R+ ×R).

Taking the first integral of (5.35) and on decomposing it, we have

∫ ∞
−∞

((vα1α2 − ζ)%α1α2 − 2α1v
α1α2)φ

′
dζ

=

(∫ σ
α1α2
1

−∞
+

∫ σ
α1α2
2

σ
α1α2
1

+

∫ +∞

σ
α1α2
2

)
((vα1α2 − ζ)%α1α2 − 2α1v

α1α2)φ
′
dζ.

(5.37)

The limit of the sum of first and third terms of RHS of (5.37), we have

lim
α1,α2→0

(∫ σ
α1α2
1

−∞
+

∫ +∞

σ
α1α2
2

)
((vα1α2 − ζ)%α1α2 − 2α1v

α1α2)φ
′
dζ

= lim
α1,α2→0

(∫ σ
α1α2
1

−∞
((vα1α2 − ζ)%α1α2 − 2α1v

α1α2)φ
′
dζ

)

+ lim
α1,α2→0

(∫ +∞

σ
α1α2
2

((vα1α2 − ζ)%α1α2 − 2α1v
α1α2)φ

′
dζ

)
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= (σ[%]− [%v])φ(σ) +

∫ +∞

−∞
h(ζ − σ)φdζ,

where

h(ζ − σ) =


%−, ζ < σ,

%+, ζ > σ.

Taking the limit of second integral of RHS of (5.37), we have

lim
α1,α2→0

∫ σ
α1α2
2

σ
α1α2
1

((vα1α2
∗ − ζ)%α1α2

∗ − 2α1v
α1α2
∗ )φ

′
dζ = lim

α1,α2→0
%α1α2
∗ (σα1α2

2 − σα1α2
1 )

×

((
φ(σα1α2

2 )− φ(σα1α2
1 )

σα1α2
2 − σα1α2

1

)
v∗ −

σα1α2
2 φ(σα1α2

2 )− σα1α2
1 φ(σα1α2

1 )

σα1α2
2 − σα1α2

1

+
1

σα1α2
2 − σα1α2

1

∫ σ
α1α2
2

σ
α1α2
1

φdζ

)

− lim
α1,α2→0

2α1v
α1α2
∗ (φ(σα1α2

2 )− φ(σα1α2
1 )) = (σ[%]− [%v])

(
σφ
′
(σ)− σφ′(σ)− φ(σ) + φ(σ)

)
= 0.

Hence ∫ ∞
−∞

%α1α2φdζ = (σ[%]− [%v])φ(σ) +

∫ +∞

−∞
h(ζ − σ)φdζ.

Now, from (5.36), we have

∫∞
−∞ %

α1α2vα1α2φdζ =
∫∞
−∞

(
(%α1α2 − α1)(vα1α2)2 − %α1α2vα1α2ζ + ε

(
%α1α2

1−θ%α1α2

)Γ
)
φ
′
dζ.

(5.38)

On decomposing the integral of RHS of (5.38), we get

(∫ σ
α1α2
1

−∞
+

∫ σ
α1α2
2

σ
α1α2
1

+

∫ +∞

σ
α1α2
2

)(
(%α1α2 − α1)(vα1α2)2 − %α1α2vα1α2ζ + ε

(
%α1α2

1− θ%α1α2

)Γ
)
φ
′
dζ.

(5.39)

Taking limit α1, α2 → 0, of sum of first and second integral of RHS of (5.39), we

obtain that

lim
α1,α2→0

(∫ σ
α1α2
1

−∞
+

∫ σ
α1α2
2

σ
α1α2
1

+

∫ +∞

σ
α1α2
2

)(
(%α1α2 − α1)(vα1α2)2 − %α1α2vα1α2ζ

)
φ
′
dζ

=
(
σ[%v]− [%v2]

)
φ(σ) +

∫ +∞

−∞
ĥ(ζ − σ)φdζ,
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where

ĥ(ζ − σ) =


%−, ζ < σ,

%+, ζ > σ.

and the limit of third term of (5.39) on using Lemma 5.2 and Lemma 5.3, we have

lim
α1,α2→0

(∫ σ
α1α2
1

−∞
+

∫ σ
α1α2
2

σ
α1α2
1

+

∫ +∞

σ
α1α2
2

)
ε

(
%α1α2

1− θ%α1α2

)Γ

φ
′
dζ

= lim
α1,α2→0

ε

∫ σ
α1α2
1

−∞

(
%α1α2
−

1− θ%α1α2
−

)Γ

φ
′
dζ + lim

α1,α2→0
ε

∫ σ
α1α2
2

σ
α1α2
1

(
%α1α2
∗

1− θ%α1α2
∗

)Γ

φ
′
dζ

+ lim
α1,α2→0

ε

∫ +∞

σ
α1α2
2

(
%α1α2

+

1− θ%α1α2
+

)Γ

φ
′
dζ

= lim
α1,α2→0

ε

((
%α1α2
−

1− θ%α1α2
−

)Γ

φ(σα1α2
1 )−

(
%α1α2

+

1− θ%α1α2
+

)Γ

φ(σα1α2
2 )

)

+ lim
α1,α2→0

ε

(
%α1α2
∗

1− θ%α1α2
∗

)Γ

φ(σα1α2
2 − σα1α2

1 )

= 0.

Hence,

∫ ∞
−∞

%α1α2vα1α2φdζ =
(
σ[%v]− [%v2]

)
φ(σ) +

∫ +∞

−∞
ĥ(ζ − σ)φdζ.

Now, we consider the limits of %α1α2vα1α2 and %α1α2 depending on t, then for any

test function φ ∈ C∞0 (R+ ×R), we have

lim
α1,α2→0

∫ ∞
0

∫ ∞
−∞

%α1α2

(x
t

)
φ(x, t)dxdt

= lim
α1,α2→0

∫ ∞
0

t

(∫ ∞
−∞

%α1α2(ζ)φ(ζt, t)dζ

)
dt

=

∫ ∞
0

t

(
(σ[%]− [%v])φ(σt, t)dt+

∫ +∞

−∞
h(ζ − σ)φ(ζt, t)dζ

)
dt

=

∫ ∞
0

t (σ[%]− [%v])φ(σt, t)dt+

∫ ∞
0

∫ +∞

−∞
h(x− σt)φ(x, t)dxdt.
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From definition 5.1, we have

∫ ∞
0

t (σ[%]− [%v])φ(σt, t)dt = 〈f(.)δΓ, phi(.)〉, (5.40)

where f(t) = (σ[%]−[%v])t√
1+σ2 .

Similarly, we can get

∫ ∞
0

∫ ∞
−∞

%α1α2vα1α2

(x
t

)
φ(x, t)dxdt = 〈f(.)δΓ, phi(.)〉

+

∫ ∞
0

∫ +∞

−∞
ĥ(x− σt)φ(x, t)dxdt,

(5.41)

where f(t) = (σ[%v]−[%v2])t√
1+σ2 .

Hence proof is complete.

5.5 Cavitation in Riemann solution to (5.5) and

(5.6) under flux approximation

Here, we consider the flux approximation limit of the Riemann solution of (5.5) and

(5.6) as α1, α2 → 0 in case (%+, v+) ∈ R1R2(%−, v−) with v− < v+ and %± > 0.

Let (%α1α2
∗ , vα1α2

∗ ) be intermediate states for α1, α2 > 0, which connects to the left

state (%−, v−) and right state (%+, v+) by 1- rarefaction wave and 2- rarefaction wave

curves, respectively. Then, 1-rarefaction wave satisfies


ξ = vα1α2 −

√
εα2Γ(%α1α2 )Γ−2

(1−θ%α1α2 )Γ+1 (%α1α2 − 2α1),

v− −
√

εα2Γ%Γ−2
−

(1−θ%−)Γ+1 (%− − 2α1) < ξ < vα1α2
∗ −

√
εα2Γ(%

α1α2
∗ )Γ−2

(1−θ%α1α2
∗ )Γ+1 (%α1α2

∗ − 2α1),

%α1α2
∗ < %−,

(5.42)
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and 2-rarefaction wave satisfies
ξ = vα1α2 +

√
εα2Γ(%α1α2 )Γ−2

(1−θ%α1α2 )Γ+1 (%α1α2 − 2α1),

vα1α2
∗ −

√
εα2Γ(%

α1α2
∗ )Γ−2

(1−θ%α1α2
∗ )Γ+1 (%α1α2

∗ − 2α1) < ξ < v+ −
√

εα2Γ%Γ−2
+

(1−θ%+)Γ+1 (%+ − 2α1),

%α1α2
∗ < %+,

(5.43)

Theorem 5.7. Assuming v− < v+ and (%α1α2 , vα1α2) is a rarefaction wave solution

of (5.5) and (5.6). Then there exist α0 > 0, such that the constant density solution

occurs in the solution when 0 < α1 < α0 and 0 < α2 < α0. Also, the rarefac-

tion waves tend to contact discontinuities (x/t = v±) connecting the states (%±, v±)

and the vacuum state (% = 0), which form vacuum state solution for the transport

equations.

Proof: Let α1 = α2 = α0, since (%α1α2
∗ , vα1α2

∗ ) is on 1-rarefaction wave curve, we have

vα1α2
∗ = v− −

∫ %α1α2
∗

%−

√
εα0ΓzΓ−2

(1−θz)Γ+1(z−2α0)
dz ≤ v− −

∫ %−
2α0

√
εα0ΓzΓ−2

(1−θz)Γ+1(z−2α0)
dz = Bα0 .

If v− < v+ < Bα0 , then there exist α01 such that (%+, v+) ∈ R1R2(%−, v−) i.e. no con-

stant density solution. However, the constant density solution occurs when Bα0 < v+

i.e. there exist α02 such that (%+, v+) ∈ R1R2(%−, v−).

Let g(α) =
∫ %−

2α

√
εαΓzΓ−2

(1−θz)Γ+1(z−2α)
dz−v+ +v−, is a continuous function of α such that

when Bα0 > v+, then g(α01) > 0 and when Bα0 < v+, then g(α02) < 0. Therefore,

g(α01)g(α02) < 0, which implies that there exist α0 ∈ (α01, α02) such that g(α0) = 0.

Hence, when 0 < α1 < α0 and 0 < α2 < α0, then the intermediate state becomes

constant state such that

(%α1α2
∗ , vα1α2

∗ )(ξ) = (2α1, ξ), vα1α2
1 ≤ ξ ≤ vα1α2

2 ,
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where

vα1α2
1 = v− +

∫ %−

2α1

√
εα1ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
dz,

and

vα1α2
2 = v+ −

∫ %+

2α1

√
εα1ΓzΓ−2

(1− θz)Γ+1(z − 2α1)
dz.

Taking limit α1, α2 → 0, we obtain

lim
α1,α2→0

%α1,α2
∗ = 0,

and

lim
α1,α2→0

vα1,α2

1,2 = v∓.

Hence, from above result it is clear that limit solution of (5.5) and (5.6) is a solution

of transport equation containing vacuum state formed by two contact discontinuities

(x/t = v±). Theorem is proved.

5.6 Conclusions

In the present work, we investigated the phenomenon of concentration and cavitation

in the solutions of the Riemann Problem for the dusty gasdynamics by employing two

parameters flux approximation technique. It is obtained that the model considered

in this study is genuinely nonlinear for both the characteristic fields. The Riemann

solutions for the transport equations are constructed and obtained that it consists

two contact discontinuities and a vacuum state between them and a delta shock

wave solution when v− < v+ and v− > v+, respectively. Further, we obtained

the self similar solution for the approximated system and later on, the Rankine-

Hugoniot condition for the approximated system is derived to determine the bounded
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discontinuous solution. It is also obtained that for the case v− > v+, the Riemann

solutions of approximated system converges to a delta shock wave solution of the

transport equations as α1α2 tend to zero and for the case v− < v+, as α1α2 tend

to zero, the Riemann solutions consisting two rarefaction waves of approximated

system converges to the two contact discontinuities and vacuum state between them

connecting the left state (v−, %−) to the right state (v+, %+) which is a vacuum state

solution of the transport equations. Similar analysis of the Riemann solutions for

different hyperbolic systems is investigated previously by [34, 41] and [45].

***********


